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BOUNDARY VALUES FOR HOMOMORPHISMS OF
COMPACT CONVEX SETS

ERIK M. ALFSEN

The aim of the present paper is to characterize those maps of the
extreme boundary which are extendable to continuous affine maps
(homomorphisms) of the whole set, and to apply the results to the Dirich-
let problem of the extreme boundary (Choquet boundary).

A map ¢ of a compact convex subset K; of a locally convex (Haus-
dorff) space E, into a compact convex subset K, of a locally convex
(Hausdorff) space E, is said to be a homomorphism of K, into K, if it is
continuous and affine in the sense that

(1) Az +(1-2)2) = Ap(x)+ (1 —2A)p(x)

whenever z,y € K; and 0A<1. If in addition ¢ is 1—1, then ¢ is said
to be an isomorphism of K, into K,. If there exists an isomorphism of K,
onto K,, then K, and K, are said to be isomorphic.

For every Borel map ¢ of a Borel subset 4 of a compact space K,
into a compact space K,, thece exists an associated map ¢ of the set
M(A4) of (regular Borel) measures concentrated on 4 into the set IM(K,)
of all measures on K,. Explicitly @ is determined by the formula

(2) Pu(E) = u(p~4(B)),
where £ denotes a Borel subset of K,, or by the equivalent formula
®) [rovdu=[1diu,

where f denotes a bounded Borel function on K,.

For every bounded real valued function f defined on a subset 4 con-
taining the extreme boundary 9,K of a compact convex set K in a locally
convex space, there exist upper and lower envelopes f and f. Specifically,
[ is the least upper semi-continuous concave function on K which major-
izes f on A, and f is the greatest lower semi-continuous convex function
on K which minorizes f on 4 (cf. e.g. [8, p. 140]).
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To every continuous real valued function f on a convex compact set
K in a locally convex space, there is associated a boundary set

4) B; = {z | zeK, f(z)=f(2)} .
By a theorem of M. Hervé [10]:
(5) 3K = N {B,|fe€(K)}.

In fact, the formula (5) remains valid if €(K) is replaced by the smaller
class of continuous and convex functions.

In the metrizable case there eixts an f € €(K) such that 0,K = B, [10].
Hence in this case 0, K is a G,-subset of K.

A measure x4 on a compact convex set K in a locally convex space is
said to be a boundary measure if it vanishes off every boundary set B,
fe€(K). In the metrizable case x is a boundary measure if and only if
it vanishes off the extreme boundary, i.e.

(6) [l (EN\9K) = 0.

In the general case a boundary measure u vanishes off every Baire set
containing 0,K, but this property alone does not characterize boundary
measures (cf. [4], [11, Ch. 4]).

By the Choquet—Bishop-de Leeuw Theorem [6], [4] (cf. also [8], [11]),
every point # of K is the barycenter (resultant) of some positive norma-
lized boundary measure y. In symbols

(7 z = f tdu(t) (weak integral) .

The set of all positive normalized boundary measures with barycenter
2 will be denoted by M *.

A (signed) measure x on a convex compact set K in a locally convex
space is said to be a (generalized) affine dependence if it has total mass
zero and has resultant in the origin. An affine dependence which is at
the same time a boundary measure, is said to be an affine dependence on
0K [1, p. 98]. The linear space of all affine dependences on K is denoted
by N(K), and the linear space of all affine dependences on 9,K is denoted
by R(0,K). If the extreme boundary is affinely independent, i.e. if
N(©.K)=(0), then K is said to be a (Choquet-) simplex. Clearly K is a
simplex if and only if M,* has a unique member u, for everyx € K.

If A4 is some Borel set containing the extreme boundary ¢,K of a com-
pact convex set K in a locally convex space, if f is a bounded Borel func-
tion on A4, and if u is a positive normalized measure concentrated on 4
with barycenter z, then by the definition of envelopes (cf. e.g. [8, p. 140])
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®) f@) s [ fdu < fio)

If f is a continuous and convex function on K (i.e. 4 =K), then we
have the following sharper result (cf. e.g. [8, p. 141]):

(9) f(x) = sup { J.fd,u | e S))‘tz"} (dually for f) .

In the sequel we shall need the following simple consequence of
Hervé’s result (5):

LemMA. If f is a bounded u.s.c. function defined on the extreme boundary
9.K of a compact convex set K in a locally convex space, then f(x)=f(x) for
every x € 0,K. Clearly, the dual statement, f(x)=f(x), is valid if f is Ls.c.

Proor. Assume f(z) 2« for all z € 9,K, and define

fi@) = hmsup{fy)lJeaK y—>z}, if zeoK
1 if zeK\J,K.

Clearly f, is an u.s.c. extension of f from 9,K to K. Let {g,} be a descend-
ing net of continuous functions on K which converges pointwise to f;.
Clearly, the net {j,} is descending as well, and the pointwise limit
k=lim g, is an u.s.c. concave majorant of f;. In particular k2f. By
Hervé’s theorem, g, and g, coincide on 9, K. Hence for every x € 0, K

f@) £ k(z) = lim, g (z) = lim g,(x) = fi(z) = f(z).
This completes the proof.

THEOREM. Let K, be a compact convex set in a locally convex space E,;
for i=1,2, and assume K, metrizable. A continuous map @ of the extreme
boundary 0,K, into K, can be extended to a homomorphism of K, into K,
if and only if the following two requirements are satisfied:

(i) v € N(K,) for all » € N(2,K,),
(il) fop and fop are continuous on 0,K, for all f e Ey*.

If 9,K, is closed, then (ii) ts autcmatically satisfied, and the conclusion
holds without metrizability.

Proor. 1) Assume (i), (ii). For every z € K, chose an arbitrary mem-
ber u of M,*. Now u is concentrated on the G,-subset 6,K, of K,, which
is also the domain of definition of g. Hence gu is well defined. The
barycenter of pu does not depend on the particular choice of u; for if u’
is another member of M,*, then.
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p—p € NEK,) ,
and so by (ii)
Pu—ou' € R(K,) ,
and this means that gu and u’ have common barycenter. Thus there
exists a map ¢ of K, into K, defined by the formula

(10) #la) = [tdput),  wems*.

Clearly ¢ is an affine extension of ¢. To prove continuity, we shall first
verify that @ is weakly of the first Baire class, i.e. that fo @ is of the first
Baire class for every fe E,*.

Assume f to be an arbitrary member of E,*. By a standard argument
(based on the Hahn-Banach Theorem in E, x R and on the existence of
a countable base of open sets for the metrizable compact space K,, cf.
e.g. [11, ch. 3]), there exists a descending sequence {g,},., ,, ... of con-
tinuous concave functions converging pointwise to @of.

Let  be an arbitrary point in K;. By the formula (3) and by the defini-
tion of barycenter, we shall have

(11) ff° pdu = ffd&w = f(¢)),

for every ue M, .
By virtue of (9), we obtain for every natural number n

(12) (@) = it [gu du | 7]

= inf{ffo ¢pdp|,ue§mz+} = f(@(@)) .

On the other hand, we may apply (8) together with the Monotone Con-
vergence Theorem and the identity of fo g and fog on 9K, to yield the
following series of relations in which x denotes an arbitrary member of

m,*:
(13) lim g,(x) S Lm fg,.d# = fmdﬂ =ff°<pdu = f(¢(=)) .

n—>oo n—>oo

By combination of (12) and (13) we obtain
(14) g fo .

By definition, g, is lower semi-continuous for n=1,2,.... Hence g,
belongs to the class €,(K,) of all pointwise limits of ascending sequences
from ¥(K,). (Recall that K, has a countable base.) By (14), fo & belongs
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to the class € 4(K,) of all pointwise limits of descending sequences from
€,(K,). By a dual argument, fo & also belongs to the dual class €,,(K,).
Clearly the first Baire class €,(K,) (consisting of all pointwise limits of
sequences from %(K,)) is contained in each of the two classes € ,(K,)
and %,,(K,). By a classical lemma of Sierpinski [12, p. 13], it is equal to
their intersection. Hence we shall have

(15) o e €Ky NEslK,) = €y(K,),

for every f € E,*. Thus ¢ is weakly of the first Baire class.

The proof that ¢ is continuous, is based on a general “lifting”-tech-
nique. Let o, be the set of all positive normalized measures supported
by 9K, let o, be the set of all positive normalized measures on K,,
and define the ‘‘barycenter-map” g, from X '; to K, as follows:

(16) 04(n) =ftd,u(t), ped, i=1,2.

Clearly X; is a vaguely compact convex set (it is even an ‘“‘r-simplex”
in the terminology of [1]), and p; is a continuous map of /", onto K,
for1=1,2.
Now let f be some member of E,*, let z € K, and let u be an arbitrary
member of M, *. By virtue of (8)
foo) = ffowdﬂ s fogl@),

and hence by (11)

(17) fo o) = fod@) < foo).

Let @, be the restriction of ¢ to 9,K,. By the Lemma, the equality sign
holds good throughout (17) when z € 9,K,. By the requirement (ii), this
implies

(18) fo o) = fopx) =fog@), ze0dKy;

and the function fo ¢, on 9,K, is continuous.

By compactness, the weak topology on K, coincides with the given
topology on K, Hence g, is a continuous map of 9.K, into K, It
follows (by use of (3)) that g, is a (vaguely) continuous map of X,
into X’,.

We claim that the following diagram is commutative:

xy e oAy

lu o
+

K, ——— K,
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To prove this claim, we consider an element x of X", and an arbitrary
fe E,*. By a theorem of G.Choquet [7] (cf. [11, ch. 12] for detailed
proof), the ‘“barycenter formula’ is valid for every affine function of the
first Baire class. Applied to our function fo$ on K,; and to the given
measure u, this means

(19) (Fo plesw) = [Fopdu.

Further, by definition, and by the barycenter formula for f e E,*

200 (FopNaw) = [fopodu= [fdju = flesfom)
Hence
fogog =fogaop,
and since f was an arbitrary member of E,*, we shall have the desired
commutativity
(21) $oo=0200-
Now let F be an arbitrary closed subset of K,. Since g, is surjective, we
ghall have .
(22) FUEF) = esl@o~Hoa XF))] -

By the continuity of the maps occurring on the right hand side of (22),
and by the compactness of ";, g-1(F) is closed. Hence we have proved
@ to be a continuous affine extension of ¢.

2) Assume & to be a continuous affine map of K, into K, which ex-
tends ¢. Let v € (9, K,) and assume (without lack of generality) that
v+(K,)=v—(K,;)=1. Now »+ and »~ are positive normalized boundary
measures with common barycenter, say x. By the definition of bary-
center, we shall have for every fe E,*:

(23) ffd@v:ffotpdv=ffo¢dv+—ffo¢dV‘

= f(§(@)-f(#()) = 0.

Clearly also gv(K,;)=0. Hence gve N(K,). The condition (ii) is also
trivially satisfied, since fop=fo&=Fog in the present case.

3) If 0,K, is closed, then the condition (ii) is satisfied by virtue of the
Lemma. Moreover since 0,K, = m, the functions @ and ¢, of the above
proof coincide, and the crucial formula (20) obtained by an argument
involving metrizability, now simply reduces to the definition of ¢ (10).

CoroLLARY. Let K be a metrizable compact convex set in a locally convex
space. A continuous and bounded real valued function g on 0,K can be
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extended to a continuous affine function on K if and only if the following
two requirements are satisfied.

y f gdv =0 for all »eRE,K)
(i)’ g and g are continuous on 3,K .

If 0,K 18 closed, then (ii)’ is automatically satisfied, and the conclusion holds
without metrizability.

Proor. Let K, be some compact interval containing ¢(3,K), and con-
sider g as a map from 0,K into K,. Assume » € N(9,K). Clearly jv has
total mass zero, hence §» € N(K,) if and only if the resultant of gv is in
the origin. By the definition of resultant and by the fact that the only
(up to scalar multiples) continuous linear functional on R is f(§)=¢, we
shall have gv € N(K,) if and only if

(24) 0 =ffdﬁv =ffogdv=fgdv.

Hence the condition (i) of the Theorem is equivalent to the condition
(i)’ of the Corollary.

Similarly, the equivalence of (ii) and (i)’ follows by substitution of
p=g and f(£)=¢ into the former of these two conditions.

The above Corollary gives a necessary and sufficient condition for
solvability of the Dirichlet problem of the extreme boundary with
respect to the class of continuous affine functions. By a standard tech-
nique it may be transferred to the Dirichlet problem for the Choquet
boundary of a compact set X with respect to a uniformly closed linear
subspace of ¥(X) containing the constants and separating points (cf. e.g.
[11, ch. 6]). The last part of the Corollary generalizes a result of H. Bauer,
by which every continuous function on the extreme boundary of a sim-
plex with closed extreme boundary (an ‘‘r-simplex”’) is extendable to a
continuous affine function on the whole simplex [3, p. 120]. The above
Corollary is stated with a sketch of proof in the note [2].

The condition (ii) can not be omitted from the Theorem in the general
case. In fact there exist mon-isomorphic simplexes with homeomorphic
extreme boundaries. In the proof of Theorem 1 of [1, p. 101] there is
given an example of a simplex with extreme boundary homeomorphic
to N (the set of integers with discrete topology). In [9, p. 29], E. Effros
has given a similar example of a simplex with extreme boundary homeo-
morphic to N. However, the two simplexes are not isomorphic, as can be
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seen from the fact that their facial structures are entirely different (cf.
[9] for details).

It is not hard to see that the condition (ii) implies uniform continuity
of . (In the course of the proof this result was established by formula
(18).) However, it is of some interest to note that uniform continuity
alone cannot replace the property (ii). In this connection it suffices to
consider the well-known Bourbaki example in Euclidean 3-space [5, p. 87,
ex. 8]. If g is a real valued function with the value zero on the extreme
points of the generating circle and the value 1 on the extreme points of
the distinguished line-segment, then ¢ is uniformly continuous, and it is
annihilated by every » € #(9,K), but it is clearly not extendable to any
continuous affine function on the whole set. (Nor is § continuous at the
only non-extreme point of 9,K.)

The case of a non-metrizable initial set K, remains open. The extended
function @ is well defined (through (10)) whenever 9,K is a Baire set (or
even a ‘“K-Souslin set’” [8, p.151]). However, our remaining proof
invokes metrizability in an essential way to yield existence of the se-
quence {g,} occurring in (14). The only result known to us, which sub-
gists in the completely general case, is the simple fact that every con-
tinuous map ¢ which is defined on 7,K, and preserves (in the sense of (i))
the affine dependences on 9,K;, can be extended to a homomorphism
of K| into K,. This follows by a direct application of the “lifting tech-
nique” of the last part of the above proof.
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