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ON THE OSCILLATION FUNCTIONS OF
GAUSSIAN PROCESSES

KIYOSI ITO and MAKIKO NISIO

1. Introduction and results obtained.

By a Gaussian process we shall understand a separable, measurable,
jointly Gauss distributed process with the time parameter on [0,1],
continuous in the (second order) mean.

As to the regularity of the sample path of a stationary Gaussian process,
we have Yu. K. Belayev’s theorem of alternatives [1] which reads as
follows: the sample function (path) of a stationary Gaussian process is
either continuous with probability one or unbounded on every interval
with probability one.

What will happen for a non-stationary Gaussian process? Qur purpose
is to answer this question.

Given a Gaussian process x=2x(f,w), 0=t=<1, w e 2(#,P), we shall
define the oscillation function of x by

W, (¢, 0) = lim sup |z(v, w) — x(u, w)|,
ey 0 u,ve(l—e, t+e)n[0,1]
where we apply the usual convention (+ o) —(+o00)=(—o00)—(—00)=0,
etc. Because of the separability of our process z, the supremum can be
taken only for the u and v in the separant ¢ of « which is countable, so
that W _(t,w) is measurable in w for each ¢ e [0,1].

An interesting fact is that the oscillation function of a Gaussian process
is a deterministic function. Precisely speaking, we have the following
theorem which will be proved in Section 2.

THEOREM 1. There exists a function «=wy(t), 0=t=<1, which does mot
depend on o, such that
P[W (¢, w) = «(t) for every te[0,1]] =1.

In view of this theorem we call « the oscillation function of the Gaussian
process .
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Using the fact that the probability law of the process z(t)— E(x(¢)),
0=<t<1, is invariant under reflection, we shall prove the following theo-
rem in Section 3:

THEOREM 2. For each t € [0,1], we have

P |lima(s) = z(t) + 3x(t), ljgx(s):x(t)—%gx(t)] =1,
—>t 8—>1
It is clear that, with probability one, the sample function of z(¢) is
continuous at every point ¢ where «(f) vanishes.

We have also the following theorem which will be proved in Section 4.

THEOREM 3. If, for some constant a, x(t)=a>0 on a dense subset D of
an open interval I <[0,1], then

P |lima(s) = oo, lima(s) = — oo for every t e I] =1.
—>1 8>t
In Section 5 and 6 we shall prove the following properties that charac-
terize oscillation functions.

THEOREM 4. (a) The osoillation function of a Gaussian process satisfies

(x,1) a(t) is upper semi-continuous,
(x,2) {t: a=<ua(t) < oo} is nowhere dense for every a>0.

(b) Conversely, given a function «:[0,1] — [0,00] satisfying (x,1) and
(x,2), we can construct a (not necessarily unique) Gaussian process whose
oscillation function is x.

Let us derive Belayev’s theorem of alternatives from Theorems 1 and
3. Suppose z(f) is a stationary Gaussian process. The oscillation func-
tion «(t) of the restriction of x to 0<¢<1 is constant because of the
stationarity. If the constant is 0, then almost all sample functions of z
are continuous; if it is positive, then almost all sample functions are, by
Theorem 3, unbounded both below and above on every interval.

2. Proof of Theorem 1.

We can assume that Exz(t)=0, because K x(t) is continuous in ¢. Let
R(s,t), t,s€[0,1], be the covariance function of x. Then R is real,
symmetric, positive-definite and continuous on I xI. Using Mercer’s
theorem, we can expand R as follows:
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(2.1) R(t78) = E (pn(t) (pn(s)/ln ’
n

where {1,} and {g,} are, respectively, the positive eigenvalues and the
corresponding real (normalized) eigenfunctions for the integral operator
with the kernel R(t,s), that is,

1
(2.2) o) = A, f R(t,s) pp(s)ds, OSASAp<...,
(1]

and the sum in (2.1) converges absolutely and uniformly on I x I.
We shall define a sequence of random variables x,, n=1,2,..., as the
Fourier coefficients of the sample function of x(f) with respect to {g,}:

(2.3) z, = | x(t) @,(t) dt .

Oy

Observing that

1 1
E [ x(s)? ds] = fR(s,s) ds < o,
0

0

1
Pl|x@s)?ds<oo| =1,
I

so that z, is well-defined.
A simple computation shows that

we have

E@x,x,) =0, n$mn, E(x,?) = 2,71,

which implies that z,, »=1,2,..., are independent, each having the
Gauss distribution with mean 0 and variance 1,~1. Observing that

N 2 N
B [|2) - S at)za || = ) - S 2700 > 0
1 1

as » — oo, we have
(2.4) P [x(t):—- > (pn(t)xn] =1 for each ¢;
n=1

the infinite series converges to z(f) in the mean for each ¢ and so it con-
verges with probability one for each ¢ because of the independence of z,,,
n=1,2,....

Let us define the maximum oscillation W (s,t,w) of a separable process
on the interval [s,t] by
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(2.5) W,y(s,t,w) = lim lim sup ly(u,w) —y(v,w)| ,
nioo phoo u,ve(s—n—1,t+n—-1)N[0,1]
|u—vj<p~1

where the interval [0,1] can be replaced by the separant @ of y.
We shall now prove that W _(s,#, ) is a constant; more precisely, that
there exists a function «(s,t) independent of w such that

(2.6) PlW (s, t,w)=0u(s,t)] = 1
for each pair s=<t.
Since ¢,(t) is continuous in ¢, we have

(2.7) P[W, (s,t,0)=W, (s,t,0)] = 1,
where
yalt) = () = 3 g0 = 3 pilt)z; .
J=1 J=n+l
The separant @ of x is also that of y, because of the continuity of ¢;(f).
By virtue of (2.4), y,(f) is measurable with respect to %(x;,k=n) for
each ¢. But W, (s,t,0) is measurable with respect to Z(y,(t), < Q).
Since @ is countable, W, (s,?, ) is measurable with respect to %(x;, k= n)
and so W,(s,t,w) is also measurable with respect to %#(x;, k = n) for every
n, by (2.7). Since the z,, n=1,2,..., are independent, Kolmogorov’s
zero-one law shows that W,(s,f,w) is a constant with probability one.
We shall now strengthen (2.6) to get

(2.6') P[W (s,t,w)=x(s,t) for every pair s<¢] = 1.

It follows from (2.6) that

(2.6") P[W (s,t,w)=u(s,t) for every rational pair s<¢] = 1.

Since W,(s,t,w) is left-continuous in ¢ and right-continuous in £, (2.6")

implies (2.6’). Writing W, (f,w) and «(t) for W (t,t,w) and «(t,t), respec-
tively, we get from (2.6')

(2.7) P[W (t,w)=«(t) for every t] = 1.

3. Proof of Theorem 2.

We shall use the same notation as in Section 2. Using Kolmogorov’s
zero-one law in the same way as before, we can see that lim,_,(z(s, ) —
Z(t,w)) is a constant, say f(t), with probability one. Since the process
y(t)= —z(t) has the same Gaussian probability law as the process =, we

have L
Lm ( —=z(s) +(t)) = B(¢),

8>
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that is,
lim (2(s) —2(f)) = —p(t)

8>t

with probability one. By definition we have

W, (t,0) = lima(s) — lima(s)
8>t 8>t

= lim (2(s) — 2(t)) — lim (x(s) —x(¢)) .
s—>1 8>t
Therefore, «(f) must be equal to 28(t). This completes the proof of
Theorem 2.

4. Proof of Theorem 3.

In the following lemma and throughout this paper an open subset
of [0,1] means a subset open in [0,1]. For example, [0,u) is open and 0
is an interior point of this interval.

LeMMma 4.1. Let x(t), 0=t=<1, be a separable process continuous in prob-
ability, and D a dense subset of an open subinterval I of [0,1]. For each
t € I, we can then find a sequence s, € D such that s, — t and that

(4.1) P [m x(sn)=ﬁrnx(s)] _1,
N—>00 8—>1
and hence a fortior:
(4.1) P [{Ex(s):l_iﬁx(s)] =1.
8;—;)2 8>t

Proor. Let Q={t,} be a separant of z(¢) and let {U,} be a sequence of
neighborhoods of ¢ converging to ¢t. Let {y,(w)} be a sequence converging
to z(t) =lim,_,,z(t) strictly from below, for example

Yy (w) = min(Z(t),n) — 1/n .

Since @ is a separant of z(f), we can find w,;,uy,. .. %y, € U,NQ
such that
Plmax,z(u,;,) > y,(w)] > 1 —2-7,

By Borel-Cantelli’s lemma we have
Pllim, max;z(u,,;)=2%(1)] = 1.

Writing {u,,} for {uy;,. .., %, %, - -, %gp,, - - - }, We have
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(4.2) P [Hﬁl x(u,) ga?(t)] =1.

n->00
Since z(t) is continuous in probability, we can find
8, € (U, —1/n,u,+1/n)yn D
such that
Pllz(u,) —z(s,)] >2-"] < 277, n=1,2,....
Using Borel-Cantelli’s lemma again, we have
(4.3) Pfim, x(u,) =lm,a(s,)] = 1,

which, combined with (4.2), implies (4.1) and so (4.1").
We shall now prove Theorem 3. Using (4.1) and Theorem 2, we can
see that the event

0, = {w: lima(s,w)=z(t,w) + 3x(t) for every t e D
8—>t
seD

has probability one, since D is a countable dense subset of I. For every
w € 2, and every t € D, we have

Eﬂx(s,w) = lim li—mx(u,w)
8>t 8>t u—>s
seD seD wueD
= lim (2(s, ) + 3a(s)) = lim z(s,0) + 3a .

8—>1 8—>1t
seD seD

But this is impossible, unless

lim z(s,w) = oo,
8>t
8eD

that is, unless lim,_,, z(s,w) = c.
Therefore

P |limz(s,w)=oco for every ¢ eD] =1.
>t
Similarly we have

P |limz(s,w) = — oo for every teD] =1,
—>t

This completes our proof, since D is dense in I.
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5. Proof of Theorem 4(a).
Let «(t) be the oscillation function of a Gaussian process «(t), 0 <t <1.

Then we have
PIW (¢, w)=o(t) for every {] = 1

by the definition of «(¢) in Section 2. By the definition of W (¢, w), it
holds that

Hm W (s,0) £ W, (t,w),

8>t
so that we have

lima(s) < «aft),

8>t
which shows that « is upper semi-continuous. Hence it follows that
T,={t: x(t)=a} is a closed subset of [0,1]. If 7', — T contains a dense
subset D of an open interval for some a> 0, then D<T_ by Theorem 3,
in contradiction with D<T,—T_ . Therefore, T,— T, is nowhere dense
for a > 0. This completes the proof of Theorem 4(a).

6. Proof of Theorem 4(b).
We shall denote the mean square norm of a random variable = by ||,

| = E(x?).

Consider a Brownian motion B(t), 0<t<1, and a stationary Gaussian
process S(f), —co<t< oo, with ES(t)=0, ES(t)2=1 and «(f,S)=ooc. The
existence of the latter process was proved by Belayev [1]. We can as-
sume that these two processes are independent. Let L be the || ||-closure
of all finite linear combinations of B(f), 0<¢=<1, and S(t), 0st<1. It is
clear that any process x(t), 0 <t < 1, such that x(¢) € L for each ¢ is jointly
Gauss distributed.

We shall prove Theorem 4(b) by constructing a Gaussian process
z(t)e L, 0=t <1, with «(f,z) = «(f) for any given function

o [0,1] - [0,00] satisfying (x,1) and («,2).
Let us start with some lemmas.
LeMMA 6.1. Given I=[u,v]<[0,1] and ¢ > 0, we can construct a Gaussian
process x(t) € L, 0=t <1, satisfying

(a) z(t,w)=0 for t € [0,1]—1I° (I°=the interior of I),
(b) x(t,x)=00 for tel,
(o) el se for ¢€[0,1].
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Proor. Take a continuous function f(¢) such that 0 <f(t)<e in I° and
f(t)=0 elsewhere. Then x(¢,w) =f(t)S(¢, ) is a Gaussian process satisfying

our conditions.

LeMMA 6.2. Given 0<a<oo, £€>0, and I=[u,v]<[0,1], we can con-
struct a Gaussian process x(t) € L, 0=t < 1, satisfying the following condi-

tions:
(a) z(t,w) has continuous paths,
(b) z(t,w)=0 for te[0,1]-1",
(c) Ex(t)=0, |z(t)|| <e for every t,
(d) P(|sup;z(t)—a|>¢e)<e.

Such a process will be denoted by z(t; I,a,¢).

Proor. Let B(t) be a Brownian motion and define a process y(¢) by

v =0 0stzu,
- a(B(t) - B(u)) e
B (2(t—u) IOglog(t_.u,)—l)y ==
_ a(B(v') — B(u)) etel

(2(v" —w) log log (v' —w)-1)¥’

v =min(r,u+9),

Then y(t) is jointly Gauss distributed with Ey(f)=0 and the sample path
of y(¢) is continuous except at t=w. The continuity in the mean follows

from

aZ
Bly@)?] = 0 t .
[y )] 2 loglog (t —u)—! ~ as tiu

By the law of the iterated logarithm we have
tyu

We now determine #<s;<8,<8;<8,<v as follows.
sufficiently close to u, we have

Ely(6)*] < &%,

P[sup y(t)<a+s] > 1-1e,

<l<8g

P[usup y(t)>a—e] >1-1e.

<t<8g

By taking s,
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By taking s, sufficiently close to » and s, sufficiently close to s,, we have

P Lsup y(t >a—£] >1-1e.
o St<s83
We shall take s, in (u,s,) arbitrarily.
Let f(¢) be a polygonal function of ¢ vanishing on [0,s,]U[s,, 1], equal
to 1 on [s,,s5] and linear in each of [s,,s,] and [s;,8,]. Then z(t)=f(t) y(¢)
is a Gaussian process satisfying our conditions.

LeMMaA 6.3. Suppose that «,(t) and «x,(t) satisfy («,1) and the following
condition (stronger than («,2)):

(x,2") {t : xy(t)>0} is nowhere dense .

For any Gaussian process x,(t) with «(t,x,)=wx,(t) and any >0, we can
construct a Gaussian process x,(t) € L, 0=t <1, satisfying the conditions:

(@) (t, 2y + 29) = 0y (£) + 5(8),
(b) |lz(0)]l <e,
(©) Plsupley(®)] > supysg(®)] <e.

Proor. We can assume that c=sup«,(t)>0. If otherwise, z,(t)=0
will satisfy our conditions trivially.

Write «(t) for o,(t)+ xs(t). The set {(t,x(t)): x(t)>0} is a subset of
[0,1]1x [0,00]. Let {(t,,x(t,))}, be a countable dense subset of {(t,x(t)):
o(t) >0}. Then the sets {t,}, are dense in {t: x(¢) >0} and so dense in its
closure . By our assumptions («x,2’), ' is nowhere dense and its com-
plement @ is a dense open subset of [0,1]. Since «(t) 2 «(f,,), we have
a(t,z;)=0 for te @, so that the sample path of z,(f) is continuous in
t € G with probability one.

Using Theorem 2 and Lemma 4.1, we can find {,,}, in ¢ tending to
¢, as m — oo such that

Ppmmmx)%mﬂ

Nn—>0oo

Since the path of x,(¢) is continuous in ¢ € G, we can find, for each ¢,,,
a closed interval I,, <@ containing #,, in its interior such that

P [xl(tm) zinfa,(8) = x4(ty,) — 2‘"] < 27,
In

This implies
P [EE infz,(s)= lim xl(tm)] =1

n Iip n—>00
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by Borel-Cantelli’s lemma. Thus we have

P [m infwl(s)=x(t1)+%oc1(t1)] =1,
n—>o00 Iin

By taking I,, sufficiently small, we can achieve that the {I,,}, are dis-

joint. Then 3, |I;,| <1 where |-| denotes length. Therefore |I,,] - 0

and so I, tends to ¢, by ¢, — ;.

It is clear that U, I,,U{t,} is a closed set which does not contain ¢,.
Therefore we can find a neighborhood U of ¢, which does not intersect
this closed set. In the same way as above, we can find a sequence of
disjoint intervals I,,<GnU, n=1,2,..., tending to ¢, such that

P | T infy(6) =os(t)+ )] = 1.
n—>o00 Iap

Continuing this procedure we can get a double sequence of disjoint
closed intervals 7,,, <@, k,n=1,2,.. ., such that I, tends to {;, as n -
for each k£ and that

(6.1) P [En infxl(s)=x1(tk)+%oc1(tk)] =1 k=12,....
nioo Iy
By removing a finite number of intervals from {I,,}, we can achieve
that I, <(t,—1/k,t,+ 1/k) for each k.
Take &, >0 such that
2. &xn < Min (}¢, }c)
kn
and set
xlcn(t) = x(t; Ikn’akmekn) (See Lemma 6-2) ’

where a;, = $x,(f;,) if this is finite and =n otherwise, so that a;,, 1 3x,(y,)
as n — oo for each k. We shall prove that

zy(t) = zxkn(t)
kn
is a Gaussian process satisfying our conditions.
Since this implies
Zo(t) = 2,,(8) on I, kn=12,..,

=0 elsewhere ,

x,(t) is well-defined and z,(¢) € L. Therefore x,(t) is jointly Gauss distri-
buted, separable and measurable.
By |@en(®)| < &r, and Y&y, < 0o, the series 3, %;,(f) converges in the
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mean uniformly in ¢ and so x,(t) is continuous in the mean and we have

llea(®)ll < g 2k @Il < €5

which proves (b).
Observing that

P [s?pxz(t) >c] =>P [supxz(t) > c]

kn telpn

=3P (sup L () > A + ekn)
kn i

IA
M

1
Ekn < 32€,

we have
P(sup,|z,(t)| >¢) < ¢,

since the probability law of the sample path of x,(f) is symmetric by
Ex,(t)=0. Thus (c) is proved.

Now we shall prove that «(f,z,) < oy(t).

If t, e G, then ¢, has a positive distance from F. Since I,, is in the
1/k-neighborhood of ¢, € F, a small neighborhood U (< @) of ¢, does not
intersect I, with k= k,, n=1,2,..., for some k,. Since I,, - t, € F for
each k, U can intersect only a finite number of intervals among {I;,}x,.
Let us denote these intervals by I, n), 1=1,2,...,m. Then x,(t) is the
sum of Ty niys ©=1,2,...,m, as far as ¢ lies in U. Therefore the path of
Z,(t) is continuous in U and so x(ty,x) =0 = xy(t,)-

If t, € F, then z,(t,)=0 by our construction. Take an arbitrary J > 0.
Then there exists a neighborhood U, of £, such that

supog(s) < xg(ty)+96 .

selUy
Take a neighborhood U, of f, such that U,=U,. Then the distance
o(U,, Uy°) is positive. Since the {I;,}, are disjoint and 3, |I;,| <1, we
have only a finite number of intervals among {I;,};, with the length
20(U,, Us) and only such intervals can intersect both U, and U,°.
Since each I, has positive distance from f,, we have a neighborhood
U, (<=U,) of t, such that I,,< U, as far as I, intersects Uj;.

Write 3’ for the summation over those indices (k,n) for which I,

intersects U;. Then any interval I,, with the index (k,») appearing in
3’ is contained in U;. By taking U, small enough, we can achieve that

Slepy < 0.
i
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We then have

P [supxz(s) > %az(to)+26]

8eUs

=3P [supm,m(s) > sup og(s) +(3]

seUs
< D P(Supz;,(8)> @+ &1p) < D Epn < 0,
by the construction in Lemma 6.2. Therefore we get
P | lima,(s) > %ocz(to)—f—?é] <é
—>to
for every 0>0. Letting 640, we have

P ﬁnw2<s)zx2<to)+%a2(to)] — 0. (Notezty)=0.)

—>to

This implies that «(ty,z,) < x,(t,) by Theorem 2.
Thus «(t,x,) < xe(t) is proved for every t. By the definition of the
oscillation function we have
alt, @y +2) = ot @) +x(l,25) = xq(t) + x5(t) = (t) .

We shall now prove that
x(t, 2 +25) = (t) .

Consider first the case t=¢,. It holds that

(6.2) P[IE (2(8) + 24(8)) 2 2(t) + y(t) + %a(m]

s—>tp

(3%

P| Tim supas(s) +(6)] 2 200) +23(t) + Jt) |

L n—>00 Igp

%

P|lim (infxl(s) + supxz(s)) 2 oy (t) +xa(ti) + %“(tk)]
| n—>00 \Igp Ipn

P| T infa o)+ lim supay(s) 2 () +a3(t) + 1l

n—>00 Iy n—>o00 Igp

v

Since we have
P[Supllmxz(s) <Opp— Ekn] < &kn

by virtue of z,(s)=1x,,(s) on I, , we get

(6.3) P lim supy(s) 2 ) + boalt)| = 1

n—>00 Ipp
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by x,(¢,)=0 and Y, &, <. By (6.1), (6.2) and (6.3) we get

P [G (23(8) + 23(6)) 2 24 (t) + a(t) + %(tk)] _1,

8—>1)

that is, by Theorem 2,
Ky, +25) 2 oty .

For t+t¢,, k=1,2,..., the point (f,x(f)) is an accumulation point of
(ta x(ty)), n=1,2,... . Therefore we have a subsequence {s,} of {¢,} such
that

a(t) = lim,, o(s,) .
By Theorem 4 (a) (x,1) we have
x(t, @y + @) 2 Tim, (s, @, +2) = lim,a(s,) = lt) ,
which completes the proof of Lemma 6.3.
Now we shall come back to the proof of Theorem 4 (b). We shall first
assume
(ev,2) {t - «(t) =2 ¢} is nowhere dense for every ¢>0;
this is stronger than («,2) but weaker than (x,2'). Set
aot) = 0,

ay(t) = max(«(f),}) — %,
o, (t) = max (min(a(t),Z—"+l),2—”) -2 n=23,....

It is then easy to verify the following properties of «,,(¢):

0 < a(f) <21, n=23,...,
20 oq(t) 1 x(t)

{t : «,(t)>0} is nowhere dense .

Starting with the Gaussian process z,(¢) =0 whose oscillation function is
ao(t)=0, we can use Lemma 6.3 to define a sequence of Gaussian pro-
cesses x,(t)e L, 0=t<1, n=1,2,..., satisfying

(a) «ft, Z5x;)= Eﬁoc_;(t),
(b) Jlza ()l < 277,
(c) Plsup|a,(t)| > supge,(t)] <27

Now set

x(t) = ann(t) .

By Borel-Cantelli’s lemma it follows from (¢) and «,(f)<2-"1, n>2,
that this infinite series converges uniformly in ¢ with probability one.
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Therefore z(¢) is well-defined, separable, measurable and jointly Gauss
distributed, and we have

a(t, ) = lim,a(t, She,) = lim,, Seo(t) = ().

It follows from (b) that this infinite series converges also in the mean,
uniformly in ¢, so that x(f) is continuous in the mean.

We shall now remove the assumption that 7',={¢: x(t) = ¢} is nowhere
dense.

Let I,,I,,... be the maximal intervals contained in the set 7 =
{t: a(t)=oo}. Since, by («,2), {t: ¢ = x(t) < oo} is nowhere dense, I,,1,,. ..
are also the maximal intervals contained in the set 7', (¢ > 0).

We now define

p() = 0, tel,’, n=12,...,
= aft) elsewhere .

Then B(t) satisfies (x,1) and («,2''). Therefore we can construct a Gauss-
ian process y(t) € L, 0=t <1, such that x(t,y)=p(t), as we proved above.

By Lemma 6.1, we can construct a sequence of Gaussian processes
y,0)eL, 0st<1, n=1,2,..., such that «(t,y,)=0 on I, y,({)=0 on
[0,11—1,° and |ly,(t)]|<2-". Now consider

x(t) = y(t)+2nyn(t) .
Then
z(t) = y,@)+yt), tel,’, n=12,...,
= y(t), elsewhere,

and z(t) € L, 0<t < 1. Therefore z(¢) is jointly Gaussian, measurable and
separable. Its continuity in the mean follows from |y, ()| < 2.

To complete our proof, we need only to show that «(f,x)=«(t). Since
x(t) =y(¢) on the set @ =[0,1]— U, I,, which is open in [0, 1], we have

ot x) = at,y) = B@t) = «(t), ted.
Since z(t)=y,(t) +y(t) and y(¢) is continuous in I,,°, we have
x(t,x) = aft,y,) = o = «ff), teU,I,°.

teU,I,—U,IL>°, then ¢ is an accumulation point of U,I,° and so
we get
at,z) = lm «(s,2) = oo

8—>1
seuly®

by Theorem 4 (a) («,1).
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