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ON HOMOLOGICAL DIMENSIONS
OF RINGS WITH COUNTABLY GENERATED IDEALS

CHR. U. JENSEN
1. Introduction.

Let R be an arbitrary, not necessarily commutative ring with an
identity element. A left R-module 440 is said to have homological
dimension 7, denoted l.dhy(A4), if 4 has a projective resolution of the

form
ei0>P, >P, 1 >...>Pj>-A4->0

but no such of this type with fewer non-zero terms. The left global
dimension of R, denoted l.gl.dim R, is defined as supl.dhg(A4), where A
ranges over all left R-modules, and is characterized by the property that
lgldimR<n, if and only if Ext}(4,B)=0 for all left R-modules 4
and B.

The right global dimension of R, denoted r.gl.dim R, is defined analo-
gously by means of right R-modules. In general, l.gl.dim R and r.gl.dim R
do not coincide. Probably, the simplest counterexample (cf. Small [5])
is the ring R of 2 x 2 matrices

h%)
s heZ, ., €@,
(0 2 71,92 € @

for which one finds r.gl.dimR=1 and l.gl.dimR=2.

If, however, R is assumed to be left and right Noetherian, the two
dimensions coincide and are both equal to the weak global dimension of
R, denoted w.gl.dimR, which is the smallest integer n for which
TorE, (4,B)=0 for all right R-modules 4 and all left R-modules B
(cf. Northcott [4, theorem 20, p. 154]).

From the definition of w.gl.dim R it readily follows that for any ring
R one has

wgldimR £ lgldimR and wgldimR < rgldimR.
It is the purpose of this note to show that
lgldimR £ wgldimR+1,
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if all the left ideals of R are countably generated. By the corresponding
result for right R-modules and the left-right symmetry of the weak
global dimension it follows that for any ring R whose left ideals and right
ideals are countably generated, one has

lgldimR —rgldimR| < 1.

In view of the just mentioned example this result is, in a certain sense,
best possible.

2. The connection between l.gl.dim R and w.gl.dim R.
Before stating the main result we shall prove the following two lemmas.

Lrmma 1. Let R be a ring whose left ideals are countably generated.
Then any submodule of a countably generated left R-module is itself count-
ably generated.

Proor. It apparently suffices to show that any submodule 4 of a
finitely generated left R-module M is countably generated. We shall
prove this last statement by induction on the number » of generators of
M. If n=1, then M~ R/L for some left ideal L of R. Therefore 4 ~J/L
for a suitable left ideal J containing L. Since J is countably generated,
so is J/L. Suppose now that the statement has been proved for any
module generated by fewer than » elements. If M is generated by the
n elements m,,. .., m,, that is

M = BRm;+...+Rm, ,
let B=Rm,; then A n B< Rm, is countably generated and
A[AnB ~ (A+B)/B < M|B

is countably generated by the inductive assumption, since M/B is gen-
erated by (n—1) elements. Consequently 4 is countably generated.

REMARK. The lemma immediately implies the following analogue of
Hilbert base theorem. If the commutative ring R has countably gener-
ated ideals, and § is a ring unitary over R and countably generated over
R (as a ring), then the ideals of § are countably generated. In fact, if
the elements y,; form a countable set of generators for S over R, then the
power products y3...y;» will be a countable set of generators of S,
viewed as an R-module.

LemMmaA 2. If A is a countably generated flat left R-module, where R s
a ring whose left ideals are countably generated, then 1.dhp(4) = 1.
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Proor. Since 4 is countably generated there is a short exact sequence
0-B>F34-0

where F is a free left R-module with a countable base e,,¢,,..., and B,
here regarded as a submodule of F, is countably generated because of
lemma 1.

Let C be an arbitrary submodule of B generated by finitely many
elements ¢,,...,c, € B. From Bourbaki [1, exercise 23, p. 65) it follows
that there exists a homomorphism % from F to B such that u(c,)=c;,
15¢5.

If c;=3;r,e;, 1€ R, 1Sjspu say, then the elements cij=u(e;) B
satisfy the relations

Oi=zri151, léiév, l_s_jsﬂ.
J

Let «¢ be the endomorphism of F defined by «C(e;)=e;—¢; for 1<j=<pu
and «C(e;) =e; for j>u. Then we have

(1) alc) =0 forallceC.

The module generated by the elements ¢;,1<j < u will be denoted by C.
Since B is countably generated it may be written as the ascending
union of finitely generated submodules B,

[o<]

B=UB, B <Bgc..cB,c....

fim=]l
We shall now inductively define finitely generated submodules C, of B
in the following way:

01=B1, 02=01+B2, e ey 0n=6n_1+Bn.
Here we have

(2) 0,0, c0,c0,

N
Q

S
Uce, =B.
n=1

Let o™ be the endomorphism «¢*. For the mappings «™ we have

(i) patm =g,
(ii) a™(c)=0 for all ceC,,
(iii) a™xm =nm for n>m.

(i) follows from the definition of a™, and (ii) follows from (1). To
Prove (iii) we remark that, according to the definition of a™ we have in
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any case «(™(e;)=¢;+c¢, where ceC,cC,. By (ii) a®™(c)=0, hence
x™(a™(e;)) = x™(e;). Now (iii) is obvious since a™ ™ and «™ have the
same values on the base elements e; of F.

Let P be the direct sum of a countable set of copies of F, here regarded
as the set of all sequences {z,,7,,...,%,,...}, where z, € F and z, =0 for
almost all n. We claim that the following sequence

(3) 0-PiP34-0
is exact. Here @ is defined by

D{xy,.. ., 0. ..} = ¢(Zx;)
and y by

2@y, T, ) = (@, 2 — oWy, L2, — ™D, L)

It is evident, that @ is surjective and y injective. From (i) it follows
that ImycKer®. To prove the converse inclusion let {z,,...,z;...}
be an element of Ker®, so that Y «; belongs to Kerp=B. Because of (2),
Yz, € C, for a suitable n. Thus (ii) implies a™(3x;) =0. By (iii) we may
assume that x;=0 for ¢ >n. By repeated use of (iii) it is readily checked
that

x{y, 6cVxy + 25, 6O(2y + @) + 25, . . ., 6@ V(23 + . .. +2,_4)+2,,0,0,...)
= {#,,%,,...,2,,0,0,...}.

This proves the inclusion Ker®cImy.
As a direct sum of free modules, P is free, in particular projective.
The existence of the exact sequence (3) implies 1.dh,(4)<1.

We are now able to prove

THEOREM 1. For an arbitrary ring R whose left ideals are countably
generated one has
lgldimR £ wgldimR+1.

Proor. We may obviously assume that w.gl.dimR=mn <o, since
otherwise there is nothing to prove. To show l.gl.dim R <n+ 1 it suffices
to prove l.dhy(C)<n+1 for any cyclic left R-module C=R/L, L being
a left ideal of R (cf. Northcott [4, theorem 15, p. 141]).

By assumption L is countably generated and is therefore the homo-
morphic image of a countably generated free R-module F; with a kernel
K, which is countably generated because of lemma 1. Continuing this
way we get the following short exact sequences
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0-L —-R -C -0,
0-K, -F, L -0,
(* 0-K, -F, K, -0,

...........................

where the F’s are free modules with countable bases and the K’s are
countably generated by lemma 1. For any right R-module 4 we obtain
by repeated use of the connecting homomorphisms for Tor an isomor-

phism Tor®(4,K,_,) = Tor®,, (4,C) = 0,

since w.gl.dim B=n. Consequently K, _, is a flat countably generated
left R-module. By lemma 2, K, , is the quotient of two projective

R-modules 0Py >Py> K, 0.

Combining this short exact sequence with (*) we get a long exact se-

quence 0O-P,,>P,»F, ,>...>F,>R->C.

This makes it clear that L.dhp(C)<n+1.

By passage to R’s opposite ring we get a similar result for the right
global dimension of R. Taking into account the right-left symmetry of
the weak global dimension we obtain

CoroLLARY 1. For an arbitrary ring R whose left ideals and right ideals
are countably generated we have

l.gldimR—-r.gldimR| < 1.
In particular this inequality holds if R has only countably many elements.

ReMARK. It is easy to give examples of rings, for which all right
ideals, but not all left ideals are countably generated. Actually, let S
be a (commutative) principal ideal domain, whose quotient field K,
regarded as a S-module is not countably generated (for instance S = F[X],
where F is a field with a non-countable set of elements). The matrix ring

B = (8 "1), sel, kyk ek,

is a right principal ideal ring, while the left ideal consisting of the matrices
0k
( o 0) , keK,

is not countably generated.
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By examples of this sort, however, one does not obtain rings whose
left and right global dimensions differ by more than 1, and it appears
to be an open question how great values the difference

Lgl.dim R —r.gl.dim R|

actually can assume.

Since any left (or right) semi-hereditary ring R has w.gldimR<1
(cf. Cartan-Eilenberg [2] VI 2.9), we get

CorOLLARY 2. Let R be a (left or right) semi-hereditary ring. If R’s
left (right) ideals are countably generated, then 1.gl.dim R < 2 (r.gl.dim R < 2).

In particular, if R is a Priifer ring with countably generated ideals,
we have (cf. Cartan—Eilenberg [2, VII.5]) that gl.dim R <1 or gl.dim R=2,
according as R is Noetherian (hence Dedekind) or not. On the other
hand it has been proved by Kaplansky (unpublished) that a valuation
ring R containing non-countably generated ideals has gl.dim R > 2. This
means that, even in the commutative case, the assumption of the count-
able generation of the ideals is essential for the validity of theorem 1.

We shall finish this note by showing that for any n >0 there exists a
commutative integral domain R (with countably generated ideals) for
which w.gl.dimR=n and gldimR=n+1. For n=1 we can take R as
the ring of all algebraic integers, since these form a non-Noetherian Priifer
ring. For any n>1 the polynomial ring R[z,,...x,_,] will then be an
example of the desired kind. In fact, we have (cf. MacLane [3, theorem
4.2, p. 210])

gldim R[z,,...,2,;] = 2+(n—1) = n+1.

Moreover, as proved in the appendix below, one has

w.gl.dim R[z,,...,2, 4] = 1+(n—-1) = n.

3. Appendix.
We shall here sketch a proof of the following theorem which may be
known, but for which the author has not been able to find any reference.
THEOREM 2. For any not necessarily commutative ring R one has
w.gl.dimR[X] = wgldimR+1.

Proor. If w.gldimR=n we shall prove w.gldimR[X]2n+1 and

w.gldimR[X]<n+1. These inequalities follow from the lemmas 3 and
4 below.
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LeMMA 3. Let A+0 be a left R-module with w.l.dhp(4d)=m. If A is
made into an R[X]-module by setting f(x)a=f(0)a for any f(z) in R[X],
then

W.l.d.hR[X](A) 2m+1.

Proor. For m=0 we have to prove that A4 is not R[X] flat. Let ¢ be
the injective homomorphism from R[X] to R[X] defined by ¢f (x) = af (z).
The kernel of the mapping

B[X] Qrx1 4 PTIve R[X] Qpix1 4

is R[X] Qpix1 4 ~A4+0; hence w.l.dhp x4 >0.
For m=1 let

0>-K->F—->4-50

be an exact sequence of R[X]-modules where F is R[X]-free. If
w.ldhpgx(4)=1, K would be R[X]-flat, and hence, what is readily
checked, K/XK would be R-flat. Since XFc K and XF|XKx~A, we
have short exact sequences

(4) 0> K/XF >F|XF->A->0
(5) 0>A->K|XK—>K|XF-0.

Since m=w.l.dhp(4)=1 and F/XF is R-free, we infer from (4) that
K|/XF is R-flat and hence from (5) that A is R-flat, contradicting
w.ldhp(4)=1. This shows that w.l.dhgx(4)=2.
For m>1 let
0O>-K -F' 40

be a short exact sequence of R-modules with F’ being R-free. We proceed
by induction on m. Obviously

wldhgp(K') = m-1,
s0 the inductive assumption implies
w.ldhp(K') = m,
and hence, since w.l.dhgx(F')=1, we get w.l.dhpx(4)=m+1.

LeMma 4. Let A+0 be any left R[X]-module, which, viewed as an
R-module, has w.1l.dhg(A)=m; then

Proor. For m=0 we have to show that w.l.dhpgx(4)<1, if 4 is
R-flat. Now, for any flat left R-module 4 the tensor product R[X] @ 4,
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made into a left R[X]-module in the obvious way, is R[X]-flat. Indeed,
for an arbitrary right R[X]-module M there are isomorphisms (cf.
Northcott [4, 8.3, theorem 1])

T(M) = M Qpix) (B[X] ®r 4) = (M Qpx) BIX]) ®r 4 = M Qr 4.
Since these isomorphisms are natural in M, T'(M) is an exact functor of
M, that is, R[X] Qz 4 is R[X]flat.

Lemma 4 is proved in the case m =0 by showing that there are R[X]-
homomorphisms ¢ and ¢ such that

(6) 0>RX]®rA43 RX]Qz A3 450
is exact. In fact, if p and y are defined by

o(f(*) ® a) = f(x)a, f(x)e R[X],
Y@ Qa) =2 Q (va)-r"' Qa,

it is not hard to see that (6) is exact.
For m >0 let
0-K,-F, ,»...>F,-4->0

be an exact sequence of R[X]-modules, where F,,...,F, _, are R[X]-free,
in particular R-free. By repeated use of the connecting homorphisms

for Tor we get Tor?(B,K,,) =~ TorE,,(B,4) = 0

= m

for any right R-module B, that is, w.l.dhg(K,,)=0. By the just settled
case m=0 we have
w.ldhgx(K,) £ 1,

and hence for any right R[X]-module M,
0 = TorX\(M,K,,) ~ TorEFX)(M,A4);
that is, w.l.dhpx(4)Em+1.

REeMARK. By combination of lemma 3 and lemma 4 it is readily seen
that the inequalities in these lemmas actually are equalities. A slight
modification of lemma 3 shows that theorem 2 also holds if w.gl.dim R = oo,

ADDED IN PROOF. An example of a ring whose left and right global
dimensions differ by 2 has just been given in Lance W. Small, Hereditary
rings, Proc. Nat. Acad. Sci. U.S. A. 55 (1966), 25-27. This means that
the assumption of the countable generation of the ideals is essential for
the validity of not only theorem 1 but also corollary 1.
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