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ON THE IRREDUCIBILITY OF THE TRINOMIALS

xm+xr + 4.

ARNE T. JONASSEN

The object of this paper is to prove the following

THEOREM. Let m and n denote any natural numbers, m>n, and let
1,69 € { £ 1}. The polynomials

(1) f(x) = 2™ + g,2™ + dey
are then irreducible over the field of rationals with the exception of

(i) a3+ g2 + 4e; = (2l + 2 ) (¥ — gy 2! + 2)
(i) % + g ¥ — 4y = (23 + g2 —at—2¢&)) (2% — gyt + 2)
({il) '+ gqa¥+4e; = (X5 — 2% — g 2%+ 26,) (a8 + 2¥ + g2+ a4 2)

where t=(m,n) and the factors in these decompositions are irreducible.
Assuming reducibility of f(x), let
(2) f(x) = (pr(x) ws(x)y r+s=m,

where ¢,(x) and y (r) are monic polynomials with integral coefficients
of positive degrees » and s, respectively. Both ¢,(z) and y,(x) have a
constant term of modulus 2. For suppose the converse. Then one of
them, say ¢,(x), has a constant term of modulus 1. This implies that one
of the zeros of f(x) has modulus not greater than 1, hence the inequality
| —4e,| £1+1=2 which is impossible.

Both ¢,(z) and yp(z) are irreducible over the field of rationals. Assume
this to be false. The reducibility of one of these polynomials shows that
there must exist a zero of f(x) with modulus not greater than 1, a contra-
diction.

The method of proof is a refinement of that used by W. Ljunggren
in [1]. The proof depend on 10 lemmas, which will be proved insections

2-9,
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2.
Putting
®) fi@) = & g la) pile) = 3 can
and j=
(4) fo(@) = 28 py(z77) @,(x) = ._Ocm—jxm_j
we get =
(5) Ful@) fol@) = am f(@) f(zY) .
Writing
k
©) St = 2 6Cimapy 0Sksm,
J=0

we obtain, after neglecting the terms in (5) having exponents less than m,
and then canceling by «™

m
(7) EOSm_,-xm“j = 4g,a™ 4 g, 2™ ™ 4 4e g2 4 18,
J=

Since ¢,(x) and y (x) have constant terms with modulus 2, and

m
Sy =2¢2 =18, 8, =0C,C, = 4z,
j=0
we get
m—1
(8) Co=20p, C€,=20c, and >¢?=10, J,==1,
J=1

giving the following lemma:

LEmMA 1. There are the following four possibilities for the set M ={c;},
1=1,2,...,m—1:

1° One element of A has modulus 3 and one has modulus 1.

2° Two elements of M have modulus 2 and two have modulus 1.
3° One element of M has modulus 2 and six have modulus 1.

4° Ten elements of M have modulus 1.

In all of the four cases the remaining elements of A are equal to zero.
From (7) it is seen that

S;=0 if O0<t<m, tkn—m, t%n
9) Sp—n = & and 8, = 4e,6, f nim
S, = 46185+ ¢ if n=im.
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In what follows §,,  being some index, always is a member of the set
{+1}. We also define

¢; =0 if j>m orj<0.

3.
In this section we prove three lemmas.

LEMMA 2.
¢ = Cp; =0 (mod2), O<i<in,

-1

n =0 (mod2), Cpn=Cp_yn=1 (mod2).

Proor. Suppose ¢; even for 0<i<h<4{n,c, odd and ¢c,_; even for
0=sj<k<in,c,_, odd. If k<h we get S,,_,=2, (mod4), and if k> h we
find 8,,_,=2, (mod4), which is impossible on account of (9). If k=5
we get

8ot = €1l = 1 (mod?2),

contradicting (9) since k< 4n. Hence

¢ =Cpy =0 (mod2), 0Zi<in.
If n,2)=1

Sm-n = C4n-1Cm—pm+d T Chn+1)Cm—ptn-n = 0 (mod2),
which also contradicts (9). Hence n even and

S,

mn = C3nCm—yn = & = 1 (mod2)

This completes the proof of lemma 2.
Lemma 3. Case 1° in lemma 1 can only occur if n=3%m and e;=¢,.

Proor. Lemmas 1 and 2 imply either ¢y, = + 1, ¢,y = £ 30rcy, = +3,
Cm-gn= t 1, the other c;’s being equal to zero. Since

ISm—§n| = Icocm-—in + c}n(;ml =|£2+6] 2 4,

we get by (9) that m — {n=mn, that is, n=3%m, and further

(10) CoCm—gn T C4nlm = 4e185,
or
(11) CmCm—gn T CynCo = ey,

multiplying (10) by &, and utilizing ¢y=e¢,¢,, from (8). Equation (10)
implies
CynCm—gn + & = 2 (mod4), thatis, ¢3,Cpn_yn = —3¢2.
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By means of (11) we then obtain
Spn = & = €oC4n + CnCm—gn + Cynlm_yn = 4€1— 36y,
giving e,=¢;. Our lemma is proved.
LeMMmA 4. Case 2° in lemma 1 can only occur if n=3%m and &= —¢,.
Proor. On account of lemmas 1 and 2 we have

(12) Cm_%n = 61, cin = 62, ckl = 263, ckg = 264 )
m>k;>k,>0.

At first we prove that kb, =m—%k,. Suppose contrary and define h,=
max {k;,m—k,}. Then h;>{m and cyc, +c,,_4, ¢, = * 4, since

clzll + 672'n—h1 = 4 ’
the last relation following from the fact that
hySky>ky=m—by, hy+m—3in, m—~h +m—in.
Now it is seen to be possible to determine 6,= + 1 in such a way that

(CO+ 6zchl)2 + (cm—~h1+ 6a:cm)2 = 20.
Then we get
m—hy
D (Cj+0,C5.,)% = 20,8, +124+ 1T,
j=0
where 7'=0 if hy<m—4}n and T=c},+cZ, ,;,=2 if by >m—4n. Con-
sequently 20<14+ 2|8, |, that is |S, |23 which implies S, = +4 and
hy=n. Considering

Sin = CoCyn + C4nChy + CunyCm—yn + Cn—gnCm >

we find Sy, =2 (mod4), which is impossible. Hence &, +k,=m.

Then we shall prove that cyc;, +¢,_g,¢,,=0. Suppose the contrary.
Then ¢4¢y, + €y, Cm= + 8, giving S, = + 8+ T, where 7 now denotes the
remaining part of the sum S, . The part 7' contains at most one term
+0, namely c;,¢,_4,= t1, giving |S),|27, a contradiction, and our
assertion is proved. This formula implies §,= —d;¢,. Inserting this in
the identity (5) and treating it as a congruence mod4, we find d,=¢,6,.

If &;=¢,, (5) reduces to

(13) 48,0,22m—4n 4 488, exmHin — 4 3?1 = gamin

Since m+4n ¢ {2m — in,m+n}, the identity (13) implies 2k, =34n+m
and m +n=2m— }n, giving k, =m — 4n which is impossible.
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If &;= —¢,, (5) reduces to

14 — 40,056, amiin 45 SoaPmRiin g g% = _ ggmin
1Y3%1 13 1
ky<m—3in,
15 — 40,056, 2™ IIN L 45, §oafrtin | 4o aPR = — ggmin,
1¥3°¢1 1v3 1
ky>m—3in .

It is easily seen that (15) cannot occur, while (14) is satisfied only by
putting m+k;—in=m+n and 2m—k,— {n=2k,, hence n=3%m. This
completes the proof of lemma 4.

4.
Here we prove a lemma which shall be frequently used in the follow-
ing sections:

LeMMA 5. In cases 4° and 3° in lemma 1 we have

S

i = CoCm—i +CiCp 1 0<i<n, n<3im,

i =¢Cp; =0 if O<i<in, i+m—n,

the restriction 1+=m—n, n=%m, being necessary only in case 3°. In case
3°, n> 3m implies c+c2_,=4.

From Lemma 2 it is obvious that ¢;=c¢,,_;=0, 0<% < }n, for the case
4°., Let O<i<n, O<t<i. If O<t<in then ¢,=0. If in<t<<? then
m—3in<m—i+t<m so that c,_;,,=0. This gives

k2
Spi = 2 CCniiy = CoCpi + CiCpmy 0<i<m,
t=0

proving the lemma for the case 4°.

Again from lemma 2, but now in the case 3°, it follows that at most
one of ¢;,c,,_;, 0<i<3n, can be nonzero. Let 1=k give one such. Then
obviously ¢;+¢2,_,=4 and S,,_,= + 4. This gives k=m—n < }n, that is,
n>$m, proving the first formula for the case 3°, and the last state-

ment.
The second formula for the case 3° follows as for case 4°, ending the

proof of lemma 5.

5.
LeMma 6. The cases 3° and 4° in lemma 1 are both impossible if n = ym.

Proor. Suppose n=}m.

Math. Scand. 21 — 12
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We get from the first formula in lemma 5, on account of (9), that
Sp = CoCp + CnCmyn + CnCp = 4618 +¢;.

If ¢,=0 or ¢,= +2, we find S, = +1 (mod8), which is impossible. If
¢, = *+ 1 there are an odd number of terms of modulus 1 in the set .#, de-
fined in lemma 1, but this is also impossible.

Suppose then 4m <n < §m. The second formula in lemma 5 gives

Sp = CoCp + CponCpm = 4218,
or
(18) CCrn + CoCp—p = 4.

We conclude that

Spn = &1 = Colpp+ CinCm—tn T CnCp »
hence
Sp-n = 461+ 0,0, = ¢,
which is impossible.
Suppose at last n>4m. In case 4° we find S, =0, contrary to (9).
In case 3° we obtain from lemma 5

(19) Sgn = CoCyn + Cp—nCm—yn T C4nCn + C—ynCm = 0
By (19) we get

(20) Cn—nCm—3n T CinCp = 0,

utilizing

Sm—;n = CoCm—in + C1nCm = CoCyn + Cm—inCm = 0.

Since (20) contradicts ¢2,_, +c2 =4, our lemma is proved.

6.
LeMMa 7. If n<im the cases 3° and 4° in lemma 1 results in, either
(A) € = Cm——-i=0’ O<i<%n: 7‘#%’””
Cm—gn = 01, Cyn = —8301, Cpgy = 85 Cgp = — 0853
& = &, Cpp =€, (mod2),
or
(B) €; = Cp_1=0, 0<i<m, i$3n;
Cm—gn = 0y, Cn = =80y, Cpy =0y €, = —05¢s;
Eg = — &y, Cm_éan ES C*3n (m0d2) .

Proor. Since n<im < 3im it follows from lemma 5 that ¢;=c,,_;=
0,0 <7< 4n and ¢yc,,_; + €6, =0,0 <3 <n. Consequently, ¢c;=c,,_; (mod2),



ON THE IRREDUCIBILITY OF THE TRINOMIALS a™+ 2%+ 4 183

0<i<mn. Itis obvious that none of these ¢;’s can be equal to + 2. From
lemma 5 it further follows
(21) Sm—gn = Cocm~§n + cgncn = 0.

Putting ¢,,_;,=06,, equation (21) implies ¢, = —&,9;.

Suppose that there exist indicess, n < 1 <n, such that c; + c2,_;+0,andlet k
be the smallest of these. As in the proofs of lemmas 2 and 5 we get
€;=Cp=0, In<i<k, and ¢, =c,_,=1 (mod2). We have

Sm-2k = CoCm—2k T CynCm2i+jn + CkCm—i + Cok—ynCm—gn T CorCun -

Here 8,,_,,=0 or 4¢,¢e, on account of (9) since m —2k <m —n. The rela-
tion ¢,¢,,_,=1 (mod2) shows that

Cm—sk+yn F Cop—gn (Mmo0d2).

Now we shall prove that m—2k+ in=m—n, that is, k=n. Suppose
the contrary. Then

Sm-ak+jn = CoCm-ak+in t Cok—yalm = 2 (mod4),
which is impossible since 8, 513, =0 (mod4). From
St = CoCm—t + CkCm
it follows, putting c,,_3,=0,, that ¢y, = —e;0,. At last we remark that
Cm-n = Cm—gk+in ¥ Cop—yn = C, (Mo0d2),

n =2 — & (mod 4), and hence &, =¢,, giving us the case (A).
Suppose that c;=0, 4n<i <n. We conclude that c;=c,,_;=0 for these 3.
Suppose further c,,_,=c, (mod2). Then

giving ¢, =8,

Sm—}Sn = c}ncm—n + Cnlm-jn = 1 (m0d2) ’

which is impossible since m — $n=m—n. Hence c,_,=c, (mod2).

We shall prove that ¢,_,=c,=1 (mod2). Assume the contrary.
Then c,=c,,_,=0 (mod2), from which we conclude ¢2+c2_,=0 or 4.
Considering
Sp-n = CoCm-n + CynCm—in T Cnlp
as a congruence mod8, the second possibility implies

& = Sm—n = '_"_3 (mOdS) ’
and hence
¢, = C =0.

n m—n

L.et k>n be the smallest index 7 such that ¢;#+0 (such an index must
exist). As in case (A) we find
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¢;=¢, ;=0 mn<i<k and ¢, =c¢, ;=1 (mod2).

Putting c,,_;, =38, we get ¢, = —d,¢,. Since m—k—3in+m—n, n+im, we
have

Sm—k—-&n = cocm—k—}n + c*ncm—k + Ckcm—in + CrrinCm = 0 (m0d4) .
Now ¢3¢y 1+ 1 Cpnyn= — 20,0,¢,, and consequently

ck+§n * cm—k—gn (m0d2) .
Further we have

Sm-—n—k = cgncm—k—gn'}' ck+§ncm—§n =1 (mOdQ) ’

which is impossible on account of (9) since n < im. Then we have proved
that

Cp =€

n=1 (mod2).

m
From

Spn-n = CoClm—n + Canlm—in T Cnlpn = &

we conclude 26, (c,,_, + €5¢,) =&, + &, that is, ;= —¢;, and further, put-
ting c¢,,_, =0,, that ¢, = —d,¢,. Considering

Sm—«}Sn = cocm-}sn + Cincm—n + Cncm—gn + c§3ncm =0 (m0d4)

on account of (9), infering c¢,,_;3,%¢;3, (mod2), we have case B. This
completes the proof of lemma 7.

7.

LemMma 8. When n < dm, the case 3° in lemma 1 can only occur if e,=¢,;
and n=¢m.

Proor. Let m>ky>ky>ky>ky>ky>kg>0, the ks denoting natural
numbers. Let further c,, be the six values of ¢; in (3) with modulus 1
and put ¢, =26,. By lemma 2, kg=m—k,=}n. Comparing both sides
of the identity (5) modulo 2 we get

ke o pha—ke | phake | phs—he |
+ gFrks o opheks o gkaks 4 gkaks
+ gfrke o gheka 4 ghake
+ xkl—ks + xkz-k:s -+
+ gk =0 (mod2).

Now k,—ke=Fk,—k;, giving k,—ky=Fk;—ks. Suppose ky—ke=k,—k,,
implying k, —ky=k,—ks. However, this is impossible, since then k,— ks
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would be greater than all the remaining exponents. We conclude that
there are the following two possibilities:

(@) ky—kg=ly— ks> by — &y,
(b) Toy—ky=kp— ey > bty — k.

From (a) we get ky—ks>ky—ky=ky,—ky=k;—ks. If ky—ky+k;—k, we
would obtain & =min {k, — k3, k3 — k,} smaller than all the remaining expo-
nents, which is impossible. Hence k,—k;=k;—k,, and we get b, —k;=
ko—ky, oy —ky=ky,— ks and ky—k;=k,—k;. Solving these equations we
find

kg = dn, ky = 4(2m+5n), k= L&8m—n), k= L(10m—3n),
ky = &(12m—5n), k;=m—3in.

I

The case (b) is symmetrical to (a) and gives
kg = in, ky={(2m+5n), k= L(4m+3n), k= L6m+n),
ky = 4(12m—5n), ky = m—in.

Lemma 7 implies, either

(A) g =&, ky=m—3n=14(12m—>5n),

hence n=}m, our exceptional case, or

(B) &g = —&g, ky = 4(12m—5n) = m—n,

giving n==32m.
Then we shall show that the last case cannot occur. Let b= {maxk,,m—k,}
and assume ~=}m. Since

%(m - 7’&) q; {%n’ny k3’m - k3> k4: m— k4’ %m}
we must have
%(m - n)’ %(m + n) ¢ {0’ kla k27 k3’ k4: k53 kﬁ,m} ’

and hence Chm—m = Cytm+n)=0- Since Cym=Cr,= £ 2,
Sim = €oCym~+ CymCpn = 0
implies ¢,+c, =0 and hence g;= —1. Further we get
Sim-m = CynCim + CymCm—yn = £20,(1—¢p) = 14,

which contradicts (9). Hence k> im and h+m — }n, h+m—n. Assuming
C4Cu-p,=0, we can find a 4, such that

(co+6:cch)2 + (cm—h"'(;:::cm)2 = 20.



186 ARNE T.JONASSEN

Then we get
b

Jj=0

i

which is clearly impossible. Consequently c¢;c,,_; +0, and we must have
either k,=m—k, or ky=m—Fk;.
In order to complete the proof we introduce

hy = max{ks,m—rky} = ¢m,  hy = max{k,m—rFks} = 5im,

separating two cases.
1°. k,=m—k;. Using the equations

CoCp, + CinCm—n -+ CnCm—in + Cm—hyCm = Sh3 =0,
CoCpy + CinCny + CpCpn + Cm—hyCm—tn t Cm—nyCm = Sh4 =0

we get the following two possibilities:

(1) Cm—in = _67, Cn—n = —8260’ Cm—33n = 2677 Cm—2n = 0,
Cyn = 0785,  Cp = Oy,  Cy3y = —0g8y, Cyp = —0;

(i) Cpgn = 0782 Cpp = Gg&a, Cm—yan = —0782  Cpogn = —0pcs,
Cyn = —0q Gy = —0p Cy3p = 20;, €5, = 0.

Both cases result in

5
Sm_‘i&n = Zc%jncrn—é5n+§jn = 2 (m0d4) y
J=0

which contradicts (9).
2°. ky=m—1k, is shown to be impossible in the same way, using
8Spn—3n instead of S,,_;5,. Then we have proved lemma 8.

8.

LemMA 9. The case 4° in lemma 1 together with case A in lemma 7 is
impossible if nLm.

ProorF. As in the proof of lemma 7, we find

¢; =Cpy (mod2) for In<i<n, n<i<in,

giving
(22) ¢; =¢Cpi =0, }<i<n;  Cpoysn F Cjsns Cm—yan F Cjan (M0d2).

We have also
Cp—i = €; (mod2), n<i<in, 1+Mn.

These relations imply the equations:

Sm—n = Colp—n — €3 T CuCp = &
(23) Sm—-}5n = CoCp—y5n — 2010585 + Cy5,Cpp = 0
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Sp—i3n = CoCm—yan + Cmn(—0185) — &+ €01 + €430, = 0,

because m > 3n, as seen from the following.

One member in each pair (c,,c,,_.), x=mn,5n,3n, must be equal to + 1.
If 3n+m—n and n+m—5n we get mew odd coefficients. But these
inequalities are satisfied, since $n=m —n gives m —5n=2%n which is im-
possible, and $n=m—5n is the case excluded. Since x <m —x we have
3n <m— 3n, that is, m > 3n.

Suppose first ¢,,_,=¢,,_35, =1 (mod2). Then by (23)

Cm—in = 0o Cm-yan = 03 Cpp = does, Cm—ysm = Os,

(24) Cin = — 0y, C4n = — 0585, €, =0, Cisn = 0,
Co Cm—g3n T Cianlm = 2e.
We define
5
T= zl(c*in%myn + Cn—in—}inCm—pin)
1=
Now

Sin = T + R + COC}n + Cm_%ncm )

where R denotes the rest of the elements in S;,. We have cycy, +
Cn-jnCm=0. The part R+T contain at most 10 elements of the types
+1, and 7 alone seven of these.
If ¢}3,=0 we find T'=50,0,¢,, and if ¢,,_453,=0 we find T'=4,3,¢,,
utilizing (24). Since |R| =3, this contradicts BR= —T', §,, being zero.
The possibilities ¢,,_, =¢,,_35,=0 and ¢,,_, =¢y5, =43, (mod2) can be
excluded in exactly the same way, and hence

Cm-n = Cysn = Cp_ysp (M0d2).

If we solve the equations (23), we get, either

Cn-gn = —0O0f2s  Cmyan = 02 Cmey = 0, Cpysn = —0y
(26) Cm—3n = 0,
Cin = 60’ Cian = _6282’ Cp = 60: Cisn = 0, Cisn = 60 s
or
Cm—gn = 09 &2, Cm—33n = 09y Cp—n = 0p&9, Cm—isn = 0,
(26) Cmoyon = Bt »
Cyn = —0p Cian = —08s Cp =0, Cp5p =058y Cp3p =0.
We define

u; = (cj—cj+*n6062ez+cj+§n)2,

—nZj=m.
V5 = (6 + €513n 000282 + Cji3n)?s sy
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A calculation shows that

m—3in m—in . . m—in m—3in
U= 2 uj= 23 (¢G+¢int0ign) — 4000365 2 ;¢4 + 2 3 ;6514
J==in J=—1n j=0 j=0

m—in

m in—-1
2 zcjz + z CJ'2 - z 67'2 - 46062828m—}n + 2 m—in
J=0 Jj=0 j=0

=36+14—4 = 46,

noticing that S,,_;,=8,_;,=0. In a similar way is found that

m—}n

in
Inserting the values from (25) in the sum U, and the values from (26)
in V, we obtain

4

_zl(u}jn+um—%n+yn) = 48
je=—

a contradiction. This completes the proof of lemma 9.

lIA

U=46, 48 <V = 46,

9.
In this section we prove our last lemma:

LeMmA 10. The case 4° in lemma 1 together with case B in lemma 6 is
1mpossible.

Proor. With arguments similar to those used in lemma 9 we get
4305 Cpy—yan (m0d 2). As in the proof of lemma 7 we find ¢;=c, ;=0
for n<i<$n and c¢;=c,_; (mod2) for $n<i<2n. From this we ob-
tain ¢,,_o, %y, (mod2), m>3n, and ¢,_y5,%Cy5, (mod2). This gives
further m —2n>2n. By lemma 7, case (B):

Sm—,}an = CoCm—yan — 20,0569 + C43nCm = 0
(27)  Sp-an = CoCm-2n — 0182Cm—g3n — €2+ C43n01 + €200 = 0

Sp-35n = CoCm—ysn — 01820m—2n — 0262Cm—yan + Cyan 0z + Con 0y +

+ 5l = 0

Suppose ¢;3,=Cy,—3,=0. Then ¢, 43, =01052500, Cap =0y, a0 C3,Cpp 33, =
—&,, giving 8,=0y¢, and c,,_ya,=0,. Hence 8, _;5,=2 (mod4), which
contradicts (9). The cases c¢,,_j3,=C3,=0 and Cp_g,,FCpy5, (M0d2)
give impossibilities in the same way, in the last case by considering S,,_3,
and 8,,_1, instead of S,,_;5,. Hence

cm—i&n = Cpon = cm—}5n (m0d2) ’
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and from (27) we get the two cases:

(i) Cn-n = Og&s, Cm—y3n = 01, Cm-an = Ot Cm—y5n = 0,
Cn = — 0y, Cisn = Cop = Cy5n = 0,

(i1) Cn-n = —0p&, Cn—33n = Cm—2n = Cm—g5mn = 0,
Cn = 0y Cyan = —018, Coy = Oy, Cysn = =085 .

In both cases ¢,,_;, =0y, €4, = —;8,.

The final phase in the proof is quite similar to that in the previous
section. We put

m-n m—n m—n m
4 =j§0(6j+cj+n)2 =j§00,-2 + 2500,-0,-% +j=2ncj2 = 18.
Since in both cases
3 3
jzo(cm—yn-'-cm""—iin)z + zo(ckjn+cn+§fn)2 =24 £ W=18,
- i

we have proved lemma 10.

10.

The ten lemmas which we have proved in section 2-9 tell us that f(x)
is irreducible, apart from the cases:

n=3m and ¢,=¢; n=3%m and g,=—¢; nw=Fm and ¢,=¢,.

It is easily shown that these exceptions give rise to exactly the listed
identities, and our theorem is proved.

A further development of the ideas in [1], although in another direc-
tion, is given in papers [2] and [3]. According to a general result due to
A. Schinzel in [3] it is for instance possible effectively to compute a con-
stant C' such that m/(m,n)<C. However, his investigations are quite
complicated, and the value of C seems to be only of theoretical interest.
The method used in this paper is elementary and can be used to prove
other theorems of irreducibility.
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