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ON THE RATE OF CONVERGENCE
FOR DISCRETE INITIAL-VALUE PROBLEMS
JAAK PEETRE and VIDAR THOMEE

1. Introduction.
Consider the initial-value problem for the heat equation,

ou 2u
.y S =l 20,
(1.2) u(@,0) = v(x),

where g() is a smooth, uniformly positive and bounded function on the
real line. For its numerical solution, consider the simple difference
scheme

(1.3) w(x, (n+ 1)k) = Epu,(z,nk)

= Ao(®) uy(x + h,nk) + (1 — 210(x)) up(x,nk) +
+ Ao(x) wy(x — h,nk) ,
uh(xao) = v(z),
where A=Fk/h? is constant and so small that 1—21p(x) is non-negative

for all =.
Let € be the set of bounded, uniformly continuous functions of x with

lw]| = sup, |u(z)] ,

and let €7 be the set of u € € with u® € €. It is well known that if for the
exact solution u(x,t) of (1.1)-(1.2) we have

(1.4) sup {[[o4u/oat (-, 1| ; 0SEST) < oo,
then for 05¢t<T and nk=t,
(1.5) lln(-,nk)—u(-,t)| = OR®) as h—>0.

To secure (1.4) one has to demand that » € ¥4 On the other hand, if
v €%, a density argument proves that

(1.6) llun(,mk) — (-, ]| = o(1) as b 0.
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Thus, for v € * we have in (1.5) an estimate for the rate of convergence
whereas for v only in € we have in (1.6) convergence but no estimate for
its rate. It is natural to ask what estimate if any for the rate of conver-
gence one can obtain by demanding that v belongs to a class smaller
than € but larger than €. An answer to this question is given by the
theory of interpolation of Banach spaces; this theory will enable us to
show that if v belongs to a space intermediate to € and %* of exponent 6
in the sense of interpolation theory, then the rate of convergence is
O(h*) as b — 0. In particular, if v e %%, s=1,2,83, or if v € Lip,, 0<s<1,
then the rate of convergence is O(h¥%) as b — 0.

The program described above for the heat equation will be carried out
in this paper generally for initial-value problems for systems of order M,

(1.7) 36—1; = P@,D)u = 3, <y P,(x)D*u, ¢20,
u(x,0) = v(x),

which are correctly posed in L,, 1<p <o, (or in %), and for consistent
explicit difference schemes,

up(x, (n+ 1)k) = Epuy(x,nk) = 3 ge,(x,h) up(x+ ph,nk) ,

up(x,0) = v(x), A = k[hM = constant,

which are stable in L,(%); the convergence of u; to « is then of course
understood as convergence in L,(%). The restriction to ¢-independent
coefficients P,(x) and e,4(x,k) and to explicit schemes is made to simplify
the presentation; the extension to the general case would not introduce
any new difficulties. In order to be able to estimate the derivatives of
the exact solution u(z,t) in terms of its initial-values we introduce the
condition of strong correctness in L, (%); this is always satisfied if (1.7)
has constant coefficients, if it has order one, or if it is uniformly parabolic
in Petrowsky’s sense. One of the results in the general case is that even
if v is not smooth enough to take advantage of the full accuracy of a
difference scheme, a higher order of accuracy still gives a better rate of
convergence.

In our example above, it might be expected that the infinite differen-
tiability of the solution u(x,t) for ¢ >0 could help us to reduce the regu-
larity assumptions for the initial data without losing the rate of conver-
gence in (1.5). This will indeed be shown to be the case; it will be shown
that we can almost get down to v € €2 without losing the property (1.5).
Also for instance for v € Lip,, 0<s<1, we will be able to improve the
above estimate of O(k*¢) to O(h®) as b — 0. Generally such a reduction
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of the smoothness assumptions on the initial data will be shown to be
possible for systems (1.7) which are what we will call strongly parabolic
in L,(%).

The plan of the paper is as follows. In Section 2, we collect some re-
sults from the literature on interpolation of Sobolev spaces that we will
need. In Section 3 we discuss the continuous initial-value problem and
introduce the concepts of strong correctness and parabolicity. Finally,
in Section 4 explicit difference operators are discussed, the final results
on the rate of convergence are obtained, and some applications are given.

2. Sobolev spaces and interpolation.

We start by reviewing briefly some general notions from the theory of
interpolation of Banach spaces. For more information on this subject
see e.g. Lions and Peetre [11], Peetre [13], [14], [15], Grisvard [5].

Let X, and X, be any two Banach spaces which are both continuously
imbedded in one and the same topological vector space . We can then
form their sum

Xo+ X, = {w; u=ug+u, u;€X,;, t=0,1},
which is a subspace of Z. For we X+ X; and 0<t< oo we set
(2'1) K(t>u) = K(tau; XO!XI) = infu=u0+u1(”uollXo'I'tllul”XI) .

If 0<6<1, 1<g9=< o0, we denote by X =(X,,X,), , (interpolation space)
the Banach space corresponding to the norm

oo}

1/q
(2.2) mn—(“ﬂmmwm)’ﬁ e
B x =

0
sup,. ot K(t,u), if g=o0.

In view of the inequalities
(2.3) K(t,u) £ K(xt,u) < »K(t,u), =1,
we can also use the following equivalent norm, namely

(32 (K (xt,u))0)le, i 15g<oco,

2.4 ¥ =
ea) g = f =l it gmoo,

One can then readily prove that
(2.5) (Xl)’Xl)O,ql < (XO’XI)O,q2’ £ ¢,5¢,

where inclusion means continuous imbedding.
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If X and Y are two Banach spaces, Z(X,Y) is the set of bounded
linear operators from X into Y. If 4 € #(X,Y), its norm is

14llx, 7 = sUPosuex Aully/|lulx -

In addition to X, and X,, let Y, and Y, be any two other Banach
spaces and consider their corresponding interpolation spaces (¥, Y,), ;.
We then have the following interpolation theorem:

TrEOREM 2.1. Let A € #(X;,Y;),©=0,1,0<0<1,15q< 0. If
X = (XO’XI)B,q and Y = (Y, Yl)ﬂ,q:
then Ae £(X,Y) and

I4lx, ¥ < I4lx, ¥, 14, v, -

Taking Yy=Y;=Y and using the fact that (¥,Y), ,=Y for all 0
and ¢, we obtain:

CoroLLARY 2.1. Let 4de ¥$(X,,Y), i=0,1, 0<O<1l, and X=
(X0, X1)p,00- Then Ae L(X,Y) and

(2.6) I4lx, v < |4l%, ¥ 14, ¥ -

Except in the proof of Theorem 4.4, this will be our main and essen-
tially only tool. Therefore, for the convenience of the reader we supply
a direct proof. Actually X = (X, X,), ,, is essentially the maximal space
with the properties of Corollary 2.1.

Proor. If u=wuy+u, we have

ldully = [Auglly + [Auyly

Collwolix, + Cillualix,
max (Co, Cy871) (|[%oll x, + ¢l x,) »

A HIA

where C;=||4||x, , ¢=0,1. In view of (2.1) this yields
lully < max(Co,Cyt) K(t,) .

If we X=(Xy,X,)p,0 Wwe then get
ldully < inf,_, max(Cyt?,Cy1°Y) |lullx = Co'~° Cy° |lullx ,

which clearly implies (2.6).
The following theorem is often referred to as the iteration or stability
theorem:
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THEOREM 2.2. Let 0=<0,<0,<1, and let X,, i=0,1, denote X; (if
0;=1) or some space (Xo,X,)y 4 (if 0;%1%). Then, for 0,<0<0, and
I=g=oo,

(XO’XI)H,Q = (X0>X1)5,q s

where 0= (1—6)0,+ 00, .
Combining this result with Corollary 2.1 we get:
CoroLLARY 2.2. Let X;, i=0,1, be as above and let Ae L (X,7),

1=0,1. Then if O,<0<06, and X =(Xy,X,)y o, we have A € L(X,Y) and
there exists a constant C, such that

Mlx,y < Colldlls?, 1415, 0=(1—8)0+ 50, .
(In this paper, C' always denotes a positive constant, not necessarily the
same at different occurances. When desirable for clarity, subscripts
will be used.)

We shall now specialize our spaces. Let 2’ be the space of N-vector
valued distributions on R4, Let L,, 1 <p= oo, be the subspace of meas-
urable (N-vector) functions with

1/p
uuuL,,=< | lu(w)l”dw) <o Jul = (S [Py,
RA

and let € be the set of uniformly continuous functions such that
lullgy = supga [u(@)| <oo.

Set W,=L, for 1<sp<oco and W, =%. Further, let W} (Sobolev space)
be the space of 4 € 2’ such that

Doy = 714 9™l oz, | | dx g € W, for |«|sm.
This is a Banach space with the norm

el = juizm 1Dl -

Let W7 be the space of u € 9’ such that we W) for every m. Set, in
particular, W2 =%" and WX=%. By a weak form of Sobolev’s im-
bedding theorem, W7’ consists of all infinitely differentiable functions
u € P’ with D*u € W, for all x. For all p with 1<p=<oco, W7 is dense
in W,; this is the main reason for working with W, instead of L,.

Let us take Xo=W, and X,=W}'. The corresponding interpolation
spaces we shall denote by Bj? (Besov space) where 0<s<m, 1=p,
gL oo:
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Byt = (W, W5y, O=sm™t.
Using Theorem 2.2 it can be shown that this definition is independent
of m (any integer >s). We define for u e W,, t>0,
wl,j)(t7u) = sup|’l|§t”Tnu_u”Wp )

®y p(t,u) = supl,ﬂét]]Tnu —2u+ T_,luIIWp ,
where
T, ,u@) = ulxztn).

Write s=8+o0, S integer, 0<o=<1. One can then show by estimating
K(t,u) that v € B;? if and only if ue W, and

% 1/q
2jaf- ( f (¢ w1, (8, D)) dt/t) <o, if 0<o<l,
0

e 1/q
ZI«I=S (j (t“1w2,p(t,D"‘u))q dt/t) < oo, if o=1 5
(]

with the usual modifications if g=co, namely
2jaj=8 SUPs o 100y p(6, D) < oo, if O<o<1,
3= SUPsg P g p(8, D) < o0, if o=1.

Thus, in particular, By * is defined by a kind of Lipschitz condition for
the derivatives of order S (in the case ¢=1 a Zygmund type condition);
these spaces are sometimes called Lipschitz spaces. For the proof of
this result see Lions and Peetre [11], Peetre [13], [15]. We have

(2.7) Bt < Br® i s>s, oOr 8=8 ¢;5¢;.
Notice also that if s is a natural number, then
(2.8) Bl < W; < By™.

For more details on the spaces B ?, the reader is referred to Nikolskii
[12], Besov [1], Taibleson [20], Lions and Peetre [11], Peetre [13], [15],
Grisvard [5].

We close this section by collecting in a theorem the special cases of
the above general results on interpolation which we will need for our
applications.

THEOREM 2.3. Let 1<p=<oco. Let m be a natural number and let s be a
real number with 0 <s<m. Then for all A€ L(W,, W,),

29) Ml w, < 1A w, 14y mw, 0 = sm-.
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Let s be a positive real number and let 0<0<1. Then there exists a con-
stant C=Cy such that for all A € L(W,,W,),
(2.10) |l g0 < CIAIS w, 141501, 5, -
Let m;, t=1,2,3, be non-negative integers which m;<my<mg. Then there
exists a constant C such that for all A € L(Wp*, W),
(2.11)

Ml m, w, < LA, w, 1Al w,p 0= (mg—my)(mg—my)L.

Proor. Corollary 2.1 with
Xo=Y =W, X, =W, X=B;~
gives (2.9) and Corollary 2.2 with
X,=Xy=Y=W, X,=B, X,=Wrm>s), X=Br~,

gives (2.10). Finally, (2.11) follows by an application of (2.9) with X
equal to a product of as many spaces W, as there are o with |x| <m,,
and using (2.8).

3. The initial-value problem.
Consider the intial-value problem

0
(3.1) = = P@Dlu = San P@)Du,  £20,

(3.2) u(x,0) =v(2),

where z € R, u=u(z,t) and v=v(z) are complex N-vectors and P (x)
are N x N matrices with elements, which we assume for simplicity to be
in €.

The intial-value problem (3.1), (3.2) is said to be correctly posed in W,
if P=P(x,D) (considered as a densely defined closed operator in W) is
the infinitesimal generator of a C, semi-group of operators E(t) on W,
for £ =0, that is (cf. e.g. [7]) the family of bounded operators E(t), t= 0,
on W, satisfies

E(0) = I = the identity operator,
Bt +ty) = Et) E(ty), 4,6,20),

(3.3) IE@tylw, < Crlbly, O0stsT, veW,,
(&Y E(k)—I) = Plolly, >0, k>0, veWy.

Math. Scand. 21 — 11
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The condition (3.3) is equivalent to

1B Elly, < C1e% olly,,  veW,.
The operator E(¢) is referred to as the solution operator connected with
the initial-value problem.

In the sequel we shall demand not only that the initial-value problem
be correctly posed, but that it satisfies the stronger requirement of the
following definition. We say that the initial-value problem is strongly
correctly posed in W, if for any m >0, ve W} implies E(t)v € W} and

there is a constant C, ; such that for all v e W7,
(3.4) IE@vlw,m £ Cr Pllwm:  0st=T.

In particular, this definition implies that E(}) W' < W7
There are certain cases when correctness in W,, automatically implies
strong correctness in W,,. We shall look at some examples.

ExamprE 3.1. Assume that P(z,D)=P(D) has constant coefficients
and that the corresponding initial-value problem (3.1), (3.2) is correctly
posed in W, so that

(3.5) IB®rlly, < Crlily, O0St<T, veW,.

Since P(D) commutes with D* for any « one can easily prove that this
holds also for E(t) so that

Dve W, implies D*E(ty = Et)Dv € W,
for t= 0 and thus by (3.5),
ID*E@)vlly, £ CpllD%0lly,, O0=t=T.
Hence by summation over |x|<m we obtain
IE@vlwm = Crlvlwgm — 0=t=T,
which proves that the initial-value problem is strongly correctly posed
in W,.

ExampLE 3.2. Consider the case of a first order system,

d a d
(3.6) E" — P(z,D)u Ejglpj(x)% + Py@yu, 20,
(3.7) u(z,0) = v(z) .

and assume that this initial-value problem is correctly posed in W,;
let us say then that the system is hyperbolic in W,,. For p=2, cf. Kreiss
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[9] and Strang [19]; for p=oco, hyperbolicity is a quite strong demand
(cf. Brenner [2]).

We will show that a hyperbolic system in W, with coefficients in €
is automatically strongly correctly posed in W,. By formal differentia-
tion of (3.6) we obtain for || =m,

/]
aD"‘u = P(x,D)D*u + Q (x,D)u ,
where
Q.(x, D) = 2181l Q.s(®) Diy

is a differential operator of order <m with coefficients in €. If u(x,t)
is the solution of (3.6), (3.7) it is therefore natural to try to determine
the D*u(x,t) for t> 0 as the solutions to the following initial-value prob-
lem in the set of u,, |x| £m, namely

ou,
(3.8) e P(x,Dyu, + Zjp<io) Qup@up, 20,

u,(%,0) = D*(x), x| =m .

Let #°; be the set of vectors U with components u,e W,, |x|<m.
Then (3.8) can be written

U
= P,D
- = P@D)U,

where &#=%(x,D) operates in ¥ »- Let us denote the corresponding
operator with @, ,(x)=0 by #=2(x,D) so that
(?(x,D)U), = P(x,D)u, .

Clearly 2 which like & acts in %7 is the infinitesimal generator of the
C, semi-group &(t) in #7 defined by

(6®)D), = By, .

Since # and £ differ only by a bounded operator in #7, & is also the
infinitesimal generator of a (|, semi-group &(t) in #" »- Let 9, be the
(closed) operator which takes we W} into the vector in %7} with
components D*u, |x| <m. Then (3.8) can be written

2,P@x,D)u = Px,D) D,u.
From this we easily obtain
2,Et)v = &t) 2,0,

from which the strong correctness follows at once.
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ExampLE 3.3. Assume that the system (3.1) is uniformly parabolic in
Petrowsky’s sense, so that the eigenvalues A(x,§) of 3, _»P.(2)&

satisfy
sup {RelA(z,£) ; z,§eR%,|£|=1} < 0.

The initial-value problem (3.1), (3.2) is then correctly posed in W, for
any p with 1 < p < oo; this follows for instance from well-known estimates
for the fundamental solution (cf. e.g. Friedman [3]). To see that such a
system is indeed strongly correctly posed in W, we only have to notice
that for any v € W,, the solution u(x,t)=E(t)v is infinitely differentiable
for £>0. For ve Wy it follows with the notation of Example 3.2 that
D, u=9,E(t)y satisfies a system which is also uniformly parabolic in
Petrowsky’s sense and which has initial-values 9,,v in #77'. This proves
(3.4).

The systems in the latest example actually have a stronger property
than strong correctness of the corresponding initial-value problem; the
solutions are smooth for {>0. We shall generally say that the system
(3.1) is strongly parabolic of order b in W, if the initial-value problem
(3.1), (3.2) is correctly posed in W,, if ve W, implies D*E(t)ve W,
for all x when ¢>0, and if

(39  IE®vlwm S Cp ot ™My, 0<tST, jSm.

We shall show that the order b of strong parabolicity is at most M.
Assume the contrary and let y=M[b<1. Then for ve W;’ we have

(3.10) IE@ollw,x < Ctlolly,,  0<tsT,
(3.11) HE(t)vllem = Ot—Vllv”WpM, 0<tsT.
Since

i
(B(t)~I)v = fP(-,D) B(s)vds,
0
we obtain by (3.11), for 0<t< T,

t
(3.12)  [(BO)~ D)ol S Cy [1E@)vllw,au ds S Cot= ol -
0

By the identity

] 12
v==t71|E@s)vds -t~ | (E(s)—1)vds,
oo f

0

we obtain by (3.10) and (3.12), for 0<¢< T,
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ol € Ot by, + 87 ol o}
and since ¢ is arbitrarily small we obtain for v € WS,
ol = Callollw, »
which is impossible. This proves that b< M.

ExampLE 3.4. Systems which are parabolic in Petrowsky’s sense are
strongly parabolic of order M in W, for any p with 1 <p=<oo; by Ex-
ample 3.3, and by (2.8) and (2.9) in Theorem 2.3 is sufficient to prove
(3.9) for j=0. But for that case it follows for instance from the proper-
ties of the fundamental solution (cf. e.g. [3, p. 2601f.]).

ExampPLE 3.5. Systems with constant coefficients which are parabolic
in L, of order b in the sense of [21] are also strongly parabolic in L,= W,
of order b in the present sense. Indeed, by Parseval’s relation, the in-

equality (3.9) with j=0, p=2 is equivalent to

(313)  [(1+[&)m exp(tP(E)] S Cppt-™, O<tST,

for all real £. On the other hand, it easily follows from [18] that if (3.1)
is parabolic of order b in L,, then for all real &,

lexp(¢P(£))| = Cexp(—tC,|é°+0Cyt), 120,
which clearly implies (3.13).

4. The discrete problem and its rate of convergence.

Assume that the initial-value problem (3.1), (3.2) is correctly posed
in W,. For its approximate solution we consider explicit operators By,
approximating the solution operator E(k), of the form

Eyv(x) = 3, ¢4, h) v(x+ Bh) .

Here 7> 0 is a small parameter related to k by k/hM = A= constant where
M is the order of the system (3.1). Further f=(8,,...,8;) with g,
integer, e,(x,h) are N xN matrices which are polynomials in A with
bounded coefficients, and the summation is over a finite set of 8.

The operator E,, is said to be consistent with E(k) if for any suffi-

ciently smooth solution u(x,t) of (3.1),
w(z,t+k) = Eyu(x,t)+o(k), h—0;

more precisely, E, is said to approximate E(k) with order of accuracy
(at least) u if for any sufficiently smooth solution of (3.1),
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(4.1) u(x,t+ k) = Bu(z,t)+kOR*), h—->0.

When (3.1), (3.2) is strongly correctly posed in W, this local condition
implies the following global estimate:

TeEOREM 4.1. Assume that the initial-value problem (3.1), (3.2) is
strongly correctly posed in W, and that E, approximates E(k) with order
of accuracy pu. Then there exists a constant C such that for any v € Wﬁ“",

(4.2) (B~ E ) vlm, = CAM+ [[olly, o s

Proor. We may assume that v e W. For any f we can expand
v(@+ph) = Tpgv(x)

in a Taylor series with respect to ~ and obtain for any natural number p,
oo+ BH) = Sicels () Do(a) + BOW),

where R P(v)=0(h?) as h - 0; more exactly we have for ¢ >0,
(4.3) RPw) = lal=0 P;'gi"f (h—s)e~t D*v(x+ ps) ds .
«!
0

It follows that E, has the form
(4'4) Ek’v(x) = Zj+[a|<M+[J (pj,a(x) hj+|“| .D“’U(x) + R('D) s
(4.5) R(w) = 3 < ar1 95, 0@, 1) B¢ R O(w)
with bounded coefficients g; () and @ ,(z,5).
Set u(z,t)=E(t)v. Since v e W, this function is then in W for {20

by the strong correctness. Let p=(»—1)M +x%, 0<x< M. We have by a
Taylor expansion with respect to %,

(4.6)
ki 07

M
w(@, k) = ~ (@,0) + Buy@) = 2o ST A Ply(z) + B,4(v)

j 0]' atJ

where Rp+1(v)=0(k”+1) when k -> 0; more precisely

P”’r1 E@s)vds.

L a"+l k
(4.7) -Rv+1(v) ( |8) ti'+11l’ d = .f (
0

Together, (4.4) and (4.6) imply
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(Bx—B(k)v = 31y, j<Mn ¥),o(®) ¥ Dv(2) + B(v) = B, 14(v),

where the y; .(x) are bounded. Since the D*(x) are arbitrary, and
since for any ve W}’ the two remainder terms are O(h¥+*) as h — 0,
the condition (4.1) implies y; ,(¥)=0. The theorem therefore follows by
(4.3), (4.5), and (4.7) from the following two lemmas:

LemMA 4.1 For the remainder R(v) defined by (4.3), (4.4), and (4.5)
there 18 a constant C such that for v e Wﬁﬂu’

IRy, S CRI o]y arrs

Proor. By (4.3) and (4.5) it is sufficient to prove that for ue W,
>0, and arbitrary g,
(4.8) <

h
f(k—.s;)?*1 Tpsuds
0

he
”@‘ [l -

Wp
But by Minkowsky’s inequality we have
h

h
; f (h—s)y1Tyuds| < f (h—8)e= [Ty uly, ds
0

Wp

e

0
3 1 7
= [ (b= ds Julhy, = = iy, »
e
0
and the result follows.

Lemma 4.2. Under the assumptions of Theorem 4.1, for the remainder
R, 1(v) defined by (4.7), there is a constant C such that for v € Wﬁ“",

IR, 11(0)llw, < CBMH [0l a0 -

Proor. It follows immediately from (4.7), using at the last step the
strong correctness, that

(4.9) 1B, (@)l < f = it (sl d
= Ok maxog ooy |E(s)0]lw,0r0u
< Che+OM ”””Wp(vﬂ) .

On the other hand, we clearly have

M
o NP,

R, 1(v) = B,(v) -
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and so as in (4.9),
(4.10) IR, 110w, < CHY |[olly,pm -

The lemma now follows from (4.9), (4.10) by (2.11) in Theorem 2.3.

The operator K, is said to be stable in W, if for any 7'> 0 there is a
constant C'=Cp such that

B ll, £ Clollw,, nksT, veW,.

It is well known that for consistent operators E,, stability is the neces-
sary and sufficient condition for the convergence of the solution of the
discrete initial-value problem to the solution of the continuous initial-
value problem in the sense that for anyve W,, nk<T,

(4.11) (B~ Enk)) vy, > 0, k-0,

(Lax’ equivalence theorem [16]).
We now easily obtain the following estimate for the rate of conver-
gence:

THEOREM 4.2. Assume that the initial-value problem (3.1), (3.2) is
strongly correctly posed in W, and that E,, is stable in W, and approximates
E (k) with order of accuracy u. Then there is a constant C=Cyp such that
Jor any ve WX+, nk<T,

(B — B(nk))vlly, < CH* [olly, e

Proor. We have

(4.12) (Ex"~E(nk))v = 3} By (B~ E(k) E(jk)v,

and so by the stability of E,, Theorem 4.1, and the strong correctness,
(B — Blak)) oy, < C S8 kR [BGE) ol sean S Cndeh ollp, e

which proves the theorem.

The situation is thus that for initial-values in W, we have in (4.11)
convergence without any added information on its rate, and if the initial-
values are known to be in Wf,‘”" we can conclude that the rate of con-
vergence is O(h”) as h — 0. It is natural to ask what one can say if the
initial data belong to a space intermediate to W, and Wﬁ”". The inter-
polation theory is Section 2 gives us the tools to prove:

THEOREM 4.3. Assume that the initial-value problem (3.1), (3.2) s
strongly correctly posed in W, and that E,, is stable in W, and approxi-
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mates E(k) with order of aocuracy u. Then for 0<s< M + u there is a con-
stant C=Cg p such that for any ve By*®, nk<T,

(4.13) (B~ Emk))vlw, = Ch Plpper  y=p(M+u)™.

Proor. This follows at once from Theorems 2.3 and 4.2 if we observe
that by the stability of E, and the correctness of (3.1), (3.2), forve W,
nk=T,

||<Ekn"‘E("k))””Wp = Clly, -

Notice that y =pu (M +pu)~* grows with x4 and lim,_, ,y=1. This means
that the estimate (4.13) becomes increasingly better for fixed s when u
grows. In other words, if for a given strongly correctly posed initial-
value problem one can construct stable difference schemes of arbitrarily
high order of accuracy, then given any s> 0 one can obtain rates of con-
vergence arbitrarily close to O(k®) as & — 0 for all initial values in Bj*.

ExampLE 4.1. Consider a symmetric hyperbolic system
ow ou
i >, Py(e) o, P*(x) = Pyx) .
The corresponding initial-value problem is correctly posed in L, as is
well known (cf. Friedrichs [4]). Consider Friedrichs’ scheme defined by

By = 3¢ {(@ I +AP)Tv+(d11—AP) T_;v},
where
T, v(x) = v(x+hey).

This operator is known to approximate E(k) with order of accuracy 1
and to be stable in L, for sufficiently small 4 so that for such 1, (4.13)
reads

[(Byr— E(nk))ollL, £ Ch¥ |plpne 0<8<2.

Consider now an operator E, which approximates E(k) with order of
accuracy 2 and which is stable in L,. Such operators can for instance
easily be constructed by the methods of Kreiss [9], e.g.

Ev@) = [I+2 35 Pi(@)4; + 3233, Pi(x)4,)? — 0 3; 4] v(x) ,
where
4; = 3(T;=T_y), le =2 -T1T;,-T,

with appropriate choices of ¢ and 4. (Cf. also Lax and Wendroff [10],
Strang [18].) For such an operator, (4.13) reads

(B, — Em)vlz, S O3 [ollpye  0<s<3.
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In particular, if » € W} then for E, the rate of convergence is O(k) but
for E’k we get O(h4/3). The method of estimating the rate of convergence
for E,, when » € W3 by just considering the operator &, as approximating
E(k) with order of accuracy 1 and using Theorem 4.2 gives only O(A).

It is natural to ask if for a parabolic system the smoothing property
of the solution operator can be used to reduce the regularity demands
on the initial data in Theorems 4.2 and 4.3. This shall indeed be shown
to be the case; we have:

THEOREM 4.4. Assume that the system (3.1) is strongly parabolic of order
b in W, and that E, is stable in W,, and approximates E(k) with order of
accuracy p. Then there is a constant C=C, , such that for v e BY++"4
and nk<T,
(414) (B —B(uk))olhy, S OB (logh- follp, sapcs,s

Further, for 0<s<M+u—>b there is a constant C=C, p such that for
ve B;; © nk=T,

(4.15)  |(By"—E(nk))vlw, < Ch¥ llpspe, 7 = p(M+p—b)".

Proor. Using (2.10) in Theorem 2.3 we see that (4.15) follows from
(4.14) with ¢=1. It remains to prove (4.14). As in the proof of Theo-
rem 4.2 we use the identity (4.12). Set

So=M+u, 8 =M+u-b  o,=s/b, =01,
and
Fy v = B9 (B, —E(k) E(jk)v .

We have by the stability and by Theorem 4.1
(4.16) I1Fy, j0llw, = Ch* [|E(jE) vl -
For j=0, (2.9) in Theorem 2.3 yields
”Fk,o'v”Wp = Cht 10ll5,s, oo »
or, in view of (2.7) since u=<s,,
(4.17) 17y, o0lhy, < CH* [ollgppa -
For j=1,...,n—1, we use the strong parabolicity and get
(4.18) IFy, j9llw, = Ch%(Gk)™ [[vllw, -

Let v=v,+v,. Then applying (4.18) to v, and (4.16) to », we obtain

WP vl < CHOGEY (ool + (75 lloallye) -
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This again yields

1Fx, s0llw, < CB*(Gk) K((jk)°,0; W, Wy) .
Setting
Fy, = ;:i Fy
we now get
I1F i, = CR* 2525 (R)™ K((jk)™,v) -
We majorize the sum by

2 Zoin1<jnsai(J) 7 K((GK)0) 5

where ¢ runs through all integers such that £ <2¢<27. In view of the
inequalities (2.3), each term of the inner sum can be estimated by
200 2719 K (2% ). Since obviously

Egi—1<jk§2i 1 = 2ik_1 ’
we thus get, noticing that ¢, —o0,=1 and A =1k,
(4.19) Pyl S OB Sympicor 27 K(20%0,0) .
By Holder’s inequality and the equivalence of the norms (2.2) and (2.4)
(with »=2°) we have
Skevizar 277 K(270,0) £ (Spegizor VT (32 o (2_i611((2i°°,”))q)q—1
< O (logh 0 follg sy -

Thus inserting this in (4.19) we get
(4.20) Pyl < CR* (logh= 12 il 0,0
Together, (4.17) and (4.20) imply (4.14), which completes the proof.

Remark. If we were only interested in the spaces Bj;*, the proof of
(4.14) could be somewhat simplified. However, to be able to prove (4.15)

we need the case g=1, too. A result reminiscent of (4.14) with g=o0
has been obtained in a similar situation by Saul’'yev (cf. [17, p. 83]).

ExampLE 4.2. Consider again the initial-value problem (1.1), (1.2) in
the introduction. This problem is correctly posed in %, the equation is
parabolic in Petrowsky’s sense, and so strongly parabolic in € of order 2.
The difference operator E, defined by (1.3) is stable in ¢ and approxi-
mates E(k) with order of accuracy 2. The conclusions of Theorem 4.4
read in this case
Or?(logh )= [vllp.a.q »

B, —E(nk))v|, £
”( % ( )) ”% = {Ohs ”v”Boos’w’ 0<s<2.
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For the case g(z)=constant, G. Hedstrom [6] has been able to remove
the log 2! when 8=2, g=occ. For a similar result for the homogeneous
initial-boundary value problem for (1.1), see Juncosa and Young [8].
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