THE OBLIQUITY-TYPE OF A SET OF VECTORS

ANDREW SOBCZYK

We shall classify Euclidean congruence types of n-tuples of vectors $\{\beta_1,\ldots,\beta_n\}=\{\beta_i\}$, according to the following scheme. In Euclidean space of 2n dimensions E_{2n} , suppose there are n vectors γ_1,\ldots,γ_n from an n-dimensional subspace E_n , and let $\varphi_1,\ldots,\varphi_n$ be orthonormal basis vectors for an orthogonal complement E_n^{\perp} in E_{2n} of E_n , such that the vectors β_i may be expressed (to within Euclidean congruence of the n-tuple) in the form

(1)
$$\beta_i = \gamma_i + a_i \varphi_i, \qquad i = 1, \dots, n.$$

The congruence type of $\{\beta_i\}$ of course is uniquely determined by the values of the inner products (β_i, β_j) . Since E_n is *n*-dimensional, for any $\{\beta_i\}$ a congruent *n*-tuple is expressible in the form (1), at least with all a_i 's equal to zero. For any expression (1), we have $(\beta_i, \beta_j) = (\gamma_i, \gamma_j)$ for $i \neq j$, and

$$||\beta_i||^2 = (\beta_i, \beta_i) = ||\gamma_i||^2 + a_i^2$$
.

Thus if the off-diagonal values of the inner product matrix $\{(\beta_i, \beta_j)\}$ are realized by any set of vectors $\{\gamma_i\}$, we may represent the *n*-tuple $\{\beta_i\}$ in the desired form provided that $||\beta_i|| \ge ||\gamma_i||$ for $i=1,\ldots,n$. Accordingly we define the (obliquity) type of $\{\beta_i\}$ as the minimum possible dimension of the linear subspace $\langle \gamma_1, \ldots, \gamma_n \rangle$ spanned by the set of vectors $\{\gamma_i\}$, with respect to which a congruent *n*-tuple to $\{\beta_i\}$ can be expressed as $\{\gamma_i + a_i \varphi_i\}$. Thus of course in case the β_i 's of an *n*-tuple are mutually orthogonal, the type is 0.

For any set of vectors $\{\gamma_i\}$, which is such that the inner products (γ_i, γ_j) satisfy

(2)
$$(\gamma_i, \gamma_j) = (\beta_i, \beta_j), \qquad i \neq j, \ i, j = 1, 2, \ldots, n ,$$

we may replace γ_j by another vector, with satisfaction of the same condition (2), to reduce the dimension of the subspace $\langle \gamma_1, \ldots, \gamma_n \rangle$ by 1, unless γ_j is in the span of the remaining γ_i 's. We state this as a Lemma.

Received March 15, 1966.

Lemma. If $\gamma_n \notin \langle \gamma_1, \ldots, \gamma_{n-1} \rangle$, then without affecting the values of the off-diagonal inner products, we may replace γ_n by a vector γ_n' , to reduce the dimension of $\langle \{\gamma_i\} \rangle$.

PROOF. In case dim $\langle \gamma_1, \ldots, \gamma_{n-1} \rangle = 0$, the type of $\{\beta_i\}$ is zero, and we may replace γ_n by a zero vector, increasing the value of a_n to maintain congruence. Otherwise, let δ_n be a unit vector in E_n which is orthogonal to $\langle \gamma_1, \ldots, \gamma_{n-1} \rangle$. Then replacing γ_n by any vector of the form $\gamma_n' = \gamma_n + d_n \delta_n$, the off-diagonal inner products are not affected. We have

$$({\gamma_n}',{\gamma_n}') \,=\, (\gamma_n,\gamma_n) \,+\, d_n[2\,(\gamma_n,\delta_n)+d_n] \;. \label{eq:continuous}$$

The choice $d_n = -\|\gamma_n\| \cos \theta_n$, where θ_n is the angle between γ_n and δ_n , reduces (γ_n, γ_n) to its minimum possible value

(3)
$$(\gamma_n', \gamma_n') = (\gamma_n, \gamma_n)(1 - \cos^2 \theta_n) = (\gamma_n, \gamma_n) \sin^2 \theta_n ,$$

and also subtracts off the component of γ_n in the direction of δ_n , placing γ_n' in the subspace $\langle \gamma_1, \ldots, \gamma_{n-1} \rangle$.

THEOREM 1. For each n-tuple $\{\beta_i\}$, the type exists, and its value is at most n-1. (For arbitrary non-zero scalars b_1, \ldots, b_n , the type of $\{b_1\beta_1, \ldots, b_n\beta_n\}$ is the same as that of $\{\beta_1, \ldots, \beta_n\}$.)

PROOF. Again consider the symmetric matrix of inner products $\{(\beta_i,\beta_j\})$. If one of the β_i 's, say β_n , is orthogonal to the span of the others, then we may replace β_n by 0 without affecting the values of the off-diagonal inner products. Then if another β_i , say β_{n-1} , is orthogonal to the span of the remaining β_i 's, it also may be replaced by 0 without affecting the values of the off-diagonal inner products; and so on. An n-tuple congruent to the original β_i 's may be expressed in the form $\beta_1,\beta_2,\ldots,\beta_k,\,a_{k+1}\varphi_{k+1},\ldots,a_n\varphi_n$. In any case of k < n, we have therefore that type $\{\beta_i\} \le k < n$.

In case no β_i is orthogonal to the span of the others, k=n, by the Lemma we have that the type is $\leq n-1$. Also in the case k < n of the preceding paragraph, the type is $\leq k-1$. The process indicated in the proof of the Lemma may be continued until we have the situation that each γ_j is in the span of the other γ_i 's. Let us refer to this property of the set of vectors $\{\gamma_i\}$ as the span property.

Converse Lemma. If a set of vectors $\{\gamma_i\}$ has the span property, then there does not exist a congruent set of vectors $\{\gamma_i' + a_i \varphi_i\}$ with $\dim \langle \{\gamma_i'\} \rangle <$

 $\dim \langle \{\gamma_i\} \rangle$. With the same hypothesis concerning the set $\{\gamma_i\}$, for any set of vectors $\{\gamma_i' + a_i \varphi_i\}$ such that the correspondence

$$\gamma_i \leftrightarrow {\gamma_i}' + a_i \varphi_i$$

is a congruence, we have that necessarily $a_i = 0$ for i = 1, ..., n.

PROOF. If a set $\{\beta_i\}$ has the span property, then of course any congruent set $\{\gamma_i'\}$ has the property. If $a_j \neq 0$, then $\gamma_j' + a_j \varphi_j$ cannot be in the span of the other $(\gamma_i' + a_i \varphi_i)$'s, because $\varphi_1, \ldots, \varphi_n$, E_n are mutually orthogonal. No linear combination of the other vectors can cancel the non-zero coefficient a_j .

THEOREM 2. For a set of vectors $\{\beta_i\}$ and any two sets of vectors $\{\gamma_i + a_i \varphi_i\}$ and $\{\gamma_i' + a_i' \varphi_i\}$, in which $\{\gamma_i\}$ and $\{\gamma_i'\}$ both have the span property, in case the correspondences

$$\gamma_i + a_i \varphi_i \leftrightarrow \beta_i$$
 and $\gamma_i' + a_i' \varphi_i \leftrightarrow \beta_i$

are congruences, then necessarily $\gamma_i \leftrightarrow \gamma_i'$ is a congruence, and for $i = 1, \ldots, n$, we have $a_i = \pm a_i'$. (Our "congruence" includes the possibility of an involutoric isometry, or "mirror image" situation, in which $\{\beta_i'\}$ could not be brought into coincidence with $\{\beta_i\}$ by an orthogonal transformation of determinant +1.)

PROOF. It follows from our hypothesis that the correspondence $\gamma_i \leftrightarrow \gamma_i' + (a_i' \pm a_i) \varphi_i$ is a congruence. By the Converse Lemma, for each $i=1,\ldots,n$ we must have $a_i' \pm a_i = 0$, and therefore that $\gamma_i \leftrightarrow \gamma_i'$ is a congruence.

COROLLARY. Given a set of vectors $\{\beta_i\}$, for any expression of the vectors in the form $\beta_i = \gamma_i + a_i \varphi_i$, $i = 1, \ldots, n$, in which the set $\{\gamma_i\}$ has the span property, we have that the dimension of $\langle \gamma_1, \ldots, \gamma_n \rangle$ is as small as possible, so that the type of $\{\beta_i\}$ is equal to that dimension.

THEOREM 3. In case type $\{\beta_i\} = \dim \langle \gamma_1, \ldots, \gamma_n \rangle = m$, the inner product matrix $\{(\gamma_i, \gamma_j)\}$ (which agrees off the diagonal with $\{(\beta_i, \beta_j)\}$) is of the form CC^{T} , where C is an n by m matrix, and C^{T} is its transposed matrix.

PROOF. We may choose an orthonormal basis $\delta_1, \ldots, \delta_n$ for E_n , such that $\langle \delta_1, \ldots, \delta_m \rangle = \langle \gamma_1, \ldots, \gamma_n \rangle$. Then

$$\gamma_1 = c_{11}\delta_1 + \ldots + c_{1m}\delta_m, \ldots, \gamma_n = c_{n1}\delta_1 + \ldots + c_{nm}\delta_m;$$

the matrix of coefficients $C = \{c_{ij}\}$ is the required matrix.

Representing vectors by their coefficients with respect to an orthonormal basis in E_n , the set of vectors

has the span property, with

$$\dim \langle \gamma_1, \ldots, \gamma_n \rangle = n-1$$
.

If A is any linear transformation of rank k on $\langle \gamma_1, \ldots, \gamma_n \rangle$, then the set of transforms $A\gamma_1, \ldots, A\gamma_n$ has the span property. Also it is geometrically obvious that there are sets of any number n of vectors in the plane, or in a line, which have the span property. Therefore for each integer k between 0 and n-1, inclusive, there exists a linearly independent set $\{\beta_i\}$ which is of obliquity type k.

The author has in mind application of the obliquity type to classification of convex polytopes. At each vertex of a polytope, consider the set of edge vectors originating at the vertex. In case of an n-simplex, the type can be zero for at most one vertex. If the type is 0 at one vertex, then necessarily it is 1 at all other vertices. The type of an equilateral n-simplex is 1 at each vertex. This follows from the fact that the equilateral n-simplex may be congruently embedded in E_{n+1} with its vertices at $(a,0,\ldots,0),\ldots,(0,\ldots,0,a)$. Translation through say $(-a,0,\ldots,0)$ places one vertex at the origin, and the set of vectors from the origin to the other vertices clearly is of type 1. Similarly, it may be seen that a simplex which is of type 1 at one vertex, must be of type ≤ 2 at all of its other vertices; and that for any Euclidean simplex, if the minimum type among the vertices is k, then each vertex is of type either k or k+1.

CLEMSON UNIVERSITY, CLEMSON, SOUTH CAROLINA, U.S.A.