A NOTE ON THE HOMOLOGY OF LOCAL RINGS

T. H. GULLIKSEN

In [5] Tate showed how his technique of adjoining variables to R-algebras could be used to define a canonical algebra structure on $\operatorname{Tor}^{R}(R/\mathfrak{a},R/\mathfrak{c})$, \mathfrak{a} and \mathfrak{c} being ideals in a Noetherian ring R.

The present note contains a theorem concerning the algebra $\operatorname{Tor}^R(k,k)$, R being a local ring with residue class field k=R/m. As a corollary we may conclude that the sequence of Betti-numbers of a non-regular local ring R is non-decreasing. Moreover we can prove that the Betti-numbers are bounded if and only if

$$\operatorname{codim} R \ge \dim_k(\mathfrak{m}/\mathfrak{m}^2) - 1$$
.

We also extend a result due to Scheja [3] concerning the change in the homology when R is divided by a non-zerodivisor not contained in \mathfrak{m}^2 .

The present note is part of my cand. real. thesis [1]. I wish to thank professor O. A. Laudal for his help and advice during the preparation of the thesis.

NOTATIONS. Throughout this note R denotes a local, Noetherian ring with residue class field k = R/m. The vectorspace dimensions $\dim_k \operatorname{Tor}_p^R(k,k)$ are called the Betti-numbers of R. They are denoted by $b_n(R)$. The Betti-series is defined to be the formal power series

$$B(R) = \sum_{p=0}^{\infty} b_p(R) Z^p.$$

The term "R-algebra" will be used in the sense of [5] i.e. graded, differential, strictly skew-commutative, connected algebra over R, such that the homogeneous components are finitely generated modules over R, trivial in negative degrees. We shall use (cf. [5]) the symbol

$$X\langle T\rangle$$
; $dT=t$

to denote the R-algebra obtained from an R-algebra X by "adjoining a variable" T of degree w killing a cycle t of degree w-1. We recall that the adjunction of a variable T leads to an exact homology sequence.

Received January 24, 1967.

It should be noted that $\operatorname{Tor}^R(R/\mathfrak{a},R/\mathfrak{c})$ may be regarded as an R-algebra with a trivial differential.

THEOREM 1. Let R be a local ring. Let t_1, \ldots, t_n be a minimal generating system for m. Assume that n > 0 and let $a = (t_1, \ldots, t_{n-1})$. Then we have one of the following canonical isomorphisms of graded algebras

(i) If a is a prime ideal, then

(1)
$$\operatorname{Tor}^{R}(k,k) \approx \operatorname{Tor}^{R}(R/\mathfrak{a},k)\langle T \rangle; dT = 0$$

with T of degree 1.

(ii) If a is non-prime, then

(2)
$$\operatorname{Tor}^{R}(k,k) \approx \operatorname{Tor}^{R}(R/\mathfrak{a},k)\langle T,S\rangle; dT = 0, dS = 0$$

with T of degree 1, S of degree 2. In particular $Tor^R(k,k)$ is canonically isomorphic as a graded k-module to the graded ring of polynomials $Tor^R(R/a,k)[Z]$ in one variable Z of degree 1.

Proof. Consider the R-algebra

(3)
$$E = R\langle T_1, \dots, T_{n-1} \rangle; dT_i = t_i.$$

If n=1, E is taken to be R considered as an R-algebra. Adjoin to E sufficiently many variables of degree ≥ 2 to kill the cycles of positive degrees. In that way one obtains an acyclic R-algebra X such that $H_0(X) = R/\mathfrak{a}$. Now adjoin a variable T of degree 1 to kill t_n . Put

$$Y = X\langle T \rangle; dT = t_n$$
.

Consider the exact homology sequence associated to the adjunction of T

$$(4) \qquad \ldots \to H_{i+1}(X) \to H_{i+1}(Y) \to H_i(X) \to \ldots,$$

Since X is acyclic, it follows from (4) that

(6)
$$H_i(Y) = 0 \quad \text{for } i \ge 2.$$

We observe that d_{*0} is multiplication by t_n . If therefore a is a prime ideal, then d_{*0} is injective. From (5) then follows $H_1(Y) = 0$, so Y is acyclic. Tensoring with k commutes with the adjunction of T. Therefore we have canonical isomorphisms of graded algebras

$$\operatorname{Tor}^R(k,k) \approx H(Y \otimes_R k) \approx H(X \otimes_R k \langle T \rangle; dT = t_n \otimes 1).$$

Since $t_n \otimes 1 = 0$ this is further isomorphic to

$$H(X \otimes_R k) \langle T \rangle$$
; $dT = 0 \approx \operatorname{Tor}^R(R/\mathfrak{a}, k) \langle T \rangle$; $dT = 0$.

We conclude (i).

Now suppose that \mathfrak{a} is non-prime. Then R/\mathfrak{a} is a non-regular ring, so $\dim(R/\mathfrak{a})=0$. Since R/\mathfrak{a} is artinian, it follows from (5), considering lengths, that $H_1(Y) \approx k$. Let σ be a homology class generating $H_1(Y)$. Let s be a cycle representing σ . Put

$$L = Y\langle S \rangle; dS = s.$$

From (6) it follows that σ is a skew non-zerodivisor in H(Y), so by [5, theorem 2] L is acyclic. Therefore

$$\operatorname{Tor}^{R}(k,k) \approx H(L \otimes_{R} k) \approx H(X \otimes_{R} k \langle T, S \rangle; dT = t_{n} \otimes 1, dS = s \otimes 1).$$

Again $t_n \otimes 1 = 0$. Since t_1, \ldots, t_n are linearly independent modulo \mathfrak{m}^2 , we have $Z_1(Y) \subseteq \mathfrak{m} Y_1$, so $s \otimes 1 = 0$.

Hence the adjunction of T and S commutes with H. It follows that

$$\begin{array}{ll} \operatorname{Tor}^R(k,k) & \approx & H(X \otimes_R k) \langle T,S \rangle \, ; \, dT = 0, \, dS = 0 \\ & \approx & \operatorname{Tor}^R(R/\mathfrak{a},k) \langle T,S \rangle \, ; \, dT = 0, \, dS = 0 \, \, . \end{array}$$

The rest of (ii) now follows easily from (2).

Corollary 2. Let a be as in theorem 1. Put $c_i = \dim \operatorname{Tor}_i{}^R(R/\mathfrak{a},k)$

- (i) If a is a prime ideal then $b_n(R) = c_n + c_{n-1}$.
- (ii) If a is non-prime then $b_p(R) = \sum_{i=0}^p c_i$.

COROLLARY 3. Let R be a non-regular local ring. Put $n = \dim(\mathfrak{m}/\mathfrak{m}^2)$. Then

(i)
$$B(R) \gg \frac{(1+Z)^n}{1-Z^2}$$
 (*Tate*)

(ii) The sequence $\{b_n(R)\}$ is non-decreasing.

PROOF. Let d denote the dimension of R. From a theorem of Murthy's [2] it follows that there exists a minimal generating system t_1, \ldots, t_n for m such that rank $(t_1, \ldots, t_d) = d$. Put

$$\mathfrak{a} = (t_1, \ldots, t_{n-1}) .$$

Since R is non-regular, we have

$$d \leq n-1$$
.

It follows that \mathfrak{a} is non-prime. Now (ii) follows from (ii) of corollary 2. The R-algebra E in (3) can be regarded as an exterior algebra with a differential. It follows from [4, appendice I] that E can be imbedded (as a graded R-module) as a direct factor of a minimal resolution of R/\mathfrak{a} . It follows that

$$\dim \operatorname{Tor}_{i}{}^{R}(R/\mathfrak{a},k) \, \geqq \, \dim E_{i} \otimes_{R} k \, = \, \binom{n-1}{i}.$$

Now (i) follows from (ii) of corollary 2.

LEMMA 4. Let t_1, \ldots, t_n be a minimal generating system for \mathfrak{m} . Let n > 0 and assume that t_n is a non-zerodivisor. Put $\mathfrak{a} = (t_1, \ldots, t_{n-1})$ and $\overline{R} = R/(t_n)$. Then we have canonical isomorphisms of graded algebras:

(i) If a is a prime ideal

$$\operatorname{Tor}^{\overline{R}}(k,k) \approx \operatorname{Tor}^{R}(R/\mathfrak{a},k)$$
.

(ii) If a is non-prime

$$\operatorname{Tor}_{\overline{R}}(k,k) \approx \operatorname{Tor}_{R}(R/\mathfrak{a},k)\langle S \rangle; dS = 0$$

with S of degree 2.

Proof. Consider the free acyclic R-algebra X in the proof of theorem 1. We have an exact sequence of complexes

(8)
$$0 \to X \xrightarrow{t_n} X \to \overline{X} \to 0$$
, where $\overline{X} = X/t_n X$

has a canonical structure as an R-algebra. Consider the homology-sequence associated with (8).

$$(9) \ldots \to H_{i+1}(X) \to H_{i+1}(\overline{X}) \to H_i(X) \to \ldots,$$

We observe that (9) and (10) are analogous to (4) and (5). We now use arguments similar to those used in the proof of theorem 1. If \mathfrak{a} is prime, then \overline{X} is acyclic and (i) follows. If \mathfrak{a} is non-prime one finds that $H_1(\overline{X})$ is generated by a single homology class $\overline{\sigma}$, represented by a cycle $\overline{s} \in m\overline{X}_1$. Again according to [5, theorem 2] the R-algebra

$$L = \overline{X}\langle S \rangle; dS = \overline{s}$$

is acyclic and we have

$$\operatorname{Tor}_{\overline{R}}(k,k) \approx H(L \otimes_{\overline{R}} k) \approx H(X \otimes_{R} k) \langle S \rangle; dS = 0.$$

From lemma 4 and theorem 1 now follows

Theorem 5. Let t be a non-zerodivisor in a local ring R. Assume that $t \in \mathfrak{m}$, $t \notin \mathfrak{m}^2$. Put $\overline{R} = R/(t)$. Then we have an isomorphism of graded algebras,

$$\operatorname{Tor}^{R}(k,k) \approx \operatorname{Tor}^{\overline{R}}(k,k)\langle T \rangle; dT = 0$$
,

where T is a variable of degree 1. In particular

$$B(R) = (1+Z)B(\overline{R})$$
 (Scheja).

Proposition 6. The following conditions are equivalent

- (i) The sequence $\{b_p(R)\}$ is bounded.
- (ii) $\operatorname{codim} R \ge \dim(\mathfrak{m}/\mathfrak{m}^2) 1$.

Proof. We observe that if t is a non-zerodivisor in R such that

$$t \in \mathfrak{m}, \quad t \notin \mathfrak{m}^2, \quad \overline{R} = R/(t)$$

then by theorem 5 R satisfies (i) (resp. (ii)) if and only if \overline{R} does. On the other hand if $\operatorname{codim} R > 0$ there is by [2, corollary 3] such a non-zero-divisor t not contained in \mathfrak{m}^2 . Therefore, dividing R by a suitable R-sequence, there is no loss of generality to assume that $\operatorname{codim} R = 0$. In this case the implication (ii) \Rightarrow (i) is almost obvious, see [3], so we show that (i) implies (ii). Assume that

$$\operatorname{codim} R < \dim(\mathfrak{m}/\mathfrak{m}^2) - 1$$
, that is, $\dim(\mathfrak{m}/\mathfrak{m}^2) \ge 2$.

Let a be as in (7). We have $a \neq 0$. Since $\operatorname{codim} R = 0$, the only R-modules of finite homological dimension are the free ones, so

$$dh_R R/\alpha = \infty$$
, that is, dim $\operatorname{Tor}_{n}^R(R/\alpha, k) \neq 0$ for $p \geq 0$.

Since R is non-regular, $\mathfrak a$ is non-prime. It follows from corollary 2 (ii) that $\{b_v(R)\}$ is non-bounded.

REFERENCES

- T. H. Gulliksen, Notes on the homology of local rings, Seminar Reports, Inst. of Math., University of Oslo, 1966.
- 2. M. P. Murthy, A note on the Primbasissatz, Arch. Math. 12 (1961), 425-428.
- 3. G. Scheja, Bettizahlen lokaler Ringe, Math. Ann. 155 (1964), 155-172.
- 4. J. P. Serre, Algèbre locale. Multiplicitiés, Berlin, 1965.
- 5. J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14-27.