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ON EVALUATION
OF HIGHER ORDER COHOMOLOGY OPERATIONS

LEIF KRISTENSEN and IB MADSEN

1. Introduction.

It is the purpose of the present paper to treat the problem of evaluation
of secondary and tertiary operations in low dimensions, generalizing the
statement

Sgti(2) =0 if deg? < n,
Sqnti(2) = 22 if deg2 =n+1.

In the case of secondary operations, this was done in [4]; however, the
treatment given here is very simple and easy. The result in the case of
tertiary operations is new. The proof in this case is somewhat involved.
We hope to be able to simplify the proof and to generalize the result
further. Some applications of the results will be given in a forthcoming
paper. Applications of the result for secondary operations have been
given by Mahowald [6]. A general definition of operations of the N-th
kind has been given by Maunder in [7].
Let A denote the Steenrod algebra (mod2). Let

A(m) = A[B(m),

where B(m) is the left ideal of elements of excess 2m+ 1. To each rela-
tion in the left 4-module A(m),

r: 0=3&48,,

there is associated a secondary operation Qu’, defined in degrees less
than m+ 1. The operation Qu" is determined up to a primary operation.
Let us consider the relation

ri 0 = a8q™! + 3 Sqm+aee(@)ar + y8a,

in A(m), m >n, where excess (&,d,) >n + 1 and Y 4% appears as middle term
in the Cartan formula for &:

A(@) = 26'®6” +Zag®6g+zau®6/ )
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Then we have

THEOREM. There exists an operation Qu" associated with r taking the

values
if deg<n,
Z"' @)a'(2) +f deg=n.

Applied to the stable operations @, ;, +<j and ¢+ j—1, introduced by
Adams [1], it yields

Qu(®) =

211 if =5,
99201 if §<j—1.

It is well known that a tertiary operation is associated with a relation
between primary and secondary operations:

$0,Qu +Qu = 0,

where &; € A, r; and ¢ are relations in A. The tertiary operation is defined
in dimensions less than the excess of ¢ minus 1 (for definition see Sec-
tion 2). It is defined at least on classes 2 annihilated by all primary
operations & € 4 and by the secondary operations Qu'.

Let us consider the relation
ﬂ: ZaiQu"i + Sqﬂ+1+de[§ roQuro + Qul R
where ¢ has excess 27+ 2 and r; is the relation
;0 0= b,8g™ + ZSq““*degi’zoI?g’o + (terms of excess 2n+2),
re: 0 = 34201,

1,0

T

Here a7 , (resp. 53 o) appears as middle term in the Cartan formula for @;
(resp. b@) that is,

A@,) = 38;,88; ,+ 347 @42, + 34,8} , ,
4k, = 25 ®8:’t +23:’0®37’0 + ch t®6: ¢>

where degd; ,<degd; , and deg 5,-’,<deg 5'.,,. Then we have

TaEOREM. There exists a tertiary operation Qu® associated with R taking

the values
degZz<n-—1,

Qu() = Qu'(a’r?)ﬁ degh=1,

where Qu' is the secondary operation associated with the relation r: 0=

>a,;b;.
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A more detailed statement of this theorem is given in Section 4, Theo-
rem 2.

In Section 2 we review the definitions of secondary and tertiary opera-
tions in terms of cochain operations. In this connection we define a cer-
tain ‘“Massey product’ in the Steenrod algebra.

Section 3 contains cochain formulas used in the proof of the theorems
mentioned above. Detailed statements of the theorems and proofs are
given in Section 4.

The method of proof is based on exact sequences of the form

(1) Om s Z0m™ 2> A®...®A - 0 (m summands)
and
(2) 0(2) ——V—P Z@(z)—s—> A®A - 0.

For definitions and proofs see [4] or [3] in case (1), and [5] or [3] in
case (2). (In [5], O is denoted by @Q.)

2. Definitions.

Let F denote the free associative Z,-algebra with unit generated by
sq’, 1=1,2,.... Let R be the subalgebra generated by the Adem rela-
tions. Then F/R=A, such that we have an exact sequence

(1) 0O-R->F—->A4-0.

Elements of F' will be denoted by small letters «,8,a,b,... . The corre-
sponding elements in A will be denoted by &,B,é, b,.... Recall that the
excess of a monomial sg*sg™. .. sg" in F is

maan(?:j—ij+1_ LRI _if) ’

and that the excess of a sum Ym; of monomials is min exc(m;).

Also, to each element « in F' we associate a primary cochain operation
« € ZO', such that if « has excess n, then «(u)=0 if » is a cochain of
degree less than n—1 or a cocycle of degree n—1 (see p. 58 in [4]). We
shall often identify F' with its image in Z(O*.

Let (b;;) be a nxn-matrix in elements of F and let a;, c;, e; and f;,
1=1,2,...,n, be elements from F such that

(2) ry = Xbyc;+f; and & = Xa;b;+ e

map to zero in 4, that is, r; and s; are relations in 4. We obtain an iden-
tity in F':

(3) R Zair{+28563+8 = O,

where

e = Yo f;+ e
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is a relation. We shall refer to (3) as a relation among relations with an
unfactorized relation e.
Let us define N to be the largest number such that the inequalities

N = excf,—2, N < exce;—excc;—2
are fulfilled.
1f we consider the relations r;, s; and & as cochain operations, then
because of the exactness of the sequence

(4) 01202+ 4-0,
where V0=460+ 09, there exist operations R;, S; and E such that

VR, =r;, V8 VE =¢.

VRS
Moreover, E can and shall be chosen such that E(u)=0 if » is a cochain
of degree less than N or an N-dimensional cocycle [4, Theorem 3.7].
This is of importance in the definition of tertiary cohomology operations
associated with Z# (see below).

We now proceed to the definitions of secondary and tertiary co-
homology operations. First we describe what we shall understand by a
secondary operation associated with the relation

rt = Ebijcj +f'i .

Let X be a CSS-complex and (z,{w;}) a system of cochains on X with
deg x <excf;—1, satisfying

(5) 0z = 0, Ow; = cix).
Define a cocycle qu™(x,{w;}) on X by
quit(x, {w;}) = By(®) + Zby(wy) -

It is clear that qu™(z, {w;}) depends on the choice of E;. However, since
two choices differ at most by a primary operation, it follows that
qu'i(z, {w;}) is determined by r, modulo a cocycle x(z), « € Z0.

Define natural additive relations Qu™ from H*(X) to H*(X) as fol-
lows:

The definition domain Def(Qu") is the set of classes in H*(X) of
degree less than excf; and annihilated by ¢;, j=1,...,n.

For £ in Def(Qu™) put QuT(2) equal to the factor set of cohomology
classes of qu"(x,{w;}) where (x,{w;}) runs over all systems of cochains
satisfying (5). The indeterminacy subgroup Ind(Qu™) is the relevant
component of the graded group ZlgﬁH *(X). By an earlier remark it is
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clear that Qu", although not pointed out in the notation, is only deter-
mined up to a primary cohomology operation.

An easy computation (carried out in [4]) shows that Qu™ satisfies the
following additivity relations

(6)  Qu¥2+9) = Qu(@) + Qu(9) if deg@=deg§<excf;—1,
QuiE+9) = Qui@) + Qui(9) +d(fi; 7,y)”  if degZ=degf=excf;—1.
Here d(f;; «,y) is a cochain operation measuring the deviation from
additivity of f;, that is,
(7) 0d(f;; x,y) + d(f;; 62,0y) = fiz+y) + filx) + fily) ,
d(fi; %,0) =0 and d(fi; 0,9) = 0.

The existence of such an operation is a trivial consequence of the exact
sequence

0?1 202 > ADA >0

mentioned in Section 1. However, in order to evaluate d(f;; z,y) one
has to give a more constructive definition. This is done in (6) and (7) of
Section 3.

REMARK. The identities (6) shall be understood with care, i.e. to each
choice of the operations Qu™ and d(f;; z,y) the identities hold modulo
the total indeterminacy involved.

If f, = sq®, then one can choose the operation d(f;; «,y) such that
for degx = degy < excf;—1:

d(fi;w’y) = 0;
for deg x = degy = excf;—1:
d(fi; fl?s?/) =Y.

This was proved already in [4]; (6) of Section 3 repeats this proof.

Next, let us turn to the case of tertiary operations. Define a cochain
operation M by

(8) M(x) = Za;Ry(x) + X 8;04(x) + E(x) + Zd(a;; Rz, B,0x) +
+ Zd(a;; b€ (@), . - b4 (@), fil)) -

An easy check shows that VM =0; that is, M is a primary cochain
operation.

The element of Steenrod’s algebra associated with M is called the
Massey product of the relation among relations #. The cochain opera-
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tions R; and §; are determined only modulo primary cochain operations
(i.e. elements in Z@). Furthermore, it was assumed that £ was chosen
such that E(x)=0 whenever = is a N-dimensional cocycle or a cochain
of dimension less than N. Therefore, the Massey product of # has the
indeterminacy

28, A +3A¢; + B(N),
where B(N) is the left ideal in A of elements of excess larger than V.
Now, assume that M =3 /i, 7, is a factorization of 7 in A. Then

M +3u,my is in ZO and maps to zero in 4 (cf. the exact sequence (4)).
Choose by exactness a cochain operation y with

(9) Vi =M+Zum.
Let us consider systems of cochains (w, {w;}, {u;},{v;}), where
(10) éx =0, Oow; = cj(x), Ouy; = qu(x,{w;}), v = my(x).

For each such system satisfying in addition degz <N, the cochain
qu¥(@, {w;}, {us}, {v,}) given by

(11) qu¥(x, {w;} {us}, {vi}) = 2(x) + Tay(w;) + X 8;(w;) + Zpw(vr) +
+ zd(a’i; bil(wl)" .. ’bin(wn)’quﬂ(x’ {wf}))

is actually a cocycle. One may therefore define a tertiary cohomology
operation corresponding to Z in the following way:

The domain of definition Def (Qu#) consists of all elements in H*(X)
of degree less than or equal to N annihilated by the operations ¢;, Qu'
and m,.

If 2 € Def (Qu?), then put Qu#(2) equal to the factor set of cohomology
classes of

qu¥ (@, {wg}, {us}, {ved) »

where (z, {w;}, {u}, {v;}) runs over all systems of cochains satisfying (10).
The indeterminacy subgroup Ind (Qu%¥) is the appropriate component
of the graded group

S8, H*(X) + ZQuiH*(X) + X fiy H*(X) .

Although it has not been made clear in the notation, the definition of
the cochain

qu(x, {w;}, {u}, {ve})

involves choices of the cochain operations M and y. Hence the natural
additive relation Qu?® is not uniquely determined by #. Two choices of
Qu?® differ at most by a secondary operation.
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As in the secondary case, one can prove by a lengthy but straightfor-
ward computation that

1) QuE@+8) = QuA@) + QuE(9) if deg®=degf<N,
12) " QuR(2+9) = QuAE) + QuA(g) + d(E; 2,y)" if degh=degh=N,

where d(E; z,y) is a cochain operation of excess N, for which

(13) Od(E; z,y) + d(E; o, 0y) = Ex+y) + E(z) + E(y) +d(s; z,9)

and d(E; z,y)=0 if x=0 or y=0.
Again, (12) shall be understood in the following way: To each choice
of the operations Qu® and d(E; ,y), the identities are fulfilled modulo

the total indeterminacy involved.
If ¢=VE has the form

e = esgN*? + 3 sqN+2Hae8 ] P | (terms of higher excess) ,
q q 0 g

then there is a choice of d(¥; z,y) such that
for degz = degy < N:
d(E; z,y) = 0;
for degx = degy = N and dx = dy = 0:
d(E; x,y) = Xe; (x)-ei(y) (} Cartan formula),

where
N

A@) = 3408 + IBQH + 34 ®%; (degé;<degt;)

is the Cartan formula for &. This is proved in Section 3.
Note that Qu® is a stable operation if ¢=0.

We close up this section by constructing universal examples for the
stable tertiary operations. Consider the Postnikov system

Fy(n) - K(n)

[

Fy(n) > Kg(n) T80 Bon)

b

K(Zyn) —=9» Byn),

where
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Fy(n) = TI1K(Z,y, n+degQu™—1) x T1K(Z,, n+degmy,—1) ,
Foy(n) = T1K(Zy, n+degé;—1),

By(n) = T1(Z,, n+degQu™) x 1K (Z,, n+degmy,) ,

Byy(n) = TLK(Z,, n+degt)) .

As indicated on the diagram, the fibration
Ky(n) =~ K(Zy,n)
has k-invariant []¢;, and the fibration
K(n) =+ Ky(n)

has k-invariant TTQu" x [Im,,.
Let 2¢ denote the fundamental class in H¥K(Z,,e); Z,). Then the class

S (B 3y (ardes
in the fiber F,(n) of the fibration
F(n) > Kg(n) == Kg(n)
is transgressiv and transgresses into
38, Quimy*(B") + 3 fiy, My g*(2") = 0.

If 4 e H(Kg(n); Z,) is a class which restricts to the above mentioned
class in the fiber, then (K(n),%) is clearly a universal example for Qu®.

3. Some formulas.
In this section we shall specialize the relations and the relation among
relations in consideration in order to simplify the formulas.
Let @€ A and let
Al

A@) = Ta;Q08; + Z65Qa8 + 3 a;

be the Cartan formula for @. Then Y@} has the property @(x?)=3 a5} (x)?
for all cohomology classes 2. Hence there is a relation in 4:

(1) 8: 0 = aSg™ + 3 8g1Hehap 4+ b,

®4; (degd; <degd;)

where 2 has excess larger than n+1. Let
8 = asg™! + Tsq"HERgp 4 o

denote the corresponding cochain operation (in Z0). (Note, that this, in
particular, means that e(z)=0 whenever z is an n-dimensional cocycle
or a cochain of dimension less than #.) As mentioned in Section 1 there
is an exact sequence
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(2) (9(2)-1-» ZOgpy—> AQA - 0,
V being the differential

From (2) we conclude that there exists a cochain operation 7, € 0y
with the property

0T o(,y) + To(02,y) + T ,(x,0y)
(3) = a(xy) + Jay(x)a; (y) + Saf(x)af (y) + Za; () ai(y) +
+ d(a; dxy,xdy) + degx d(a; xdy,xdy) .

Using 7T, we can now (at least in low dimensions) give an explicit ex-
pression for a cochain operation 0(x) with

80(x) + 0(0x) = s(x) .
First, let 6'(x) be the following partially defined cochain operation:

for degx < n—2:

0'(x) =0,
for degx = n—1:
(4) 0'(2) = Za; (@)a;(o2) ,

for degz = n:
0'(2) = 2a](@) ai(a) + Tai(e) Uy /(02) + To(w,02) ,
for degx = n+1 and éx = 0:
0'(2) = Zay(@) Uy 6 (%) + To(#,7) -
An easy computation shows that
80'(2) + 0'(0z) = asg+(x) + Tsg™ BB ap(z) + e(x) ,
whenever the left-hand side is defined.
We now apply Lemma 3.4 of [4]. This gives us the existence of an

overall defined cochain operation 0 (that is, 6 € 0), taking the following
values in low dimensions:

for degx = n—2:
0(x) =0,

for degaz = n—1:"
(5) 0(z) = Za; (z)ay(dz) ,
for degx = » and dz = 0:
0(z) = Za; (@) ay(a) .
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We recall from Section 2 ((6) and (12)) that (in appropriate dimen-
sions) d(e; z,y) measure the deviation from additivity of the secondary
operation Qu?, and that d(0; x,y) measure the deviation from additivity
of certain tertiary operations. It is therefore of importance to evaluate
these cochain operations (in low dimensions).

It is, of course, clear that d(y; x,y), y € 0, is not uniquely characterized
by the property

Vd(y; z,9) + d(Vy; 2,9) = p(@+y) + p(@) + p() .

Anyway, we may define d(; x,y) for A € F in the following way:
(6) d(sg**;2,y) = x Uy + 02 Upy y (4 = degz—n)

d(aa; z.y) = ad(a; z,y) + d(x; a(x),a(y)) +
(7) +d(x; Vd(a; 2,),a(x) +a(y)) +
+d(x; dd(a; x,y),d(a; éx,0y)) ,
da+a; z,y) = dx; z,y) +d(a; z,y) .

Furthermore, let us define

n-1
Ad(@; xq,. . .,2,) = D d(@; 5, Ziq+ ... +2,);
i=1

then
od(a; xy,. . .,x,) +d(a; dx,,. . .,0x,) = aZx,) + Salz,) .

It is a consequence of (6) and (7) that d(e; #,y) vanishes on cochains of

dimension less than » and on coycles of dimension #, whenever e has

excess larger than n+ 1. Note also that d(a; ,y)=0 if x=0 or y=0.
By means of (6) and (7) we can give the following table for d(s; z,y),

where s=asg™! + 3sg" 18Ul 1 o:
for degxr = degy < n—1:
d(s; z,y) = 0,
(8)  for degx = degy = n—1:

d(s; ,y) = a(dzy) + Zab(0x)ab(y) + d(a; éxdy,dxdy) +
+ 2 dd(af; ox,0y)(af (%) +af () ,

for degz = degy = n and 6z = dy = O:
d(s; 2,y) = a(zy) + Zaf(z)af(y) + Zod(af; z,y)(af () +af(y))-
Next, let d(0; ,y) be the following partially defined cochain operation:
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for degx = degy < n—3:
d(6;x,y) =0,
for degx = degy = n—2:
d(0; z,y) = Za;(x)ai(dy) ,
for degx = degy = n—1:
d(0; z,y) = Za;(@)ai(y) + Za;(y) U, ai(6x) + T,(0x,y) +
+3d(a;; 2,y) (a;(02) +ay(dy)) + 3 (a; (@) + a} () d(aj; dx,0y) +

+ 3 d(af; ox,dy)(af (x) + af (y)) + degzd(a; xdy,xdy) +
+ Zd(a;; 2,y) 6d(a; 6w, dy) ,

(9)

for degz = degy = n and 6z = dy = 0:

d(0; x,y) = T,(x,y) + Zog (y) Uy ay(x) +
+3d(@;; z,y) (a;(@) +ai(y)) + 3 (@} (x) + e} (v)) d(a}; x,y) +
+3d(ah; x,y) (ab (x) + a8 (y)) + Sd(a; ; x,y)8d(a}; ,y) .

A check gives at once that
(10) 48d(6; =,y) + d(0; 0x,0y) = O(x) + O(y) + O(x+y) + d(s; z,y) ,

whenever the left-hand side is defined. Here d(s; z,y) is given in (8)
and 0(z) is given in (5). As before, applying the extension theorem we
get an every-where defined cochain operation satisfying (10). It takes
the following values in low dimensions:
for degxz = degy < n—3:
d;z,y) =0,
for degz = degy = n—2:
d(0; 2,9) = 26 () a;(dy) »
for degx = degy = n—1 and dr = dy = 0:

d(0; z,y) = Sa; (x)ay(y) .

(11)

We shall now turn to the problem of evaluation (in low dimensions)
of tertiary cohomology operations. The way we attack this problem is
parallel to the case of secondary operations but fairly more complicated
and not quite satisfactory.

Let r: 0=34,b, be a relation in 4, and let
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A(@,) = zd;,a®62:a + 265 0®af,0 + za::c®d:,c ’
e 17
a6) =3 b;, t®5i,t +2 53, o®6?, ot 2 52::‘8’3:'.: ,

where degd; ,<degd; , and degb; ,<degb;’,. Then we have relations

(12)

ret 0 = b, 8g™1 4+ 3 Sgnti+de 53053{0 + (terms of excess 2n+2),

Fogt 0= BSqiassile | 5 ggriiritenGifiogp |

i q
(13) + (terms of excess 2n+2),
ro: O =Z&Z’,053’0,
r. 0= 2&;5; .

The cochain operations corresponding to the relations r, r,, r; and r;q
will be denoted by the same symbols. The relations (13) give rise to a
relation among relations with an unfactorized relation ¢ of excess larger
than n+1:

(14) R: 0 = Za;r;+ sq"t 1480, 4 rsg™t 4 T b+ e
(The equation is an equation in the free associative algebra with unit
generated by 1,s¢%,sq%,....)

We recall that to Z in (14) there is associated a Massey product M

(see (8) in Section 2). Using the formulas (5), (6) and (7) we get the fol-
lowing expression for M(z) in low dimensions:

for degz < n—2:
M(x) =0,
for degax = n—1:
M(z) = Sa(3b; (z) b; (6x)) + Za; ,b o(2) a5, ;b3 o(6) +
(15) + Zd(a;; Ty (0) b, (02), Zb;, (0) by, (02)) +
+3af obf o(62) a3, o b5 o) ,

for degz=n and dxr=0:

”

M(z) = Ta Ib (@) b, @) + 25, b, o@) @, 48] o) +
+ Xaf obi o(x) a3 b7, o(®) -
The last summation in both of the cases degz=n—1 and degz=n
is over all triples (i,p,q) and (j,u,v), where (i,p,q)<(j,u,v) for some
ordering of triples of indices (¢, p,q). We make this a convention such that
Xaf obd (@) a3 b}’, %)

in the rest of this paper will mean summation over all (¢,p,q) and (j,u,v)
with (1,p,9) < (j, v, u).
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As a consequence of (15) we see that the cohomology operation Af
associated to M has excess larger than n—1. Hence there is a formula

(16) M = 38q7 Sq~+i87 87 + &,

where the terms Sq’ Sg"*4¢87 8¢’ are admissible of excess n and 2 is ad-
missible of excess larger than n. Note in particular that

(16a) sq’sq™ %7 sq7(x) = sqTosq”(x) sq’sq” ()
if  is an n-dimensional cocycle, and that

(16b) sq’ sq™ 487 sq7(x) = sq™0sq” (x) sq™sq”(dx)
if z is a (n—1)-dimensional cochain.

The aim of the rest of this section is, in low dimensions, to give an ex-
plicit expression for a cochain operation y, satisfying

(17) Vy = M+ 3sqfsq™ti8dsq? ¢

Before we can state the result, we have to make some preparations.
Let us define Ye, f,'®e, f, by

3¢, f, ®¢,f, = Za;b;01 + 3a; b ®a; ,bi, +
(18) + A3 b @ by + 1305 b ®ag by, +

+3a; ,b;, 084, b5, 0 + T, by, (B0, 0B ¢ -

The equality is considered as an equality in FQF (see Section 2 (1) for
definition of F). The Cartan formula (in F) of Ya;b; then takes the
following form:

”n

AZab; = 1@3a;b; + Ze, f,Q¢, f, + Izaé,sb:':t®a’i,ab:'.t +
(19) + 13a ,b;, @0, ,bil ¢ + Zaf b, o®al obF o +
+3a,b,Q1 + 3¢, f, Qe f, .

Here t3(-Q®-) (13—-®—, 13— ®—) is a short notation for that
part of the sum, where the degree of the left-hand term is larger (less
than, equal to) the degree of the right-hand term.

The admissible monomials constitute an additive basis for 4. Hence
there exist admissible monomials

my, keUM,,
my, heUM!,
such that

’

s, =efi+3m, keM,,

20 '7 7 ’ ”n
(20) s =¢ fl +3my, heM),
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are relations. We have the following identities in FQF
(21) Se, f,®¢,f, = 25,/®¢,f, + 5,(Zm;)®s, ,
S(Zm)(Zmy) = 0.

In (15) we gave a table for the Massey product M(x). By a short compu-
tation one sees that M(x) is cohomologous to

IZai,abZz(x) “Zab:',t(x) + Zaf o] o) a}‘,ob}{ ol®) ,

when 2z is an n-dimensional cocycle. Thus by (16a) the following expres-
sion is cohomologous to zero:

13, by (@) @ by, (@) + Zal obd o) a oBY o) +
+ T sqTosq”’ (x) sqTosq”(x) .

Here I, denotes the “half of I”’. We introduce a short notation for (22):

(22)

Shh®g kY = tZa; by @i by, + Zak obT 0®af b7 o +
+ Zsq’0sq’ @sqTosq” .
Now, choose admissible monomials

m, weU,,
m,, wmeUM;,
such that
ty = gyhy + 3y, well’,
and

1, ”n p— V2
ty =g by +3m,, meM",

are relations. We have the following equation in FQF':

pon—" J )

(23) Zoiki®gihy = Zth®gyhy + Za(EMe)®h + Zi(EM,)@(ZMy) -
Let 2™ be the fundamental cohomology class in H"(K(Z,,n)). We have
Si(S g (2m)(Z(2m) = 0

since X gihi(2") g3 k3 (2*) by (22) is null-cohomologous. Hence there
exist admissible monomials n, and n, such that (in FQF)

(24) S CA)(Zy) = In,Qmn, + Zn,@n, + 30’ ®e”,

where each summand in the last term has the property that either o’
or o’ has excess larger than =.

We are now ready to state the main result of this section.

First, let us choose cochain operations R, S), 8,', T; and T3 in 0
such that



128 LEIF KRISTENSEN AND IB MADSEN

VR=r, VS, =45, VS'=4

14 v

VT, =t, VT; =t;.
Then define y' as follows:
for degz < n—3:
Z'(x) =0,
for degx = n—2:
2(@) = {20 by (@) a; b; (0w) + Zak ob o(%) aft o1, of62) +
+3n, (x)n,(0z)
for degx = n—1:
2@ = §3a; b (@) 0 by (@) + Zaf 0B o(%) af o3, o) +
+3m, (x)n,(x) + R(x)dx + 3 8, (x)e, f,(0x) +
(25) +3,(Zmy (%)) 8,(02) + ST3(2) g3 by (0x) + Z,(Z7,(%)) Ty (6%) +
+ ¢Za:-,,b:-:,(6x) U; a,;:,b:-, () + Zn,',(x) U; n;,'(éx) +
+2Ta¢(b2:t(x):b£, t(ax)) + zd(“i? s ,b;:,(x) b;, (o), . . ) ’
for degz = » and dz = 0:
2'(@) = R@)x + X8, () ¢, f1(x) + Z,(Zmy (x)) Sy(x) +
+ I T(@) g3 7y (2) + (S (2)) T () +
+ izag,ab:':t(x) Ul a;,,abz,t(x) + Z",',(x) U1 n;,(x) +
+3T,,(b; (@), b; @) + Zd(ay;. . ., b; ()] (), ..) +
+Zd(a;; Zb;) (2)b;, (), Zb;, (@) by, () -
An easy but rather lengthy computation shows that
(26) 81'(@) + 1 (6x) = M (x) + sq’89°% " sq” () + e(x)

whenever this makes sense. By Lemma 3.4 of [4] there exists a cochain
operation y such that:

for degx < n—1 and dz = 0:
1(@) = 1),
for degz = n and dz = 0:

2(@) = /() + Zeq"(x) sq"*(x)- . .. -sq""(x), rz2.

(27)

4. Theorems.

All references in this section are references to Section 3.
Let s be the relation (1) and Z# the relation among relations (14).
Then we have
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THEOREM 1. There exists a secondary operation associated with the rela-
tion s, taking the following values in low dimensions:

for deg2 = n—1:
Qui2) = 0,
for deg2 = n:
Qui®) = 3a;(®)ay2) (3 Cartan formula) .
Proor. Apply (5).

THEOREM 2. There is a tertiary operation associated with the relation
among relations %, taking the following values in low dimensions:

a) for deg2 < n—2:

QuA(?) = 0,
b) for deg2® = n—1:
Qu¥(@) = y3a; b7 (@) a7 ,b; (2) + 388 o B o(2) 4¥ B o(2) +

+ 2, @)A,2),

c) for degZ=mn and 2 annihilated by all primary operations of degree
less than degZ — n:

Qu%(2) = Qur®)2 (3 Cartan formula) .
RemARk. The symbol |3 is explained in (19). The term
Zal obd o®0aj ob3 o
is defined in (15), and the term Zn ®n in (24). Note that these two
terms are zero if deg(@,b,) is odd.

Proor or TEEOREM 2. Part a) and part b) are immediate consequences
of (25). In order to prove c) we introduce the notation 6-1b for a co-
chain with §(6-1b6)=b. This is a convenient abuse of notation; handled
with care it will not give rise to confusions. From (11) of Section 2 one
sees that Qu#(2) (deg2=mn) is represented by the cocycle:

qu®(x) = y(x) + a0 qu'(x) + ZR; 671 o(2) +
+ 3 *sqT sqie8 T+ 51 sq7 () + sq¥ 6™ sq™(x) +
+d (sg™ s, aP (571 (@), . ., qun(w, {8718 o(@))))

where VR; =r;, and z*sqI sq®8J+nsq? iy the part of the sum

Ssq’ sqdeg'”"sq where sq” 1. By (5) we have

Math. Scand. 20 — 9
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qu®(z) ~ 7(@) + Za,(Z0-1b] (x) b; (%)) +
+ Za:{ #0718 o) a"-, o8 o(@) + Zak ob] o(2) af 007! b3 o) +
+ 3*sqT sq™48Y 51 507 () + sqT 671 (sq™x) .
By (18), (19) and (25)

qu¥(z) ~ R(x)z +(Ta,07b(x)) + § Sa; 0726, (x)a; b () +
+3al ol o(@) a5 487187 o (2) + Zm,(2) 67 m, (2) +
+367 n,(2) m,(x) + Sty(x) 67193 kY (2) + 3(S 67 my () £y (%) +
+ z*sqISqunga—lqu(x) + sql(é—lsqnx) .

Hence by (16a), (16b), (22), (23) and (24)
qu®(z) ~ R(x)x +(Za,6‘lb,-(x))x = qu(z,{0-1b,(x)}) = .
This completes the proof.
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