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CLASSIFICATION AND DEFORMATION
OF RIEMANNIAN SPACES

MITSURU NAKAI and LEO SARIO

A promising new field of research lies in the classification theory of
Riemannian spaces with respect to the existence or nonexistence of
harmonic functions with various boundedness properties. For 2-spaces
harmonicity is known to be invariant not only under isometries but also
under conformal mappings. In contrast, there is no conformal invariance
for higher dimensions. This is exemplified by the following rather sur-
prising phenomena:

(a) A ball can be endowed with a Riemannian metric, conformally
equivalent to the Euclidean one, which makes the ball parabolic.

(b) A compact locally Euclidean space punctured at a point can be
endowed with a conformally equivalent Riemannian metric which
makes the resulting space hyperbolic.

(c¢) The classes Og, Ogp, and Ogp are not quasi-conformally, and not
even conformally invariant. They are, however, quasi-isometrically
invariant.

We start by recalling in Section 1 the definitions of the null classes Og,
Oyp, and Ogp. Making use of function spaces introduced in Section 2
we characterize in Sections 3-5 these null classes by equivalence rela-
tions. In Section 6 we introduce the Dirichlet mappings and show by
means of the equivalence relations that the null classes are invariant
under Dirichlet mappings. In particular, quasi-conformal mappings of
Riemannian 2-spaces are shown to be Dirichlet mappings. That the
invariance under quasi-conformal mappings is lost for higher dimensions
is established in Section 7, which also contains the proofs of the above
statements (a) and (b). The paper closes in Section 8 with the result
that quasi-isometries are Dirichlet mappings, hence the quasi-isometric
invariance of Og, Ogp, and Ogp.

The work was sponsored by the U.S. Army Research Office—Durham, Grant DA-
AROD-31-124-G742, University of California, Los Angeles.
Received July 25, 1966.

Math. Scand. 20 — 13
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1. Null classes of Riemannian spaces.

1. Let V be a noncompact Riemannian space, i.e., a connected, orient-
able, and C* n-manifold with a positive definite metric tensor g,;. The
inverse matrix of the n x n matrix (g;;) is denoted by (g9%’) and the deter-
minant of (g;;) by g. (For fundamentals of Riemannian spaces see, e.g.,
de Rham [19], Hodge [10].)

We consider the class H(V) of harmonic functions in V, i.e., solutions
of the self-adjoint second order elliptic partial differential equation

1 0 0
(1) Au = — ——.(g*g”—u—) =0
ox?

in V. (For basic properties of solutions see, e.g., Miranda [14], Feller [6],
It6 [12], Hérmander [11].)

For a set £ <V we denote by H(E) the class of functions % harmonic
in some open sets @, containing E. For an open set O <V the symbol
H¢(0) will be used for the class of functions harmonic in @ and with con-
tinuous extensions to @:

He(0) = H(0) n C(@).

2. Let {V,)¥ with V, <V, ., be an exhaustion of ¥ by regular sub-
regions V,, (Sario—Schiffer—Glasner [24]). For m >0 we consider the
functions u,, € C(V) defined by

Up| Vo =0,  wn|V=-V,=1  u,|V,—V,e HV,-TV,.

The sequence {u,,}}° is monotone decreasing and converges uniformly in
compact subsets to a nonnegative function w € C(V) with

w|Vy=0, w|V-V,eH(V-T,.

There are only two cases: either u=0on V or |V — V> 0. In the former
case we call V parabolic, and denote the class of parabolic Riemannian
spaces by Og;. The notation is in reference to the fact that these spaces
can also be characterized by the nonexistence of Green’s functions of (1)
on V (cf. It6 [12], Glasner [9]). The spaces with u==0 will be called
hyperbolic.

3. The Dirichlet integral of a function f on V is, by definition,

D(f) = [ Igradf2aV = [dfasdf,
14 1’4

where
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gy

dfi2 = gt
lgradf|® = g% -5

is supposed to exist a.e. and dV =gtda'a. .. adz" (cf. Duff [5]).

We denote by HD(V) the class of functions u e H(V) with finite
Dirichlet integrals D(u), and by Ogp the class of Riemannian spaces V
that do not carry nonconstant functions in HD(V).

We are also interested in the class KD(V) of functions » in HD(V)
with vanishing flux

f*du =0
v

across all dividing (n—1)-cycles y in V. The corresponding null class is
denoted by Ogp.

4. It is known that
Og < Ogp < Okp

(Sario—Schiffer-Glasner [24]), the inclusions being strict. To investigate
the invariance of these classes under various mappings of ¥V we shall
characterize them by equivalences of certain function spaces which we
shall now introduce.

For further classification problems of Riemannian spaces reference is
here made to the doctoral dissertations of Smith [25], Glasner [9],
Breazeal [3], and Ow [17].

2. Norms and function spaces.
5. Given an exhaustion {V,}5’ of V, we shall make use of the quasi-

norm o 1 ]
= — Su —_—

Convergence in this norm is clearly equivalent to compact convergence,

i.e., convergence in every compact subset of V. Uniform convergence in

all of V is given by the norm

Iflleo = supy|fl,
whereas the Dirichlet convergence is provided by the seminorm
IF1 = (DA

Two combinations will be useful:

<f> = [f]co+”f” ’
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corresponding to both compact and Dirichlet convergence, and

K = fllo 171

furnishing uniform and Dirichlet convergence.

6. Given a parametric ball B with the coordinate system x, we denote
by ACL(B) the class of functions in B that are absolutely continuous
on almost all lines parallel to the coordinate axes. Analogously, ACL(V)
shall designate the class of functions f on V with f| B € ACL(B) for every
parametric ball B and every coordinate system in B.

Of basic importance in our study will be the function space

D = {f | feC(V) 0 ACL(Y), ||fll< o}

It is easily seen that gf/ox?, i=1,...,n, exists a.e. and df=(of]ox’)da? a.e.
The space 9 is closed in the norm (-}, hence also in {{:)) (see Nakai
[15]). It is also closed under the operations fug=max(f,g) and fng=
min(f,g), with f,g € @ (Nakai [16]). The subspace 2°=C"n2 is dense
in terms of {-) (cf. [15]).
We are also interested in the subspaces

D, = {f | fe D, suppf compact},
2, = {f | fe 2, suppdf compact} .

Again the spaces 9,°=0°nZ;, 1=0,1, are dense in &,;. As a conse-
quence Stokes’ formula can be used freely for functions in 2 and 2,.

3. Characterization of Og.
7. Denote by 9, the closure of 2, in 2 with respect to (-). We shall
prove (cf. Royden [20], [22], Nakai [15], Glasner [9]):

THEOREM 1. V € Oy if and only if 2=29,.
For functions %,, in No. 2, Stokes’ formula gives
(2) D(um) = D(um+p)+D(um+p_um)

for p=0, and we have D(u—wu,)— 0. Since [4—u,],— 0, it follows
that {u—wu,,)y — 0.

Suppose V e€Oy. We know from No. 2 that {u,) — 0, and we set
v,=1-—u,. Given fe 2, we are to show the existence of a sequence
{fm} =D, such that (f—f,> — 0.

First we consider the case where f is bounded, |f| < M < . Obviously
[f =Sl ~ 0 with {v,f} =2, and for the Dirichlet norm we have
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D(f=vnf)

D(u,,f) = f}gradu,nf]? av
14

IIA

2 f (suppu,,)?|gradf|2dV + 2 f |grad u,,|?(supy |f[)2dV .
17 17

Here the second term is dominated by 2M2D(u,,) -~ 0. We decompose
the integral I, in the first term into Iy and I,_g, with X a compact
set, and have

lim sup,, I, £ lim sup,, Ix+1lim sup,Iy_xr < Dy_x(f).

For a sufficiently large K this is arbitrarily small, and we obtain

If=vmfIl > 0, hence {f—v,,f) - 0.
If fe 2 is unbounded, we approximate it by the truncated bounded

functions
fm = max(min(f,m), —m)e 2 .

Obviously [f—f,.]ec — 0 and, by virtue of the continuity of the norm |||
in the region, ||f—f,ll = 0. A fortiori {f—f,> - 0, and since each f,, is a
limit in {-) of functions in &,, the same is true of f. The proof of the
necessity of 2 =9, is herewith complete.

8. To establish the sufficiency, note that 2 =9, implies 1 € 9,, that
is, the existence of a sequence of function ¢, € @, with {1—¢,) - 0.
It follows that

D(u) = lim,, D(u,) = — | *du = —lim, | ¢, *du
it
= lim,, D(pn, %) < lim,, (D(gn)}H (D)t = 0,

and we have u=0, V € O4.

4. Characterization of Og,,.

9. In view of the inclusion Oy <Oy we may assume that V is hyper-
bolic. We shall need the following auxiliary result (cf. Royden [20],
Brelot [4], Nakai [16]):

LeMMmA 1. Assume that V ¢ Og. The vector space D is the direct sum of
vector subspaces HD and D,:

Spaces HD and P, are also orthogonal in terms of the inner product D(-,-).
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Given fe 2 we know from No.6 that f+=max(f,0) and f-=
max (—f,0) are in &. For this reason we may assume that f=0. Then
the function h,, € C(V) defined by

b Ve H(V,)),  hy| V=V, =f

is nonnegative. On setting g,,=f—h,, we obtain

(4) D(f) = D(h,)+D(g,)
and
(5) D(hm) = D(hm+p)+D(hm_hm+p) .

We infer that {%,}, and consequently {g,.}, is a Cauchy sequence in ||-||.
10. We shall show that the same is true in [-],. In fact,

f b, *du,, = f f*du,, + f T *Q%,y, 5
&V, Vo 8V m—0Vo
and for p e ¥V, we have by Harnack’s inequality and by (4)

Chn(P)D(W) S Mgy, fD(uy) + (D)) (D(um))t

where ¢ is a constant +0. In view of 0<D(u) < D(u,,) this implies

chy(p) < minyp, f+ (D(f)/D(w))t,

and therefore |k, (p)| < N for some finite N. It follows again by Harnack’s
inequality that {h } is uniformly bounded in V, and therefore a normal
family. There exists a subsequence, again denoted by {&,}, and an
ke H(V) such that [h—4,,],,—> O

11. In summary we have (h—h,)—~ 0 and he HD. The function
g=f—h has the corresponding property {g—g¢,>=<{kh—h,y — 0, and
therefore g € 9,. Moreover, (4) yields for m — oo

D(f) = D(h)+D(g) .

We thus have k1 g, and it follows easily that HD | 9,.

To prove the uniqueness of the orthogonal decomposition (3) so estab-
lished suppose f=0. By the above relation A=c, a constant, and
g=—c. If c+0, then c € &, implies 1 € 9, and we have proved in No. 8
that this entails ¥V € Oy, contrary to our assumption. 'We conclude
that ¢=0, and the uniqueness is established. :

12. Let R be the real number field. We are ready to prove (cf. Royden
[20], [22], Nakai [15], [16]):
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TaEOREM 2. V € Ogp, if and only if D=9, (mod R).

If V €O, there is nothing to prove since 9=92, We therefore
assume that V ¢ Og.

Suppose V € Ogzp. Then P =R+, as maintained. Conversely, if
this equality holds, then HD=R.

5. Characterization of Ogy,.

13. Let 9, be the closure in @ of 2, with respect to ||:|. Lemma 1
has the following counterpart for KD (cf. Ahlfors [1], Royden [22]):

Lemma 2. The space @ has the orthogonal decomposition

(6) 9 =KD+2,, KDnZ,=R
in terms of D(-,*).

We shall first show that 1< KD. Let ¢ 1 %,. Then by virtue of
Dy,<=2,<%, we have 919, and, by continuity, ¢ L Z,. By (3) this
implies ¢ € HD.

Let y be a dividing (n—1)-cycle in V. There exists an open regular
subset 2 of ¥V and a function y € C*(V) with the following properties:

(x) 0R2=yuy’,

(8) ¥ is homologous to 9’,

(y) v is constant in each component of V-2,

) ply=1, p|y'=0.

Clearly y € 2,, and

0 = D(p,y) = f*dw-

?
Consequently ¢ € KD.

14. To prove the orthogonality KD 19, we observe that D(p,y)=0
for ¢ € KD, y € @;, and the statement follows by continuity.

15. It remains to prove that KD+ 9, actually is 9. To this end let
9" and 2, be the completions of 2 and 2, in ||:|. Then 2'nC=2
and 2,"nC=9,. For the Hilbert space 2" considered mod R we have
the decomposition

D =D+,

We repeat the argument on KD in Nos. 13, 14 by replacing 2 by
2" and 9, by 2," to obtain 9,"t=KD, and consequently

9- = KD""‘@I‘ .
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On taking intersections with C we arrive at
92 = KD+9,.

The proof of Lemma 2 is herewith complete.

16. We are ready to characterize the class Ogp,.
THEOREM 3. V € Oy, if and only if 2=2),.

Since the orthogonality KD 19, is in D(-,*), the null space is R.
If KD=R, then by (6) 2=9%,, and conversely.

6. Dirichlet mappings.
17. Let V,V be Riemannian n-spaces. To study invariances of our
null classes we introduce:

DEFINITION. A homeomorphism T: V — V is a Dirichlet mapping pro-
vided that

(7) foT e D(V) ifand only if fe D(V)
and there exists a constant K = 1 with the property

(8) K-1D(f) £ D(foT) = KD(f)
for all fe D(V).

From Theorems 1-3 we conclude immediately:

TaEOREM 4. The classes Og, Ogp, and Ogp are invariant under Dirichlet
mappings.

In fact, the induced mapping T*: 2(V) - D(V) given by T*f=foT

is & homeomorphism in ||-|| and also in [-],. For this reason

T*(go( V)) = go(V)’ T*(gl(v)) = —gl(V) .

18. After these preparations we are ready to turn to quasi-conformal
mappings. For p,qg e V we set

d(p.q) = int [ (gyde'da)t,

where the infimum is taken among all rectifiable arcs « from p to g.
In terms of d and similarly defined d in ¥ we write

dp, P=r
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L(p,r) = sup d(T(p),T(q)).
d(p, )=r
DErFINITION. A homeomorphism T: V - V is quasi-conformal if there
exists a constant K =1 such that

9) limsup—— =< K
forall pe V.

By a simple generalization of the results of Gehring [7], [8] and Viisils
[26] we see that a quasi-conformal mapping is ACL in terms of local
parameters of ¥ and ¥ and that it is totally differentiable a.e. More-
over at any pe V,

I(p)* = K»-1J(p),

where .
I(p) = lim sup L(p,r)/r
r—>0
and .
J(p) = lim sup V(T'B,)/V(B,) .

r—>0
Here B, is the geodesic r-ball at p, and V(TB,), V(B,) are the volumes
of TB, and B, respectively. At a point p where 7' is totally differentiable,
J is the Jacobian and we have J >0 a.e. Moreover if £ <V is measur-
able, then so is T'H, and its volume is

V(TE) = deV.
E

Corresponding properties, with the same K, are possessed by the
inverse mapping 7'-1.

19. In the remainder of Section 6 we restrict our attention to spaces of
dimension 2. We shall show (Pfluger [18], Royden [21, 22], Nakai [15]):

THEOREM 5. The classes Og, Oy p, and Ogp, of Riemannian 2-spaces are
tnvariant under quasi-conformal mappings.

For the proof we shall first consider functions fe 2*(V) and show
that they satisfy conditions (7) and (8) (cf. Kiinzi [13]). Clearly foT is
in 9(V) and totally differentiable a.e. We consider only points pe V
with this property. We shall show that

(10) lgrad F|? < |gradf|® I*(p) ,

where F'=foT. If grad F =0, then this is trivially true. We shall assume
that |grad F| 0.
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At p and p=T(p) choose coordinate systems x and & with g,;=4;; and
§ij=0;5. For F;=0F[ox* at p we have Fdat=fdx'. Since gradF+0 we
can choose the dat such that F,/dx'=F,/dx?. Then by the Schwarz
inequality

(ZF?) (2da”) = (Fida')? = (fyd&)® < (2f)* (Zd&)? .

Since g,;=4;;, we have 3f2=|gradf|> and 3 F2=|grad F|2. Similarly
3 (dx?)2=ds* and 3 (d%')2=d3%. But di?/ds*< I%(p), and (10) follows.

20. By virtue of I*2< KJ we obtain
lgrad foT|* < K |gradf|? J(p) .
An integration with respect to dV yields
D(foT) < ED(f).
By a similar reasoning we conclude that
E-1D(f) < D(foT).
Properties (7) and (8) have thus been established for f e 2%(¥).

21. Suppose now fe D(V). Then there exists a sequence of functions
fom € 2%(V) such that (f—f,) = 0 if m - co. Since f,,oT € 2(V),

(11) K-1D(f,) = D(fpoT) £ KD(f,),
and
K—ID(fm_fmﬂ;) = D(fmoT—fm+p°T) pS 'KD(fm'—fm-&—p) ’

we see that
(foT—fmoT> 0.

Thus (7) holds: foT € 2(V). On letting m — o we obtain (8).

7. Conformal noninvariance.

22. Broadly speaking, the reason for the invariance under a quasi-
conformal mapping 7' in the case n=2 is that |gradfo T'|? is, in essence,
divided by I2, while dV is multiplied by J, and by virtue of the relation
In< K»-1J these changes compensate in D(foT). For n > 2 this compen-
sation no longer takes place and the above proof breaks down. We shall
now show that the difficulty is in the very nature of the phenomenon:
there does not exist even conformal invariance.
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We start by constructing two special Riemannian spaces. The first
one provides us with a proof of statement (a) of the introduction.
In Euclidean n-space with n>2, set |x|2=37(2%)>%

ExAMPLE 1. The ball B:|x| <1 becomes parabolic when endowed with

the metric g,,(x)=A(x)0d, where A € C*, >0 in B and

(12) Hw) = a2 (1 a0
in 3= |z| < 1.
For the proof note first that equation (1) takes the form

JE—— k1] < _?_ n—2 _a__u
(13) Au = —)b i§1 axil*( )&ci'
We exhaust V=B by
Vot 2] < l——:Tn
and set
1 2
(14) Up(T) = o~

in V,,—V, Then
Zs

qin Pom _
oxt  mz|®

and
n

Ay, =

im1 M z|mtR

—nx?+ |x|?

Thus u,, is harmonic, the limiting function is # =0, and therefore V € Og.

23. We turn to the proof of statement (b) of the introduction.

ExaMPLE 2. Let B be a parametric ball |x|<1 of a compact locally
Fuclidean space Vywithn>2. The space V=V y,— p, with p the center of B,
becomes hyperbolic when endowed with a Riemannian C* metric in V such
that g,,(x)=A(x)d; in V with >0 in V and

(15) Az) = |x|e-2min-
n B—p.
In B—p, equation (13) is again valid. We choose
1 =3
Bm: lxl < m, Vm = V—Bm’

and
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16 il
v T T rmy

in 7,,—V, Then

0 — cxt

)‘}(n—z)&fl = e——
oxt |z|™
with ¢ a constant, and
r —nwl+ |r)?
_2in = e LI lod S
Mdu, =c e 0

tm=1

The limiting function is u=1—|2|%0, and V ¢ Og.

24. We are ready to prove that Theorem 5 is no longer true for higher
dimensions:

THEOREM 6. The classes Og, Ogp, and Ogp are not conformally in-
variant.

Let V be the ball B: |z| <1 with the Euclidean metric g;;=d,;. For V
take the same ball with the metric g,;=A10,; of Example 1. We shall
show that the mapping 7': ¥V — ¥ induced by the identity mapping of
the base space B is conformal.

Let p,q € V and, in the notation of No. 18, d(p,q)=r. Then

d(T(p),T(9)) = Xp)r + &(p.9) »
where &(p,q) — 0 as d(p,q) > 0. We have

L(p,q) = Mp)r + sup &(p,q),
A(p, Q)=r

Up,q) = Mp)r + inf &(p,q),

Ap, P=r

Lip,r) _
r—>0 l(p» 1')

and consequently

b

as claimed.
Clearly V ¢ Ogy, Ogp, Oxp, whereas V € 04<0gp<Ogp. Theorem 6
is herewith established.

8. Quasi-isometric invariance.

25. Although our null classes for »>2 lack quasi-conformal invari-
ance, they have another important invariance property, associated in a
perhaps more natural manner with the Riemannian metric.

DEFINITION. A homeomorphism T: V — V is a quasi-isometry if there
exists a constant K > 1 such that
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%)) K-1r £ lp,r) £ L(p,r) < Kr

forall peV.
A quasi-isometry is clearly a quasi-conformal mapping and therefore
enjoys the properties of the latter given in No. 18.

THEOREM 7. The classes Og, Ogp, and Ogp are preserved under quasi-
isomelries.

26. By way of preparation we insert here, for the convenience of the
reader, two elementary properties of nonnegative matrices. We recall
that a matrix 4 is nonnegative (positive) if the form (Az,z) is positive
semidefinite (definite resp.).

Let 4 and B be two n xn symmetric matrices. The inequality 4 < B
(4 < B) means that B— A4 is a nonnegative (positive, resp.) matrix. The
standard notations 4-1, A% and |4| are used for the inverse matrix, the
transposed matrix, and the determinant of 4.

LemMMA 3. Let A20 and B>0. Then the inequality A < B implies that
|4] < |B|.

To see this take the orthogonal matrix P such that P*BP is a diagonal
matrix with elements A;,4,,...,4,, say. Since B>0 implies 1;>0,
t=1,2,...,n, we can consider the diagonal matrix C' with elements
M, 4,7 Let @ be the orthogonal matrix such that
QYPCYA(PC)Q is diagonal with elements yy,us,. . .,u,. Then 4 <B im-
plies for S=PCQ

(18) StA8 £ 8'BS.

In terms of the n x » unit matrix & and the 1 x » matrix u = (uy, 4g,. - - , fb)
we have

(19) StAS = uE, S'BS=1E,

and therefore

(20) vE £ B

This in turn implies that u,<1. Since 4 =0, we obtain §/4 S=uk 20,
and thus u; > 0. Therefore [TTu;<1, i.e., |uE| < |E|. Substitution by (19)
gives |A| |S|2<|B| |S|?, and the assertion |4|<|B| follows.

27. For positive matrices we shall show:

LEMMA 4. The inequality A<B with A>0 and B>0 implies that
B-1<4-1,
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Using the notations of No. 26 we observe that 4 >0 implies $*4 S >0
and a fortiori y;>0. This together with (20) gives 0<u;<1 and con-
sequently 1< u,~1. Therefore

E- s (uE)?,
which in terms of (19) is
' (S!BS)-1 < (StAS8)1.

Hence S(S*BS)-18t < S(8t4.8)-18%, and this is equivalent to B-1<
A1,

28. We turn to the proof of Theorem 7. To show that quasi-isometries
are Dirichlet mappings we are to compare Dirichlet integrals over V
and V. To this end we compare volume elements in the present No.,
and gradients in No. 29.

Choose a set £ <V such that (i) meas =0, (ii) T is totally differenti-
able in V—E, (iii) T-! is totally differentiable in ¥V —7(E), and (iv)
J>0in V—E. All considerations below will be in ¥V —E and V —T(E).

Let &=T(x). Then by (12),

K-1ds £ d§ £ Kds,
or equivalently,
. ozt oF!
(21) K-%g,datda? < g‘ija—xk Egdx"dx’ < K2g,; datdal

In terms of the matrix M = (0&‘/ox?), with 4 indicating the row, j the
column, this can be written
(22) K_z(gij) = Mt(gij)M = K2(gij) .
On taking the determinants we obtain by Lemma 3
K-2rg < gIM|* = Kg .

For volume elements dV=gtdal...da and dV=gtJ dat...da"
this takes the form
(23) K-—dV < dV £ K*dV .

29. To compare gradients on ¥V and ¥ we obtain from Lemma 4
and (22)
K-2(g%) s M- @MY < K*(gY).

A left and right multiplication by M and M’ respectively gives
(24) K@) < M(g¥)M' s K@) .
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First consider functions fe 2%°(V). Then clearly foT € 2(V). On
applying the n x 1 matrix (9f/0%‘) on the right and its transpose on the
left to (24) we obtain

g2 of 6f < g ozt 0%t 3f 3f < Ka gy 6f_6_f;
0%l 0%l = 7 owk oat 0% 0% ozt ox!
a.e. in V—FE. The expression in the middle is
of of
m@x" Pk = |gradfoT|?,
and we obtain
(25) K-2|gradf|? £ |gradfo T'|? £ K%|gradf|?
a.e. in V-E.
On combining (23) and (25) we obtain the desired relations
(26) K, D(f) £ D(foT) = K, D(f),

with K, =Kn»+2,
In the general case of f e 2(V) we argue as in No. 21 to conclude that
JoT isin P(V) and satisfies (26). This completes the proof of Theorem 7.
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