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CIRCULAR FLOWS ON &2

P. M. RICE

1. Introduction.
A flow on a space M is a continuous function @: B x M — M such that

i) @|tx M is a homeomorphism onto for each ¢ € R, and
ii) O(t,D(r,x))=D(t+r,x) for each r,te R, x e M.

A point z € M is called a fized point if D(t,x)==z for each t e R. Let F
denote the set of fixed points of the flow @. A circular flow (®,f) on S3
is a flow on 8% along with a continuous function f: 83\ F — 8! such that
fo®@|Rxzx is a homomorphism of the additive group of real numbers
onto the circle group for each x € S3\ F.

In section 2 it is shown that (S®\ F,f, S?) is a fiber space whose fiber
is a 2-manifold, and some general properties of F are exhibited. In
section 3, it is shown that if @ is piecewise linear, F is a tame link, and
the set of tame links which can be the fixed point set of a circular flow
is classified. Some examples are given in section 4 which show that F
may be wild, and may fail to be a manifold.

The author wishes to acknowledge several helpful conversations with
C. B. Schaufele.

2. Circular flows.
Let (D,f) be a circular flow on S2.

Lemwma 2.1. For each t € 81, f-1(t) is a 2-manifold embedded in a locally
Sflat manner as a closed subset of S3\ F.

Proor. F is a compact subset of S3. Let z e f-1(t) and let U be a
neighborhood of » in f-1(f). We may assume that U contains no points
of . For each x € U there is an interval (—¢,¢) such that @|(—¢,&) x =
is a homeomorphism. Note that @(0,z)=x. Since U is compact and is
a positive distance from F, there is an £¢> 0 such that @|(—¢,e)xz is a
homeomorphism for each e U. Since orbits in a flow are disjoint or
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equal, @|(—¢,e) x U is one-to-one; thus it is an embedding. It is clear
that @((—e¢,¢) x U) must contain a set open in 83, so &((—e,e)x U) is
open in 83, thus it is a manifold. U, being a factor of a 3-manifold by a
1-manifold, is a generalized 2-manifold [2], thus it is a 2-manifold.
Since U is open in f-(f), f~!(f) must be a 2-manifold. The embedding
of f-1(t) in 83\ F is locally flat since

D((—¢&,e)xU) x (—e,e)xU.
Lemma 2.2. f-1t)\f-Y(t)=F for each t and dimF <1.
Proor. Since f-1(t) is closed in S:\ F,

FHONSE) < F.
If F contains an open set, then #=F\ J is two dimensional. Since F
is closed, F=83\F\ (S3\ F) so if x € F, it is the limit of a sequence
{=,}, z, € S\ F. Each z, is in a non-trivial orbit, and each such orbit
intersects f-(¢) in y,,. Then x is the limit of {y,} and

z € fABNSE) -
Thus

F = FEONE) -
Let € F and let U be a 3-cell neighborhood of z in 83. By putting U
in general position with respect to the locally flat 2-manifold f-1(¢), we
may assume that Unf-1(¢) is a countable collection of 1-manifolds. The
boundary of Un F in F is the boundary of U/n f-1(t) in U/, which is count-
able and zero dimensional. So z has arbitrarily small neighborhoods in
with zero dimensional boundaries, and dim F < 1. This is a contradiction, so

F=F = FINf

Lemma 2.3. 83\ F is connected, and by a change of variables, it is pos-

stble to assume that
Jo®|Rxx:R—> 8t

18 the standard homomorphism t - t mod 1.

Proor. Since dimF <1, the set F cannot separate 83, so S:\F is
arcwise connected. If x, is not a fixed point, then
Jo®P|Rxxy: R~ S

is some non-trivial homomorphism, and a change of variable in R will
change it to the standard homomorphism. If xe€ 83\ F and « is an
arc from z, to z, then fo®@| R x « is a homotopy between fo®| R x x, and
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fo®@|Rxz. Since the set of homomorphisms R - 8! is discrete in the
space of continuous functions and each stage of the homotopy fo®@| R x «
is & homomorphism, fo@|R x = is also the standard homomorphism.

TreEOREM 2.1. f: S3\F — 8! is a locally trivial fiber space.

Proor. For each ¢,
B[t x f-1(0) : £-1(0) - f-1(¢ mod 1)
is a homeomorphism with inverse

D|(—t)xf~2(t mod1)
because
fod(t xf~1(0)) = t mod1.

Since fod(1 x f-1(0))=0, S\ F is f~1(0) x [0,1] with f-1(0) x 0 identified
to f-1(0) x 1 by
@1 xf-1(0).

Henceforth we will write S, for f-(t).

THEOREM 2.2. S, has a finite number of components, all homeomorphic.
Moreover, there is a circular flow (D,f') which has the same fixed point
set and 8y’ =f'-1(0) is homeomorphic to one component of S,,.

Proor. The map @|1x 8§, is a permutation of the components of S,,.
This permutation cannot be written as a product of more than one
disjoint cycle because this would imply that S3\ F is not connected.
There cannot be more than a countable number of components, and there
is no permutation of {1,2,3,...} which is not the product of disjoint
cycles, so the number n» of components of §; is finite. Let S," be one
component of S, and let

f(z) = §+‘tg2 for zed([p,p+11x8,).

Since
D([0,n] x 8y') = D([0,1]x 8,) = S3\F,

the domain of f’ is 83\ F. Since fo®|R x z is a homomorphism, so is
fo(le Xx.

Cororrary 2.1. For the purpose of identifying F and S,, one may
assume that S, i8 connected and that
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fo®|Rxz:R > S
18 the standard homomorphism.
TaEOREM 2.3 F is not splitable.

Proor. Let §% be a 2-sphere in §3\ F. Then f(S?) is inessential in S,
so S2? is homotopic in S3\ F to a subset of §,. Since F must be non-
empty and we may assume that §; has one component, S, cannot con-
tain a 2-sphere, so 82 is homotopic to a point in §;. Then §% must bound
a 3-cell in 83\ F, and F is in only one complementary domain of S2.

It follows immediately that ¥ is not the union of more than one com-
pact disjoint subset, one of which is cellular. Of course, F is not cellular
because of the exactness of the homotopy sequence of the fiber space
(S3\.F,f,81). We will show in section 4 that F may be somewhat patho-
logical.

3. Piecewise Linear Circular Flows.

A circular flow (@,f) on §® will be called piecewise linear (PL) if &
is piecewise linear.

TrreoreM 3.1. If (D,f) is a PL flow on 83, then F is a tame link and
S,UF is a compact manifold with boundary F.

Proor. We will assume that @ is simplicial. Since
fo®P|Rxz:R-> 8!

is a homomorphism, f is also simplicial under some subdivision of S*. If ¢
is a non-vertex of S, the argument in [3] shows that S, is a finite open
complex. In as much as F is S;\ S, it must be a finite 1-complex. Let v
be a vertex of F and let N be the star of v in 83. Since @ is simplicial
and v is a fixed point, @ must take N onto N. Thus

(PIRxN,fINN(FnN)) = (.9)

is a circular flow on the 2-sphere N. The arguments of the previous
section apply to show that g-1(0) is an open arc. Since the boundary
of this open arc in N cannot be a single point (from the fiber homotopy
exact sequence), it must be two points. In other words, Fn N is exactly
two points, and F is a compact 1-manifold. This makes F' a tame link.
This argument also shows that S,n &V is a finite collection of open disks
D, with
D,nN=FnN.
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If F, is a component of F, the intersection of §, with a regular neigh-
borhood of F, is a finite collection {4,} of annuli, 4, =(0,1]x 8%, with
A, \A,=F, for each n. If F, is the only component and is unknotted,
S, must be a disk and there must be only one annulus 4, since 7,(8,) =0
from the fiber homotopy exact sequence. Otherwise 1xS'< A, must
represent a non-zero element of z,(83\ F). Since

70,(So) = m (SN F)

is a monomorphism, 1x8'<4, will represent a non-zero element of
7,(S,). If there are more than one annuli, 4, and 4,, 1x8,<4, and
1x S2< 4, must represent the same element of x,(82\ F), thus also the
same element of x,(S,). Therefore they bound an annulus in §;, which
must be all of S, since it is a component. This annulus will disconnect
83\ F, which is impossible since it is the total space of a fiber space
over 81, There is, thus, only one annulus 4,, and F is the boundary
of SyurF.

TrHEOREM 3.2. The following classes of tame links are identical:

a) Tame links which are fixed point sets of circular flows.

b) Tame links whose complements fiber over S* such that the boundary of
the fiber is the link.

¢) Strongly indecomposable links whose augmentation subgroups are free
of finite rank [1].

Proor. A link which satisfies a) also satisfies b) by Theorem 2.1.
If L is a link and 83\ L fibers over S! as specified, the fiber space may be
understood as F x I where F is the fiber and F x 0 is identified with
F x 1 by some homeomorphism 4. Define @: R x 8%+ §2 by

D(t,x) = h(z)x (t—n) if nSt<n+1, 2e8*\L,
D(,z) =z if zelL.
Then if f: S\ L — 8! is given by
fle,t)y =t if 0st<1,
f(x>1) =0,

(D,f) is a circular flow. By Theorem 2.2, we may assume that F is a
connected surface. Since

0 > my(F) » (8 \ L) — 7,(8%) > 0

is exact, L is a strongly indecomposable link whose augmentation sub-
group is free of finite rank [1].
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If L satisfies ¢), then we have an exact sequence
0> FE—->m(S3\L)-~Z~>0,

where E is the augmentation subgroup. Since L is strongly indecompos-
able, E is the fundamental group of a connected spanning surface. Stal-
lings’ construction [3] gives a fibration of 83\ L over S! which in turn
gives a circular flow by the construction above, and L satisfies a).

4. Examples.

ExampLE 1. To show that the class of tame links described in Theo-
rem 3.2 is non-trivial, note that tho trefoil knot and

Fig. 1.

both satisfy the conditions.

ExaMpLE 2. The fized point set F of a circular flow may be a wild knot.
The complement of the trefoil fibers over S1. The intersection of a small
cell neighborhood of a point on the knot with the fiber is a disk. It
follows that we may fiber C;\ k; for each i, where C; is a cell and k; is
the trefoil in Figure 2:

Fig. 2.
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By fibering C'\ k trivially, we have a fibering of the complement of a
wild knot F in a pinched solid torus 7. 7' is embedded in a trivial manner
in 8%, so we may extend this fibration to §3\ F using disks sewn to the

boundary of T'. This fibration gives a circular flow.

ExampLE 3. The fized point set F of a circular flow may not have a finite
number of components. Consider the figures 3, 4 and 5.
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T,,T,,... are polyhedral cells and k;,k,,... are unknotted simple
closed curves in S3. The set

may be fibered over S! in a trivial fashion where the closure of the fiber
is a disk intersecting &, in 7',nk,. The set

SN (kU .. UKy)

may be fibered using the shaded surface and Stallings’ theorem. This
shows how to fiber
T\(T;uk;u...Uk).

This construction gives a sequence of fiberings

Tl\klesa\(kIUszTz)ﬁ... -*Ss\(klu... UanTn)—)...
{ + {

s - 81 — v - I L—

where the horizontal maps are inclusions. The union of this sequence is a
fibration of
SN\ (kqUk,U ... UP)

over S! (Figure 5). Then F=Fk,U...UP and the fibering gives a circular
flow whose fixed point set is F. Note that F is zero dimensional at P.
By constructing such a fibration at each point of a countable dense set
of an unknotted simple closed curve, one gets a circular flow whose
fixed point set is not a 1-manifold at any point.
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