ASYMPTOTES OF CONVEX BODIES

VICTOR KLEE

For two subsets A and X of Euclidean d-space E^d , let

$$\delta(A, X) = \inf \{ ||a - x|| : a \in A, x \in X \}.$$

The set A is a j-asymptote of X provided that A is a j-dimensional flat with

$$A \cap X = \emptyset$$
 and $\delta(A, X) = 0$.

Thus X admits a 0-asymptote if and only if X fails to be closed, and X admits a j-asymptote if and only if X's orthogonal projection on some (d-j)-dimensional flat in E^d fails to be closed. For each convex body C in E^d (closed convex set with nonempty interior) let αC denote the set of all integers j such that C admits a j-asymptote. If $\alpha C \neq \emptyset$ then (as noted in [2]) $\alpha C = \{j: 1 \leq j \leq d-1\}$ when C has no boundary ray and $\alpha C = \{j: 1 \leq j \leq d-2\}$ when C is a cone. Here we settle a problem raised in [2] by showing that every set of integers between 1 and d-1 can be realized as the set αC for suitably constructed convex bodies C in E^d . The construction is adapted from [1].

THEOREM. For each set $J \subseteq \{j: 1 \le j \le d-1\}$ there is a convex body C in E^d such that C contains no line and $\alpha C = J$.

PROOF. The assertion being obvious for $d \le 2$, we proceed by induction on d. Suppose the assertion known for E^d and consider a set J of integers between 1 and d. We want to produce a convex body K in E^{d+1} such that K contains no line and $\alpha K = J$. Let C be a convex body in E^d such that C contains no line and

$$\alpha C \,=\, \{h\colon 1\,{\leq}\,h\,{\leq}\,d-1 \ \text{and} \ h+1\,{\in}\,J\}$$
 .

Choose an extreme point p of C (possible since C contains no line) and let

$$X = C \text{ if } 1 \notin J, \qquad X = C \sim \{p\} \text{ if } 1 \in J.$$

Received November 19, 1966.

This research was supported in part by the National Science Foundation, U.S.A. (NSF-GP-3579).

In each case X is a convex F_{σ} set and hence is the union of an increasing sequence $Y_1 \subset Y_2 \subset \ldots$ of compact convex sets such that $||y|| \leq i$ for all $y \in Y_i$. Let E^d be embedded as usual in E^{d+1} , so that $E^{d+1} = E^d \oplus Rz$ for a line Rz orthogonal to E^d . Finally, let

$$K = \operatorname{con} \bigcup_{1}^{\infty} (Y_i \oplus i^2 z),$$

so that X is the orthogonal projection of K on E^d . On p. 101 of [1] it is proved that K is closed, whence of course K is a convex body containing no line. Plainly

$$\alpha K \supset \{h+1: h \in \alpha X\}$$
,

for $A \oplus Rz$ is an asymptote of K in E^{d+1} whenever A is an asymptote of X in E^d . From the choice of C and from the care in defining X when $1 \in J$ it follows that

$$\{h+1: h \in \alpha X\} = J.$$

Thus to complete the proof it suffices to show that $\alpha K \subset J$, or equivalently that $j \in \alpha K$ implies $j-1 \in \alpha X$. Note first that no asymptote of K is parallel to E^d , for K is closed and lies in paraboloidal region

(*)
$$Q = \{y \oplus rz : y \in E^d, r \ge 0, ||y|| \le r^{\frac{1}{2}}\}$$

whose intersection with any translate of E^d is compact.

Now consider an arbitrary j-asymptote A of K. For each $r \in R$ let A_r denote the (j-1)-flat $A \cap (E^d \oplus rz)$ and let P_r denote the orthogonal projection of A_r on E^d . Note that $A_r = A_0 + r(A_1 - A_0)$, whence $P_r = A_0 + r(P_1 - A_0)$ and

$$\delta(P_r, A_0) = r\delta(P_1, A_0) .$$

If $P_1 = A_0$ then $A = A_0 \oplus Rz$ and A_0 is plainly a (j-1)-asymptote of X. If $P_1 \neq A_0$ then $\delta(P_1, A_0) > 0$ and it follows from (*) and (*) that

$$\begin{array}{l} \delta(A_r,Q\cap(E^d\oplus[0,4r]z)\, \geqq\, \delta(P_r,\{y\!\in\!E^d\colon\, \|y\|\leqq 2r^{\frac{1}{2}}\})\\ \\ \geqq\, \delta(P_1,A_0)r-2r^{\frac{1}{2}}-\delta(A_0,\{0\})\;, \end{array}$$

whence $\lim_{r\to\infty}\delta(A_r,Q)=\infty$ and A is not an asymptote of K. This completes the proof.

REFERENCES

- 1. V. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107.
- 2. V. Klee, Asymptotes and projections of convex sets, Math. Scand. 8 (1960), 356-362.