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EXTREME POSITIVE OPERATORS ON ALGEBRAS
OF FUNCTIONS

F. F. BONSALL, J. LINDENSTRAUSS and R. R. PHELPS

This paper is developed around the following general theme: If J is
an appropriate convex set of linear operators from one algebra to another,
and if 7" is an extreme point of J, then 7' is an algebra homomorphism.
This assertion is true in a surprisingly large number of cases. A result
of this general type which motivated the present paper is the following
[8]: Let 4 and B be algebras (under the usual pointwise operations) of
real-valued functions on the sets X and Y, respectively, and suppose
that 1e 4. Let K,'(4,B) be the convex set of all linear operators 7
from A4 to B which satisfy 7' > 0 (that is, 7/f = 0 whenever f=0) and 71 £ 1.
Suppose, moreover, that the functions in A are bounded. Then 7' is
an extreme point of K,'(4,B) if and only if 7' is multiplicative. This
theorem was itself motivated by A. and C. Ionescu Tulcea [5], who
proved essentially the same thing for the case 4=C(X), B=C(Y), X
and Y compact Hausdorff spaces. (It follows from the results of the
present paper that this last result is valid for X and Y arbitrary topo-
logical spaces.) As in [8], the methods of this paper are quite algebraic
and elementary.

Our general set-up, then, is this. We let 4 and B be (nontrivial) alge-
bras of real-valued functions on the sets X and Y, respectively, and we
define several convex sets of linear operators from A4 to B, as follows:

K,(4,B) consists of those T' such that 7720 and 7T'1=1.

Naturally, this presupposes the existence of constant functions in 4
and B. In order to avoid this, we consider a closely related set (which is
identical with the set K,'(4,B) introduced above in case 1 € 4):

Ky(A,B) consists of those T'=0 such that 7f<1 whenever 0<f<1.

We also look at the convex cone K(A4,B) of all positive operators:
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K(A,B) consists of all T=0.
In the case of this last set, of course, we must consider extreme rays,
rather than extreme points. We will use the terminology

“T is extreme in K(4,B)”
to mean that
T lies on an extreme ray ,

ie.if Se K(4,B) and T—8 € K(4, B), then there exists a constant A>0
such that S=A7. Equivalently, if 7=7,+7,,T; € K(A4,B), then there
exist constants 4;=0 such that 7;,=2,T.

In case B= R, the real numbers, then each of the above sets becomes
a convex set of linear functionals on A4, which we denote by K,(4),
Ky(A4) and K(A4), respectively.

The main idea which allows us to prove results of the above type is
to consider algebras A which satisfy the following hypothesis:

HyporrEsis (a): f(1+f)* € 4 whenever fe A4, f20.

If 1 € 4, then it is easily seen that hypothesis (a) is equivalent to the
assertion that f-! € 4 whenever fe 4 and f=6 for some constant § > 0.

There are several natural classes of algebras which arise in analysis and
which satisfy hypothesis (a); we list some of these at the end of the paper.

In order to simplify the statements of some of the results, we make
use of an additional hypothesis:

HypoTHESIS (b): Every function in A is bounded.

It is readily seen that neither of these hypotheses implies the other.

We will denote the subalgebra of all bounded functions in 4 by 4,.
Note that hypothesis (a) implies that 4,4 {0}.

By a positive function we mean one which is nowhere negative; the set
of positive functions in 4 or B is denoted by 4, or B,. Similarly, an
operator 7' is said to be positive if 7> 0.

We restrict ourselves throughout to algebras of real-valued functions.
It is an easy task to extend the results to algebras of complex-valued
functions, if the algebra 4 is assumed to be self-adjoint. As was shown
in [8], if K,(4,B) contains an extreme element, then it follows easily
that 4 is self-adjoint. The same observation may be made concerning

K4,B) and K(4,B).

The rest of this paper is divided into four main parts.
In the first, we consider the sets Ky(4,B) and K,(4, B), as well as some
closely related sets. Under hypothesis (a) or (b) on 4, the extreme
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points of these sets are multiplicative. (The algebra P of all real poly-
nomials satisfies neither (a) nor (b), and it is shown, in fact, that
K,(P,P) contains an extreme operator which is not multiplicative.)

In the second part we look at the cone K(4,B) of positive operators.
The results here vary widely, depending on different hypotheses on 4
and B. Generally speaking, the extreme rays of K(4, B) are not generated
by multiplicative operators.

In the third part we consider the converse problem of determining
when every multiplicative operator is extreme.

In the final part we look at some related results and some open ques-
tions.

2. Normalized positive operators.

The following lemma extends the essential idea from [8] to cover the
case when 1 ¢ 4.

Lemma 1. Suppose that T € Ko(A4,B) and that g € A. Define U,: A - B
by
Uf) = Tfg-TfTg, fed.

If 0<g<1, then T+U,eKy(4,B). If 1 A and T e K,(A,B), then
T+U, e KyA,B).

Proor. If f=0, then

(T+U)f =Tf(1-T9)+Tfg 2 0,
since 1-7¢20. Also, f—fg=0 and hence
(T-Up)f = T(f—fo) + TfTg 2 0

If 0<f=<1, then 05fg<g and Tf<1, so0

T+U)f =sTf(1-Tg)+Tg
S (1-Tg)+Tg = 1.
Finally, we have
0=sf-fg+9=f(1-9)+g
(1-9)+g=1,

IA

80

(T-U,)f = Tf-Tfg+TfTg
Tf-Tfg+Tyg
=T(f-fg+g9) £ 1.

If 1€ 4 and T1=1, then U,1=0, so the second assertion is obvious.

IA 1
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The next result shows that in the present context, the only algebras 4
of interest are those which are generated by A4,.

Lemma 2. If K(A,B) or K(A,B) contains an extreme element, then
A=A4,-A,. If K(A4,B)contains a nontrivial extreme point then A, =+ {0};
in fact, A,={0} if and only if K\(4,B)=K(A,B).

Proo¥. Suppose there exists fin A,f¢ A, —A,. Choose a linear sub-
space N>A4,— A, such that f¢ N and 4=N+ Rf. Choose g+0 in B
and define U: 4 - B by U(h+1rf)=rg whenever he N, r€¢ R. Then
U+0 but U=0 on 4,. It follows that the line RU generated by U is
contained in Ky(4,B) and in K(A4,B), so neither of these sets contains
an extreme element.

It is obvious that if 4,={0}, then K (4,B)=K(A4,B). On the other
hand, if 4,% {0} we can find » in 4 and « in X such that 0<A<1 and
h(x)=+0. If we choose g in B,, g=+0 and define 7': 4 - B by Tf=f(x)g,
then AT € K(4,B) for all >0, but AT ¢ Ky(4, B) for sufficiently large A.
Since the only extreme point of K(A,B) is the zero operator, it is clear
that 4,={0} implies that K(4,B) contains no nontrivial extreme point.

TarorREM 3. If T is an extreme point of Ky(A,B) and if A satisfies
hypothesis (a) or hypothesis (b), then T is multiplicative.

Proor. It is immediate from Lemma 1 that if ge 4, 0=<¢g=<1, then
U,=0, that is, Tfg=TfTg for all fin A. Consider, first, hypothesis (b).
If ge 4,, then 0=<ag =<1 for some a > 0; it follows that T/fg=TfTg for f
in 4, gin A,. By Lemma 2, A=A4,— A, and we conclude that 7' is
multiplicative. Consider, now hypothesis (a). If he 4, then g=
h(1+h)1edand 0sg=1,s0 Tfg=TfTg for all fin A. Since h=g+gh,
we have (for all fin 4)

Tfh = Tg(f+fh) = TgT(f+fh) = TfTg+TfhTyg
and Th=Tg+ TgTh. From this it follows that

TfTh+TfhTh = (Tf+Tfh)Th
= (Tf+Tfh)(Tg+TgTh)
= (TfTg+ TfhTg)+ TfTgTh+ TfhTgTh
= Tfh+TfhTh,

so TfTh=Tfh whenever fe A, he A,. Since A=A4,— A4, the proof is
complete.

CorOLLARY 4. If A and B contain the constants and A satisfies hypo-
thesis (a) or (b), then every extreme point T of K,(A,B) is multiplicative.



EXTREME POSITIVE OPERATORS ON ALGEBRAS OF FUNCTIONS 165

Proor. Observe that not only do we have K,(4,B)<K,4,B), but
(after a simple verification) every extreme point of K,(4, B) is an extreme
point of K(A4,B), so Theorem 3 applies.

The next result was motivated by a question by L. Dubins and G.
Schwartz. The sequences of subalgebras arise in certain questions in
probability theory, where 4 and B consist of all bounded functions
which are measurable with respect to a ¢-ring and the subalgebras are
the functions which are measurable with respect to (an increasing se-
quence of) sub-o-rings.

ProrosiTioN 5. Suppose that A, and B, are sequences of subalgebras
of A and B respectively, with

led,c...c4,<4,,<...<A4,
leB=...c¢B,<B,,,<... <B.

Let J be the set of all positive operators T' such that T1=1 and
TA, < B,, n=1,23,....

If the functions in A are bounded and if T is an extreme point of J, then T
18 multiplicative.

Proor. We carry out an induction as follows: Suppose that n>1
and that 7'fg =TfTg whenever f,ge A and forgisin 4, ;. (Welet 4,
be the algebra of constants, so the above supposition is valid for n=1).
We will show that this holds if f or g is in 4,.. Suppose, then, that g € 4,,,
with 0<¢g<1, and let U, be the operator defined in Lemma 1. Since
ged,<A4,,,<... wehave U, 4, <B; for kzn. If fe 4}, 1sksn—1,
then (by the induction hypothesis) U,f=0. Thus, U,4,< B, for all k,
and hence (by Lemma 1), T' + U, € J. Since T is extreme, U,=0, that is,
Tfg=TfTg if ge A,, 0sg=<1, fe A. Since the functions in 4, are
bounded and 1 € 4,, we have Tfg=TfTyg if ge A,, f€ A. It follows by
induction that the same is true for ge U4, fe A. From this it follows
that if ge 4, then U,=0 on U4,. Thus, if ge 4 and 0<g<1, then
T+ U, e J and the same arguments show that 7' is multiplicative on 4.

It is easily seen that the same induction argument will lead to the same
conclusion if J is taken to be the operators 7' in Ky(4,B) for which
TA,<B,, provided each 4, is generated by its positive cone and satis-
fies hypothesis (a).

The next result generalizes (and gives a simple proof of) a result of
Lloyd [7] concerning the extreme points of the set of positive projections
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from C(X) (X compact Hausdorff) onto a subalgebra E of C(X) which
contains 1.

ProprosITION 6. Suppose that C and D are subalgebras of A and B
respectively, with 1€ C and 1€ D. Suppose that T, is a multiplicative
operator in K,(C,D) and let J, be the set of all operators T in K,(A,B)
whose restriction to C is T,. If the functions in A are bounded, and if T
18 an extreme point of J,, then T 13 multiplicative.

Proor. If ge(C, 0=¢g<1, then U, vanishes on C (since T'=7T, is
multiplicative on C), hence T' + U, € J, and we conclude that U,=0 on 4.
This conclusion is valid for arbitrary g in C, since 1 € C and the functions
in C are bounded. Thus, T'fg=TfTg if f or g is in C. Thus if ge 4,
0=g =1, then (again) U,=0 on C and T'+ U, € J,; it is easily concluded
that T is multiplicative.

Lloyd’s theorem follows by taking F=B=D=C and T, to be the
identity map on E. It is also easy to modify Proposition 6 in the manner
suggested after Proposition 5.

The next proposition was suggested by the problem of simultaneous
extensions of continuous functions. Suppose that X and Y are topo-
logical spaces, with X < Y, and let 4 =C(X), B=C(Y) be the continuous
functions on X and Y respectively. Let §: B — A denote the restriction
operator. If a linear mapping 7': 4 — B is such that ST is the identity
on 4, then T is called a simultaneous extension operator; if 7> 0, it is
called a positive simultaneous extension operator. If X and Y are com-
pact Hausdorff spaces and X is metrizable, then there exist such opera-
tors for which 7'1=1. (See the expository paper [9] for references.) It
follows easily from known descriptions of the multiplicative operators
in this case ([1], [8]) (together with the following result) that an operator
T is an extreme positive extension operator with 71=1 if and only if
Tf=fog, fe A, where ¢ is a retract of ¥ onto X.

ProrosiTION 7. Suppose that S: B -~ A is a multiplicative operator in
K, (B,A) such that SB=A. Let J, be the convex set of all T in K,(A,B)
such that ST is the identity operator on A. If the functions in A are bounded,
then any extreme point T of J, 18 multiplicative.

Proor. Suppose that ge 4, 0<g <1 and define U, as in Lemma 1
Then T'+ U, € K,(4,B) and

BUNS) = 8(Tfg—-TfTg) = fg—(8T)f(8T)g = 0,
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so S(T'+U,)=8T; this implies that T+ U, e J,, so U,=0. As before,
then, 7' is multiplicative.

It is easily seen that the above result is valid if, in place of hypothesis
(b), we require that A satisfies A =4, — A, and hypothesis (a).

Proposition 7 may also be applied to prove a result of A. and C. Ione-
scu Tulcea [5] concerning liftings. Simply let B=M%, the algebra of all
bounded measurable functions (on a given measure space), let 4 be an
algebra of functions isomorphic to L™, the quotient algebra obtained by
identifying functions in B which agree almost everywhere, and let S be
the quotient map. It is also possible to give an abstract formulation of
another Jonescu Tulcea result (on ‘“‘strong” liftings) by combining the
ideas of Propositions 6 and 7, but the statement becomes a bit com-
plicated.

The next result shows that something like hypothesis (a) or (b) is
needed in order to prove results like Theorem 3.

THEOREM 8. Let P denote the algebra of all polynomials. The operator T
defined for p in P, x real, by

x2

- Pl D+ 1]

1
(Tp)(w) = 7Pt +1) +

18 extreme in K,(P,P), but 18 not muliiplicative.

Proor. It is easily checked that 7'(P)< P, that T € K,(P,P) and that
T is not multiplicative. (For instance, if ¢ denotes the polynomial
t(x) =2, then T'(:2)+ (7%)2.) It remains then, to show that 7' is extreme,
iie. if U: P P is linear and 7 + U € K,(P,P), then U=0. For each
real z, let L, denote the functional p — (T'p)(x) and let N, denote
p - (Up)(z). For fixed =z, it is clear that L, has the following form,
where x; =22+ 1, 2= (x2+1)(x+1):

La:(p) = ap(zy) + (1 — &)p(,), 0sasl, = real .

Furthermore, 7'+ U 2 0 implies that if p>0, then |N(p)| £ L,(p). This
implies that N, is a linear combination of the functionals p — p(x,),
P = p(x,). Indeed, to show this it suffices that N (p)=0 whenever p € P
and p(z,)=0=p(x,). If p satisfies the latter condition, then so does p?
(and p220), hence |N,(p?)|<L,(p?)=0. Clearly, T'+U € K,(P,P) im-
plies N, (1)=0, so for any integer n>1,

1= Ll(np+1)%] 2 [N (n*p®+2np+1)| = |2nN,(p)|;
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it follows that N (p)=0. Thus, for any real z there exist real numbers
a(z) and b(x) such that

N (p) = a(x) p(x®+1) + b(x) p[(#®+ 1)(x+1)] .
Since N ,(1)=0, we have b(x)= —a(x) for all z. Thus, U must have the
following form:
(1)  (Up)=) = a(x){p(=*+1)—pl(x*+1)(z+1)]}, peP, wreal.

It is clear from this that (Up)(0)=0 for all p. If x+0, we can choose
positive polynomials which vanish at one of the points z2+1 or
(®®+1)(xz+1) but not at the other. Since 7'+ U =0, this procedure
yields the inequalities

and hence
(2) |2+ 1)a(z)] =1 and |[@2+4+1)a(z)| < 2, x+0.
If we apply (1) to the polynomial ¢(x) =2 we see that
(Ui)(x) = —a(x) z(x?+1)
is a polynomial g, with the properties (from (2))
lg@)| = || and |g(@)] = |2, =z real.

An examination of these inequalities shows that ¢ =0, and hence a(z) =0
for +0; it follows that U =0, and the proof is complete.

As noted in [8], the multiplicative elements of K,(P,P) are extreme,
and they are all of the form p — pogq for a fixed polynomial g.

3. Positive operators.

We now turn our attention to the cone K(A4,B) of positive operators
from 4 to B. As noted in Lemma 2, the existence of an extreme ray in
K(A,B) implies that A=A4,—A,. It also implies (under additional
hypotheses on A) that B, contains extreme rays; this fact is a con-
sequence of the next theorem.

THEOREM 9. Suppose that T +0 lies on an extreme ray of K(A,B) and
suppose that A satisfies either hypothesis (a) or hypothesis (b). Then either

(1) The operator T satisfies T'fg=0 for all f,g in A
or
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(2) There exists a positive multiplicative functional M on A and a func-
tion h on an extreme ray of B, such that T'f =h Mf for all f in A.

If 1 € A, then (clearly) case (1) cannot hold.

Proor. Suppose that (b) holds, and choose ge 4, 0<¢g=<1. For any f
in A we have Tf=Tfg+T(f—fg). Since this expresses 7' as the sum of
two positive operators, there exists a constant A(g) with 0<A(g) <1 such
that T/fg=A(g)Tf for all f in A. It is easily verified that the function A
defined in this way is positive and affine on the set of all g with 0<¢g=<1;
furthermore, A(g,9,)=24(g,)A(g,) for any such ¢,,g,. Since the functions
in A are bounded (and since A=4,—A4,) we can extend 4 linearly to a
positive multiplicative functional M on A which satisfies

(* Tfg = M(g)Tf forall f,gin 4.

Using commutativity, we have M(g)Tf=M(f)Tg for all f, g in 4. If
M(g)=0 for every g, then (*) shows that T'fg=0 for all f,g in A. Other-
wise, M(g)+0 for some g in A, hence M(g)>0 for some ¢ in 4, and
consequently

Tf=ﬂq—7%)M(f) forall fin 4.

Letting h=Tg/M(g), we have h € B, and we want to show that % lies
on an extreme ray of B,. Suppose, then, that k,€ B,, 0= hy<h. Define
Ty by Ty=hoM. It is clear that T'ye K(A,B) and T < T, hence T, =AT
for some constant A. Choosing f such that M(f)+0, this implies that
hoM(f)=ARM(f), so hy=Ah and hence k is extreme.

We now turn to hypothesis (a). For any fin 4 and g€ 4, we have

I =f— fi €A,

14+g 1+g
and hence the identity

Tf=T(Iﬁ—g)+T(1—fZ—!})

expresses T as the sum of two positive operators. It follows that there
exists a constant u(g) with 0<pu(g) <1 such that

£y .
T(—ng) — uwg)Tf forallfinA.

Writing f+fg in place of f we see that T'f = u(g) T'(f+fg) for all fin 4,g
in 4,. Since T'+0, u(g)> 0 for every g in A, and hence
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1—u(g)
©(9)

It is easily verified that M(g)=(1—pu(g))/u(g) defines a positive, multi-
plicative, additive and positive-homogeneous function on 4, and its
linear extension to A satisfies (*). Since the first half of the proof
following the identity (*) did not use hypothesis (b), it applies again to
the present case to complete the proof.

Tfg = Tf forallfin 4,gin A4,.

Since the sum of two operators which satisfy conclusion (1) of the
above theorem are of the same form, it is clear that not all operators
satisfying (1) are extreme. [At the end of Section 4 we show that extreme
operators exist which satisfy (1).] For operators which satisfy (2), how-
ever, the situation is better—they are always extreme (Theorem 13
and Lemma 17). It is interesting to note that (unless =1 in case (2)),
the extreme positive operators are not multiplicative. This assumes, of
course, either hypothesis (a) or (b); as noted in the previous section,
there exist many positive multiplicative operators on the polynomials,
and Proposition 18 will show that they are extreme in K(P,P).

The conclusions to the next theorem are similar to those in the above
result. The fact that we are dealing with functionals (rather than opera-
tors) makes it possible to eliminate all hypotheses on 4. This result was
first proved, in an entirely different manner, by G.Choquet in 1964
(unpublished).

THEOREM 10. Let A be an algebra of real-valued functions and let K(A)
denote the convex cone of positive linear functionals on A. If L lies on an
extreme ray of K(A), then either

(1) L{fg)=0 for all f,g in A
or

(2) There exist a constant A2 0 and a multiplicative functional M such
that L=1M.

If 1€ A, then case (1) implies that L=0.

The proof of this theorem consists of two lemmas, the first of which may
be known, but does not (to the best of our knowledge) appear in the
literature.

Lemma 11. Suppose that E' is a partially ordered linear space, with
positive cone E.’, and suppose that E is a linear subspace of E' such that
E'=E+E.. If Lis a linear functional on E which lies on an extreme ray
of the cone of positive functionals on E, then there s an extension L’ of L to
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E' such that L' lies on an extreme ray of the cone of the positive funclionals
on E'.

Proor. The proof proceeds precisely as the proof of the usual ‘“mono-
tone extension theorem’ (see, for example, [3]) with two additional pre-
cautions. As a first precaution, one applies Zorn’s lemma to the set of
all extreme extensions of L (rather than to the set of all extensions). The
second precaution involves the “induction step’” which shows the pos-
sibility of extending to a subspace of one more dimension. The usual
proof involves choosing a real number from a certain finite closed inter-
val; one observes that an exireme extension may be obtained by choosing
an endpoint of this interval.

Lemma 12. If A is any algebra of real-valued functions, with A=
A, —A,, then the set A’ of the functions of the form

f(l+9)1, fed, ged,,

18 an algebra containing A, and A'=A+A,'. Furthermore, if fe 4’,
geAd,, then f(1+g)1ed'.

Proor. It is straightforward to verify that A’ is an algebra containing
4. If f(14+9)-! is an element of A’, then f=f, —f, where f;€ A, hence

F(l+9)t = —fot(fitfeg)(l+g)te A+4,.

Finally, the last assertion is also easily verified.

The proof of the first part of the theorem is now completed as follows:
If L lies on an extreme ray of K(4), L+0, then A=4,—A, and the
algebra A’ contains A and satisfies the hypotheses of Lemma 11.
Hence there exists a functional L’ which lies on an extreme ray of K(4’)
and extends L. The algebra A’ satisfies hypothesis (a) of Theorem 9,
so the desired conclusions follow.

In order to exhibit extreme functions which satisfy conclusion (1) of

Theorem 10, we give an example which is analogous to one suggested by
Choquet.

Examprr. Let A denote the algebra of all polynomials with a double zero
at 0, that is

peA ifand only if p(x)=2x2q(x) for some polynomial q .

Then the functional defined by Ly(p)=q(0) i3 extreme in K(A) and satisfies
Ly(p;py) =0 for all p,,p, in A.

Proor. The functional L, is well-defined, since ¢ is uniquely deter-
mined by p. In fact, the map
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px) = 22q,(x) > ¢p(@)

is a well-defined positive linear operator which is one-to-one from A
onto the algebra P of all polynomials. Its adjoint, which we denote by 7',
is one-to-one from K(P) onto K(A) and hence carries extreme rays of
K(P) onto extreme rays of K(A4). Since evaluation at 0 is multiplicative
and positive, Theorem 13 shows that it lies on an extreme ray of K(P).

Since 7' is given explicitly by (7L)(p)=L(q,), L € K(P), p€ A, the
desired result follows.

4. The converse problem.

In order to prove that a positive multiplicative operator 7' is extreme
(in the appropriate set) we first prove the result when B=R, and then
apply this to the functionals defined by f— (Tf)(y) (fin 4, y in Y).
The first result (below) is for the cone K(A4); it requires the following
two simple but useful inequalities. Suppose that 7' is a positive functional
(or operator); then

(1) (TfgP=T(f*)T(g for all f, g in 4
(2) [TUHP=TST(f?) for all fin 4, f20.

The first inequality is proved by considering the discriminant of
0 2 T(f-29)? = T(f*)—2ATfg+A*T(9%), Areal,

while the second inequality is proved in a similar manner by expanding
O0=T[f(f—2)?]. (Note that neither inequality requires that 1 € 4.)

TrEOREM 13. If M is a nontrivial positive multiplicative linear func-
tional on A and if A=A,— A, then M lies on an extreme ray of the cone
K(A).

Proor. The proof is immediate from the following: If
.M = L1+L2, Ll,ngO,

then there exists a constant A2 0 such that L; =AM on 4,. To see that
this assertion is true, one verifies first that if «,8 e [0,1], then [«xf]*+
[(1—x)(1—-B)]t =1, with equality holding if and only if «=8. We now
want to show that L;=AM on A, for some 120. Since L,f=0 when-
ever fe A, and Mf=0, we need only show that L,/M is constant on
those fin 4, such that Mf> 0. By homogeneity, this means that we want
to show that L,f=L,g whenever f,ge A, and Mf=1=Mg. Consider,
first, such a function f. We have

Mf=1=Lf+Lf,
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so if we let a=L,f, B=L,f3, then
Lyf =1—«x, L,fi=1-8.
From inequality (2) above we conclude that
Mf? =1 = Lif*+ Lyf? < [ofF+[1-a)(1 =B = 1,

and hence x=p and L,f*=[afl=a=L,f. Similarly, L,g?=L,g. Now,
(f-9)*20 and M(f-g)*=0, so

0 = Ly(f-9)*Lag® 2 [Ls(fg—9%)]%,

by inequality (1) above. Thus, L,(fg) = L,g? and (similarly) L,(fg) = L, f2.
This shows that L,f=L,g and completes the proof.

We know from Lemma 2 that if K(4) contains an extreme ray, then
A=A4_,—A_, so this hypothesis does not restrict the generality of Theo-
rem 13. One cannot expect to show that every multiplicative functional
on A lies on an extreme ray of K(4), since there exist multiplicative
functionals which are not positive. For instance, if X is a subset of the
real line and Py is the algebra of restrictions of polynomials to X, then
it is easily verified that the multiplicative functionals are those of the
form p — p(«x) (for some real «), and that such a functional is positive
if and only if « is in the closure of X. Of course, if M is a multiplicative
linear functional on 4 and if every element of 4 , is a finite sum of squares,
then M 20. (Thus, every positive function in Py is a sum of squares
if and only if X is dense in R.)

It is evident from Theorem 13 and the fact that K,(4)<K(A4) that
any multiplicative functional in K,(A) is an extreme point of that set; we
will make subsequent use of this fact.

THEOREM 14. Suppose that A=A, — A, and that M is a multiplicative
Sfunctional in Ky(A). If M(A,)+ {0}, then M is an extreme point of Ky(A4).
If M(A,)={0}, then M lies on an extreme ray of Ky(4).

Proor. Since M is multiplicative and Ky(4)<K(A4), Theorem 13
implies that M lies on an extreme ray of K(4). If M(A4,)={0}, then
R, M <K,A) and M lies on an extreme ray of K,(4). We assume, then,
that M(A,)+{0}. If M =}L,+}L,, with L;,L, in K(4), then L;=A,M
for some 4,2 0. Suppose that the following condition held:

(*) Given &> 0, there exists fin 4,0=f<1, with Mf>1—e¢.
It would follow (for each such f) that

12 Lf = AMf > A(1—¢),
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so that 4,<1. Since 2M =AM +1,M and M +0, we have 4, +4,=2, and
hence we would obtain 4, =A4,=1, completing the proof. It remains, then,
to prove property (*). Since M(A,)+{0}, we can choose fe 4,, f20,
such that Mf>0. (Take the square of any element in 4, on which M
does not vanish, and use the fact that M is multiplicative.) By taking a
large positive multiple of f, if necessary, we can assume that Mf(1+ Mf)-1
>1—4e. Since f is bounded, we can choose constants 4 and x such that
0sfsu<A Lets, in 4 be defined by

By expanding both sides of the following equation (and using the fact
that M is multiplicative) it is easily verified that

MIfA-f)] = Mf(A—Mf)e.
Thus, if we let o« =(1+4)"1(A—Mf), then O0<x<A(1+4)~1<1 and

Mf o, ,  Mf1-ar  Mf

Ms, = —— = =
IS TR 1-a 1+ Mf

(1—an+l),

Since a”+! — 0, we see that Ms, >1—c¢ for sufficiently large n. Further-
more,

0S8, s+ s1,

80 the proof is complete.

We proceed next to consider the converse problem for operators. The
case K,(4,B) is first (and easiest); we then proceed to Ky(4,B) and
K(A,B).

ProrosiTioN 15. Any multiplicative operator T in K (4,B) is an ex-
treme point of K,(4,B).

Proor. For each y in Y, the functional defined on 4 by f — (Tf)(y)
is multiplicative and in K,(4). As noted above, this implies that it is
extreme in K,(A4). It follows easily that 7' is extreme in K,(4,B).

It is not true that every multiplicative operator 7' in Ky(4,B) is ex-
treme, even if 7'(4,) + {0}. Consider, for instance, the following example:
Let X=Y =R, and let B be the algebra of all functions on R. Choose
a bounded function A+ 0 in B such that A(1)=0, and let 4 be the alge-
bra generated by & and those polynomials p which vanish at 0. Let T
be the identity map which embeds 4 in B. Then 7 is certainly in K (4, B)
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and is multiplicative. Define functions «, and a, in B by «,(x) = xy(x) =1
if %1, while ,(1)=0, xy(1)=2. If we let T;=«,T, then

T,eKyA,B), T,+T, i=12,

and T=4T,+1T,, so T is not extreme.

This example shows the need of some hypotheses in order that a con-
verse theorem be valid for Ky(4,B). The next result illustrates several
of the possibilities. As noted in Lemma 2, the hypothesis that 4=
A,— A, is no loss in generality.

ProposIitioN 16. Suppose that A=A, — A, and that T is a mulli-
plicative operator in K((A,B). If A satisfies hypothesis (a) or (b), or if
1€ A, then T is an extreme point of Ky(A4,B).

Proor. For each y in Y, let M, be the multiplicative functional in
Ky(4) defined by M, f=(Tf)(y). If M, were an extreme point of K(4)
for each y in Y, then it would follow easily that 7' is extreme in Ky(4,B).
There are two ways for M, to be extreme in Ky(4); either M (4,) =+ {0}
(so that Theorem 14 applies) or M,=0. But if 1€ A4, then M 1=1
(hence M, (4,)=+{0}) or M,1=0 (hence M,=0). The same two cases
arise if hypothesis (b) holds, i.e. if 4,=4. Finally, if hypothesis (a)
holds and M, + 0, then M, f+0 for some fe 4,. It follows that

h=f(l+f)led, and h+hf=7F,

so that Mh+ MhMf=Mf. Thus, Mh+0, that is M(4,)+{0}, and the
proof is complete.

We conclude this section with several results concerning K(4,B). The
next lemma will help us prove a partial converse to Theorem 9.

LEmMA 17. Suppose that T = hL, where L is an extreme positive functional
on A and h lies on an extreme ray of B,. Then T 1is extreme in K(A,B).

Proor. Suppose that U: 4 — B and that 0S U <T. For fixed f in
4,, we have 0 Uf<hLf; since Lf is a constant and A is extreme, we
conclude that Uf=A(f)h for some constant A(f) 2 0. It is easily verified
that 1 is an additive, positive homogeneous, positive functional on 4.,
hence can be extended to a positive linear functional L, on 4. (The
existence of L implies that 4=4,—A4,, by Lemma 2.) Furthermore,
L, satisfies U=hL,. From this it follows that 0= L, < L; since L is ex-
treme, we conclude that L, is a positive multiple of L and hence U is a
positive multiple of 7', so 7' is extreme.

In case the functional L is multiplicative, this yields a partial converse



176 F.F. BONSALL, J. LINDENSTRAUSS AND R. R. PHELPS

to Theorem 9. If L is extreme and satisfies L(fg) =0 for all f,g (as in
the example at the end of the previous section), this shows how to con-
struct (one-dimensional) extreme operators which satisfy conclusion (1)
of Theorem 9. (See the example after Proposition 19 for an algebra B
such that B, has nontrivial extreme rays.) An infinite dimensional
operator satisfying conclusion (1) of Theorem 9 is exhibited at the end of
this section.

ProrosiTioN 18. Suppose that 1 € A and that every bounded function
in B, is constant. If T +0 is a multiplicative operator in K(A4,B), then T
lies on an extreme ray of K(4,B).

Proor. Suppose that U: 4 -~ Band 0SU=<T. For each y in Y, the
functionals on A defined by

M,(f) = (T)y) and L,f) = (Uf)y), fed,

satisfy 0<L,<M,. Since A=A,— A, and M, is multiplicative, Theo-
rem 14 implies that there exists a number h(y) with 0<h(y)<1 and
L,=h(y)M,. This means that U=~T, for a certain function % on 7Y,
0=<h=1. We can partition Y into two sets Y, and Y, as follows: Since
T is multiplicative, 7'1 takes on the values 0 and 1 only; let

Yo={y: (TH=0} Y, ={y: (T)(y)=1}.

It is immediate that 7f=T17f=0 on Y for all f in A, hence the same is
true for U. Since Ul=hT1=hon Y,, wefind that U=U17T,and 0= U1 £
T1£1. Since Ul € B, it is constant (by hypothesis) and the proof is
complete.

It is interesting to note that the converse to this result is not valid.
Indeed, if we let A=B=P (the polynomials), then certainly 1 € 4 and
every bounded function in B, is constant, but the following example
shows that there exists an extreme ray in K(P,P) which is not generated
by a multiplicative operator.

ExAMPLE. There exists an operator T which lies on an extreme ray of
K(P,P), but which is not (a constant multiple of ) a multiplicative operator.

We use the same operator 7' which was defined in Theorem 8. Since
T1=1, if T=AM for some multiplicative operator M and A= 0, then we
would necessarily have M1=1 and A=1, so T'=M, contradicting the
fact that T' is not multiplicative. Suppose, now, that 7'= }7'; + }T';, with
T,,T, in K(P,P). Since

2=2T1="T]1+T,12T,120,
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the polynomial 7';1 is constant (and so is 7',1). If neither of these con-
stants is zero, then we can write

T
T = (%Tll)-q—,—ll- + (3T,1) 1T, + 3T,1 = 1.,
1

T,
T,1’
This expresses 7' as a convex combination of operators in K,(P,P);
from Theorem 8 we can conclude that 7', and 7', are constant multiples
of 7. If one of the constants equals zero, say 7',/=0, then let F, denote
the functional p - (7'yp)(x). For each real x we have F,I=0 and (using
the notation in the proof of Theorem 8)

0= Fp=2Lp whenever p20.

By applying to F, essentially the same argument as was used for N, in
the proof of Theorem 8, we can show that 7', has the same form (1) as
did U. Choosing (for each x=0) positive polynomials which vanish at
one of the points 2%+ 1 or (x2+ 1)(x + 1) but not at the other, we see that
in this case we have immediately that 0 <a(zx) and 0= —a(z) for each
2+0. Thus, 7, =0 (and hence T,=2T'), so T lies on an extreme ray of
K(P,P).

ProposiTION 19. Suppose that 1 € A and that T is a positive multi-
plicative operator from A to B. If h is extreme in B, then S=hT s ex-
treme in K(A4,B).

The proof is quite similar to that of Proposition 18: If 0= U £, con-
sider the functional on 4 defined by f - h(y)~1(Uf)(y), for each y such
that h(y) >0, and apply Theorem 13. We omit the details.

Concrete examples of operators such as described in the above propo-
sition may be found if 4 =B=P. Indeed, as was noted earlier, the
multiplicative operators from P into P are given by composition [8]:
Choose any ¢ in P and let (T'p)(x)=p(q(x)), p € P, x real. It is clear that
such operators are positive, so it remains to identify the extreme ele-
ments h of P,. This description is doubtless a well-known result, but
we sketch a proof

A polynomial p lies on an extreme ray of P, if and only if p is a positive
constant or p is of the form

p@) = A JTh-1 (@—ap)?.

In fact, since every positive polynomial is a sum of squares of poly-
nomials, it follows that an extreme positive polynomial must itself be a

Math. Scand. 18 — 12
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square, that is p=¢2. If ¢ had an irreducible quadratic factor f, with
J=0 say, we could let 0 <m=minf and hence (writing g=rf)

p =g =2 f(f—m)+r’fm.

It follows from this that any zeros of ¢ are real, and hence p has the
required form. On the other hand, if p has the above form and p=p, + p,,
p; 2 0, then every zero of p is a zero of p;. Upon factoring these common
zeros, we obtain two positive polynomials r, and r, such that r, +7r,=1,
which implies that the r; are constant and the p; are constant multiples
of p.

We conclude this section with an example which is relevant to Theo-
rems 9 and 10. It exhibits an algebra 4 of bounded functions and an
extreme operator 7' in K(4,B) which has infinite dimensional range
and which satisfies 7'fg=0 for all f,g in 4.

ExaMPLE. Let X =R and let Y <R denote the integers. Let B=Py
(the polynomials restricted to the integers). Choose a real-valued con-
tinuous function f on R such that 0<f(z)<e~*, f(z)=0 if and only if
zeY and

*) Puf+ DS+ ... +p,f* =0 implies p,=py=...=p,=0

whenever p,,P,,...,p, are polynomials. Such a function is easily con-
structed. The last property will obtain if f(x)=¢*-2 on [, %], say.

We define 4 to be the algebra generated by f and the function z, so
that A consists of all functions of the form p,f+...+p,f" Since
f(x)<e~*", these functions are bounded. Property (*) guarantees that

T@f+paf2+ ... +2, ") = (P))y

defines a function from A into B, and it is clear that 7' is linear. Fur-
thermore, if 3 p,f*=0, then for z ¢ ¥ we bave f(z) >0, so

D1(@) +po(@)f(®) + . . . + pal@)f*(2) 2 0.

By continuity (and the fact that f(Y)=0) we see that p,(y)=0 for y
in Y, so that 7' € K(A4, B). It is clear that 74 = B and hence the range of 7
is infinite dimensional. It is also clear that Tgh=0 for g,h in 4. It
remains to prove that 7' lies on an extreme ray of K(4,B).

Suppose that U e K(A4,B) and that 0SU<T. Let E be the sup-
space of 4 consisting of all functions of the form pf, with p € P. The map
T,: E - P defined by T,pf=2p is a one-to-one linear and positive map
of E onto P, and T,-! is positive. The map from P onto B defined by
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Typ = p|y is positive and multiplicative, and from Proposition 18 we know
that T, is extreme in K(P,B). Now,

TIE = T2T1 and 0 é UIE é Tle,
80
05 Uglyt £ T,,

hence there exists 0=A<1 with U|yT,~=A1T, and therefore U|z=AT5.
If p20 and k22, then 0 Upf*=0. Since every polynomial p is the
difference of positive polynomials, we see that Upf*=Tpf*=0 for p e P
and k= 2. This implies that U =AT, which completes the proof.

5. Remarks and open questions.

One of the most interesting questions related to the foregoing results
concerns a different convex set of operators: If 4 and B are (real or com-
plex) algebras of bounded functions with supremum norm, each con-
taining the constants, say, let U(A4,B) denote the unit ball of all bounded
linear operators 7': 4 — B with ||7||<1. It is known [1] that if 4 =C(X),
B=C(Y) (real continuous functions on the compact Hausdorff spaces
X and Y) and if X is metrizable, then 7 is extreme in U(4, B) if and only
if
(M) T1Tfg = TfTg and |T1] =1, fged.

The proof of this result is not at all of an algebraic nature, but uses a
selection theorem for certain set-valued functions. It has been shown in
[2] that (M) characterizes the extreme points of U(C(X),C(Y)) for certain
nonmetrizable X and metrizable Y. The problem remains open, how-
ever, for arbitrary X and Y, and is completely open (even for metrizable
X) in the case of complex C(X) and C(Y). (The question (raised in [8])
was even open in the complex case for U(4,B)n{T": T'1=1} with 4 and B
both equal to the disc algebra of all continuous functions on [2| £ 1 which
are analytic in |z| < 1. J.Ryff has suggested an operator, however, which
can be shown to be extreme in this set, but not multiplicative.) The
purely algebraic methods which are used in the present paper for positive
operators will not work for the set U(4, B); there exist 4 and B (neither
complete in the sup-norm) and an operator 7' which is extreme in U(4, B)
but which fails to satisfy either condition in (M). The operator T is not
extreme in U(4,B"), where B" is the completion of B. This shows (in
view of the uniqueness of extensions to A") that there exist extreme
operators defined between dense subalgebras of C(X) and C(Y) (for cer-
tain compact X and Y) which do not admit extreme extensions between
C(X) and O(Y). This latter fact casts doubt on the assertion in [8] that
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the characterization of the extreme points of K,(A4,B) could also be
deduced from the Ionescu Tulcea result for C(X) and C(Y). (It was
assumed that extreme operators on dense subalgebras admitted extreme
extensions. Of course, this is true for the extreme operators in K,(4, B),
but the only proof we know is to show first that they are multiplicative.)
The examples mentioned above will appear in a paper which is devoted
to questions concerning U(4, B).

The aim of this paper has been to characterize the extreme elements
of certain convex sets of operators, and nothing has been said so far
about the existence of such extreme points. In specific examples (for
example continuous functions on a compact Hausdorff space, or the
polynomials on the line) it is usually possible to give fairly explicit
descriptions of the multiplicative elements in terms of operators of com-
position: Tf=fo ¢ for an appropriate map ¢. Thus, to the extent that
the multiplicative operators describe the extreme operators, the exis-
tence problem is reduced to considering maps between the underlying
sets. Some interesting examples (relative to Proposition 6) are given
in [7].

One can also approach the existence problem by attempting to find a
locally convex topology on the space of operators from 4 to B under which
the appropriate convex set is compact ; an application of the Krein—Milman
theorem then yields extreme points. This can always be done, for in-
stance, if B is the dual of a Banach space, since an application of the
Tyhonov product theorem shows that the sets K,(4,B) or K((4,B) are
compact in the ‘“weak*-operator” topology. (See, for example, [6] for
details.) This approach is particularly relevant to Proposition 5, where
we can take B to be L™ (over a o-finite measure space), hence the dual of
L.

In the case of the cone of all positive operators, the extreme elements
(under hypotheses (a) or (b), at least) appear to be one-dimensional
operators of a particularly simple type, and the existence question
reduces to finding multiplicative functionals on A (for example, point
evaluations) and extreme rays in B,. It should be noted that if 1€ B
and 1 is not on an extreme ray of B, then K(4, B) might have no extreme
rays: If b is a nonconstant function in B, with 0<A <1, then for any T
in K(4,B), U=hT defines an operator with 0= U <7T. For specific ex-
amples (for example, B=C(Y)) this construction yields U # 0 such that
U is not a constant multiple of 7.

It is obvious that one can investigate questions of the type considered
in this paper for abstract partially-ordered algebras. We feel that there
is not much interest in doing so, however, because the algebras for which
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the present techniques work will almost invariably be isomorphic to
algebras of functions. There is a natural class of partially ordered alge-
bras for which much remains to be done, however; this is the case of
abstract algebras with involution. In this context, to say that 7: 4 - B
is positive would mean that 7'(z*z) has the form y*y for each x in A.
If the algebras contain an identity, then one can define, for instance, the
obvious analogue to the set K,(4,B) and pose the same question: Is
every extreme point multiplicative? An affirmative answer is possible,
of course, if the algebras are commutative and satisfy sufficient addi-
tional hypotheses to guarantee that they are isomorphic (as algebras and
as partially ordered spaces) to algebras of functions. In the noncommu-
tative case, however, the problem is exceedingly difficult. The situation
has been studied for C*-algebras 4 and B by Stermer [10]. He has
shown that the extreme operators in K,(4,B) are ‘“‘approximately”
homomorphisms, provided 4 is commutative and B is finite dimen-
sional. It is nof true that every extreme operator is a homomorphism,
even when 4 and B are the algebras of all 2 x 2 complex matrices. In
this latter case, the extreme operators (themselves matrices) can be
concretely identified; this has been done (independently) in [4], [10]
and [11].

We conclude by listing some of the algebras 4 which satisfy hypothesis
(@). The most obvious is the algebra C(X) of all continuous functions
on the topological space X. A slightly less obvious example (actually,
a cluss of examples) is obtained by taking 4 to be any subalgebra (with
or without 1) of C(X) which is closed under the topology of uniform
convergence on compact subsets of X. For this, it suffices to show that
the function z(1+2)-! can be approximated uniformly on compact sub-
sets of Rez2 0 by a sequence of complex polynomials p,(z) whlch vanish
at 0 and are real for z real. [This can be done, for example, by taking p,
to be a partial sum of the power series expansion of z(1+2)~! about =,
with, say, |2(1+2)1—p,(2)| <1/n for |z—n|=n+1].

Another class of examples consists of the algebras of all m-times dif-
ferentiable (or continuously differentiable) functions (1=m =) on a
region in R* n=1,2,....

If 1 € 4 and A satisfies hypothesis (a), then any ideal A’ in 4 satisfies
(a): If fe A,’, then (1+f)1€ A and hence f(1+f) e 4’

Finally, an algebra which obviously does not satisfy hypothesis (a) is
given by the algebra P of all polynomials. Of course, the algebra of all
rational functions with positive denominator satisfies hypothesis (a).
This algebra contains P, and illustrates (for the case A =P) the kind of
construction carried out in Lemma 12.
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