ON THE OSCILLATION FUNCTIONS OF GAUSSIAN PROCESSES

KIYOSI ITÔ and MAKIKO NISIO

1. Introduction and results obtained.

By a Gaussian process we shall understand a separable, measurable, jointly Gauss distributed process with the time parameter on [0,1], continuous in the (second order) mean.

As to the regularity of the sample path of a stationary Gaussian process, we have Yu. K. Belayev's theorem of alternatives [1] which reads as follows: the sample function (path) of a stationary Gaussian process is either continuous with probability one or unbounded on every interval with probability one.

What will happen for a non-stationary Gaussian process? Our purpose is to answer this question.

Given a Gaussian process $x = x(t, \omega)$, $0 \le t \le 1$, $\omega \in \Omega(\mathcal{B}, P)$, we shall define the oscillation function of x by

$$W_x(t,\omega) \,=\, \lim_{\epsilon\,\downarrow\,0} \, \sup_{u,v\in(t-\epsilon,\,t+\epsilon)\cap\,[0,1]} \left|x(v,\omega)-x(u,\omega)\right|,$$

where we apply the usual convention $(+\infty)-(+\infty)=(-\infty)-(-\infty)=0$, etc. Because of the separability of our process x, the supremum can be taken only for the u and v in the separant Q of x which is countable, so that $W_x(t,\omega)$ is measurable in ω for each $t \in [0,1]$.

An interesting fact is that the oscillation function of a Gaussian process is a deterministic function. Precisely speaking, we have the following theorem which will be proved in Section 2.

Theorem 1. There exists a function $\alpha = \alpha_x(t)$, $0 \le t \le 1$, which does not depend on ω , such that

$$P[W_x(t,\omega) = \alpha(t) \text{ for every } t \in [0,1]] = 1$$
.

In view of this theorem we call α the oscillation function of the Gaussian process x.

Received August 25, 1967.

Using the fact that the probability law of the process x(t) - E(x(t)), $0 \le t \le 1$, is invariant under reflection, we shall prove the following theorem in Section 3:

Theorem 2. For each $t \in [0,1]$, we have

$$P\left[\overline{\lim}_{s\to t} x(s) = x(t) + \frac{1}{2}\alpha(t), \ \underline{\lim}_{s\to t} x(s) = x(t) - \frac{1}{2}\alpha(t)\right] = 1.$$

It is clear that, with probability one, the sample function of x(t) is continuous at every point t where $\alpha(t)$ vanishes.

We have also the following theorem which will be proved in Section 4.

THEOREM 3. If, for some constant a, $\alpha(t) \ge a > 0$ on a dense subset D of an open interval $I \subset [0,1]$, then

$$P\left[\overline{\lim}_{s \to t} x(s) = \infty, \lim_{\overline{s \to t}} x(s) = -\infty \text{ for every } t \in I \right] = 1.$$

In Section 5 and 6 we shall prove the following properties that characterize oscillation functions.

THEOREM 4. (a) The oscillation function of a Gaussian process satisfies

$$(\alpha, 1)$$
 $\alpha(t)$ is upper semi-continuous,

$$(\alpha, 2)$$
 $\{t: a \leq \alpha(t) < \infty\}$ is nowhere dense for every $a > 0$.

(b) Conversely, given a function $\alpha: [0,1] \to [0,\infty]$ satisfying $(\alpha,1)$ and $(\alpha,2)$, we can construct a (not necessarily unique) Gaussian process whose oscillation function is α .

Let us derive Belayev's theorem of alternatives from Theorems 1 and 3. Suppose x(t) is a stationary Gaussian process. The oscillation function $\alpha(t)$ of the restriction of x to $0 \le t \le 1$ is constant because of the stationarity. If the constant is 0, then almost all sample functions of x are continuous; if it is positive, then almost all sample functions are, by Theorem 3, unbounded both below and above on every interval.

2. Proof of Theorem 1.

We can assume that Ex(t) = 0, because Ex(t) is continuous in t. Let R(s,t), $t,s \in [0,1]$, be the covariance function of x. Then R is real, symmetric, positive-definite and continuous on $I \times I$. Using Mercer's theorem, we can expand R as follows:

(2.1)
$$R(t,s) = \sum_{n} \varphi_n(t) \varphi_n(s) / \lambda_n,$$

where $\{\lambda_n\}$ and $\{\varphi_n\}$ are, respectively, the positive eigenvalues and the corresponding real (normalized) eigenfunctions for the integral operator with the kernel R(t,s), that is,

(2.2)
$$\varphi_n(t) = \lambda_n \int_0^1 R(t,s) \varphi_n(s) ds, \qquad 0 \le \lambda_1 \le \lambda_2 \le \dots,$$

and the sum in (2.1) converges absolutely and uniformly on $I \times I$.

We shall define a sequence of random variables x_n , n = 1, 2, ..., as the Fourier coefficients of the sample function of x(t) with respect to $\{\varphi_n\}$:

$$(2.3) x_n = \int_0^1 x(t) \varphi_n(t) dt.$$

Observing that

$$E\left[\int\limits_0^1 x(s)^2\,ds\right] = \int\limits_0^1 R(s,s)\,ds < \infty \;,$$

we have

$$P\left[\int_{0}^{1} x(s)^{2} ds < \infty\right] = 1,$$

so that x_n is well-defined.

A simple computation shows that

$$E(x_n x_m) = 0, n + m, E(x_n^2) = \lambda_n^{-1},$$

which implies that x_n , $n=1,2,\ldots$, are independent, each having the Gauss distribution with mean 0 and variance λ_n^{-1} . Observing that

$$E\left[\left|x(t) - \sum_{1}^{N} \varphi_n(t) x_n\right|^2\right] = R(t, t) - \sum_{1}^{N} \lambda_n^{-1} \varphi_n(t)^2 \to 0$$

as $n \to \infty$, we have

(2.4)
$$P\left[x(t) = \sum_{n=1}^{\infty} \varphi_n(t) x_n\right] = 1 \quad \text{for each } t;$$

the infinite series converges to x(t) in the mean for each t and so it converges with probability one for each t because of the independence of x_n , $n = 1, 2, \ldots$

Let us define the maximum oscillation $W_y(s,t,\omega)$ of a separable process on the interval [s,t] by

$$(2.5) \qquad W_{\boldsymbol{y}}(s,t,\omega) = \lim_{\substack{n \uparrow \infty \\ p \uparrow \infty}} \lim_{\substack{u,v \in (s-n^{-1},t+n^{-1}) \cap [0,1] \\ |u-v| < p^{-1}}} |y(u,\omega) - y(v,\omega)| \ ,$$

where the interval [0,1] can be replaced by the separant Q of y.

We shall now prove that $W_x(s,t,\omega)$ is a constant; more precisely, that there exists a function $\alpha(s,t)$ independent of ω such that

$$(2.6) P[W_x(s,t,\omega) = \alpha(s,t)] = 1$$

for each pair $s \leq t$.

Since $\varphi_i(t)$ is continuous in t, we have

(2.7)
$$P[W_x(s,t,\omega) = W_{y_n}(s,t,\omega)] = 1,$$

where

$$y_n(t) = x(t) - \sum_{j=1}^n \varphi_j(t) x_j = \sum_{j=n+1}^\infty \varphi_j(t) x_j$$
.

The separant Q of x is also that of y_n because of the continuity of $\varphi_j(t)$. By virtue of (2.4), $y_n(t)$ is measurable with respect to $\mathcal{B}(x_k, k \ge n)$ for each t. But $W_{y_n}(s,t,\omega)$ is measurable with respect to $\mathcal{B}(y_n(t), t \in Q)$. Since Q is countable, $W_{y_n}(s,t,\omega)$ is measurable with respect to $\mathcal{B}(x_k, k \ge n)$ and so $W_x(s,t,\omega)$ is also measurable with respect to $\mathcal{B}(x_k, k \ge n)$ for every n, by (2.7). Since the x_n , $n=1,2,\ldots$, are independent, Kolmogorov's zero-one law shows that $W_x(s,t,\omega)$ is a constant with probability one.

We shall now strengthen (2.6) to get

(2.6')
$$P[W_x(s,t,\omega) = \alpha(s,t) \text{ for every pair } s \leq t] = 1.$$

It follows from (2.6) that

(2.6")
$$P[W_x(s,t,\omega) = \alpha(s,t) \text{ for every rational pair } s \leq t] = 1$$
.

Since $W_x(s,t,\omega)$ is left-continuous in s and right-continuous in t, (2.6") implies (2.6"). Writing $W_x(t,\omega)$ and $\alpha(t)$ for $W_x(t,t,\omega)$ and $\alpha(t,t)$, respectively, we get from (2.6")

(2.7)
$$P[W_x(t,\omega) = \alpha(t) \text{ for every } t] = 1.$$

3. Proof of Theorem 2.

We shall use the same notation as in Section 2. Using Kolmogorov's zero-one law in the same way as before, we can see that $\overline{\lim}_{s\to t}(x(s,\omega)-x(t,\omega))$ is a constant, say $\beta(t)$, with probability one. Since the process $y(t) \equiv -x(t)$ has the same Gaussian probability law as the process x, we have

$$\overline{\lim}_{s\to t} (-x(s) + x(t)) = \beta(t) ,$$

that is,

$$\lim_{s \to t} (x(s) - x(t)) = -\beta(t)$$

with probability one. By definition we have

$$\begin{split} W_x(t,\omega) &= \overline{\lim}_{s \to t} x(s) \, - \, \underline{\lim}_{s \to t} x(s) \\ &= \overline{\lim}_{s \to t} \big(x(s) - x(t) \big) \, - \, \underline{\lim}_{s \to t} \big(x(s) - x(t) \big) \; . \end{split}$$

Therefore, $\alpha(t)$ must be equal to $2\beta(t)$. This completes the proof of Theorem 2.

4. Proof of Theorem 3.

In the following lemma and throughout this paper an open subset of [0,1] means a subset open in [0,1]. For example, [0,u) is open and 0 is an interior point of this interval.

Lemma 4.1. Let x(t), $0 \le t \le 1$, be a separable process continuous in probability, and D a dense subset of an open subinterval I of [0,1]. For each $t \in I$, we can then find a sequence $s_n \in D$ such that $s_n \to t$ and that

$$(4.1) P\left[\overline{\lim}_{n\to\infty} x(s_n) = \overline{\lim}_{s\to t} x(s)\right] = 1,$$

and hence a fortiori

$$(4.1') P\left[\overline{\lim_{\substack{s \to t \\ s \in D}}} x(s) = \overline{\lim_{s \to t}} x(s)\right] = 1.$$

PROOF. Let $Q = \{t_n\}$ be a separant of x(t) and let $\{U_n\}$ be a sequence of neighborhoods of t converging to t. Let $\{y_n(\omega)\}$ be a sequence converging to $\overline{x}(t) = \overline{\lim}_{s \to t} x(t)$ strictly from below, for example

$$y_n(\omega) = \min(\bar{x}(t), n) - 1/n$$
.

Since Q is a separant of x(t), we can find $u_{n1}, u_{n2}, \ldots, u_{np_n} \in U_n \cap Q$ such that

$$P[\max_k x(u_{nk}) > y_n(\omega)] > 1 - 2^{-n}$$
.

By Borel-Cantelli's lemma we have

$$P[\lim_n \max_k x(u_{nk}) \ge \overline{x}(t)] = 1.$$

Writing $\{u_n\}$ for $\{u_{11}, \ldots, u_{1p_1}, u_{21}, \ldots, u_{2p_2}, \ldots\}$, we have

$$(4.2) P\left[\overline{\lim}_{n\to\infty}x(u_n)\geq \overline{x}(t)\right]=1.$$

Since x(t) is continuous in probability, we can find

$$s_n \in (u_n - 1/n, u_n + 1/n) \cap D$$

such that

$$P[|x(u_n)-x(s_n)|>2^{-n}]<2^{-n}, n=1,2,\ldots$$

Using Borel-Cantelli's lemma again, we have

$$(4.3) P[\overline{\lim}_n x(u_n) = \overline{\lim}_n x(s_n)] = 1,$$

which, combined with (4.2), implies (4.1) and so (4.1').

We shall now prove Theorem 3. Using (4.1) and Theorem 2, we can see that the event

$$\Omega_1 = \left\{ \omega : \overline{\lim}_{\substack{s \to t \\ s \in D}} x(s, \omega) = x(t, \omega) + \frac{1}{2}\alpha(t) \text{ for every } t \in D \right\}$$

has probability one, since D is a countable dense subset of I. For every $\omega \in \Omega_1$ and every $t \in D$, we have

$$\overline{\lim}_{\substack{s \to t \\ s \in D}} x(s, \omega) = \overline{\lim}_{\substack{s \to t \\ s \in D}} \overline{\lim}_{\substack{u \to s \\ u \in D}} x(u, \omega)$$

$$= \overline{\lim}_{\substack{s \to t \\ s \in D}} (x(s, \omega) + \frac{1}{2}\alpha(s)) \ge \overline{\lim}_{\substack{s \to t \\ s \in D}} x(s, \omega) + \frac{1}{2}a.$$

But this is impossible, unless

$$\overline{\lim_{\substack{s \to t \\ s \in D}}} x(s, \omega) = \infty$$

that is, unless $\overline{\lim}_{s\to t} x(s,\omega) = \infty$.

Therefore

$$P\left[\overline{\lim_{s \to t}} x(s, \omega) = \infty \text{ for every } t \in D\right] = 1.$$

Similarly we have

$$P\left[\lim_{s\to t} x(s,\omega) = -\infty \text{ for every } t\in D\right] = 1.$$

This completes our proof, since D is dense in I.

5. Proof of Theorem 4(a).

Let $\alpha(t)$ be the oscillation function of a Gaussian process x(t), 0 < t < 1. Then we have

$$P[W_x(t,\omega) = \alpha(t) \text{ for every } t] = 1$$

by the definition of $\alpha(t)$ in Section 2. By the definition of $W_x(t,\omega)$, it holds that

$$\overline{\lim_{s \to t}} W_x(s, \omega) \leq W_x(t, \omega) ,$$

so that we have

$$\overline{\lim}_{s \to t} \alpha(s) \leq \alpha(t) ,$$

which shows that α is upper semi-continuous. Hence it follows that $T_a = \{t : \alpha(t) \ge a\}$ is a closed subset of [0,1]. If $T_a - T_\infty$ contains a dense subset D of an open interval for some a > 0, then $D \subset T_\infty$ by Theorem 3, in contradiction with $D \subset T_a - T_\infty$. Therefore, $T_a - T_\infty$ is nowhere dense for a > 0. This completes the proof of Theorem 4(a).

6. Proof of Theorem 4(b).

We shall denote the mean square norm of a random variable x by ||x||,

$$||x||^2 = E(x^2)$$
.

Consider a Brownian motion B(t), $0 \le t \le 1$, and a stationary Gaussian process S(t), $-\infty < t < \infty$, with ES(t) = 0, $ES(t)^2 = 1$ and $\alpha(t, S) \equiv \infty$. The existence of the latter process was proved by Belayev [1]. We can assume that these two processes are independent. Let L be the $\|\cdot\|$ -closure of all finite linear combinations of B(t), $0 \le t \le 1$, and S(t), $0 \le t \le 1$. It is clear that any process x(t), $0 \le t \le 1$, such that $x(t) \in L$ for each t is jointly Gauss distributed.

We shall prove Theorem 4(b) by constructing a Gaussian process $x(t) \in L$, $0 \le t \le 1$, with $\alpha(t,x) = \alpha(t)$ for any given function

$$\alpha:\, [0,1] \to [0,\infty]$$
 satisfying $(\alpha,1)$ and $(\alpha,2)$.

Let us start with some lemmas.

LEMMA 6.1. Given $I = [u, v] \subset [0, 1]$ and $\varepsilon > 0$, we can construct a Gaussian process $x(t) \in L$, $0 \le t \le 1$, satisfying

- (a) $x(t,\omega) = 0$ for $t \in [0,1] I^{\circ}$ ($I^{\circ} = \text{the interior of } I$),
- (b) $\alpha(t,x) = \infty$ for $t \in I$,
- (c) $||x(t)|| \le \varepsilon$ for $t \in [0, 1]$.

PROOF. Take a continuous function f(t) such that $0 < f(t) < \varepsilon$ in I° and f(t) = 0 elsewhere. Then $x(t, \omega) \equiv f(t)S(t, \omega)$ is a Gaussian process satisfying our conditions.

Lemma 6.2. Given $0 < a < \infty$, $\varepsilon > 0$, and $I = [u, v] \subset [0, 1]$, we can construct a Gaussian process $x(t) \in L$, $0 \le t \le 1$, satisfying the following conditions:

- (a) $x(t, \omega)$ has continuous paths,
- (b) $x(t,\omega) = 0$ for $t \in [0,1] I^{\circ}$,
- (c) Ex(t) = 0, $||x(t)|| < \varepsilon$ for every t,
- (d) $P(|\sup_I x(t) a| > \varepsilon) < \varepsilon$.

Such a process will be denoted by $x(t; I, a, \varepsilon)$.

PROOF. Let B(t) be a Brownian motion and define a process y(t) by

$$y(t) = 0, 0 \le t \le u,$$

$$= \frac{a(B(t) - B(u))}{(2(t - u) \log \log (t - u)^{-1})^{\frac{1}{2}}}, u \le t \le v' \equiv \min(v, u + 9),$$

$$= \frac{a(B(v') - B(u))}{(2(v' - u) \log \log (v' - u)^{-1})^{\frac{1}{2}}}, v' \le t \le 1.$$

Then y(t) is jointly Gauss distributed with Ey(t) = 0 and the sample path of y(t) is continuous except at t = u. The continuity in the mean follows from

$$E[y(t)^2] \,=\, \frac{a^2}{2\,\log\log{(t-u)^{-1}}} \to 0 \quad \text{ as } t \downarrow u \;.$$

By the law of the iterated logarithm we have

$$P\left[\overline{\lim_{t\downarrow u}}y(t)=a\right]=1.$$

We now determine $u < s_1 < s_2 < s_3 < s_4 < v$ as follows. By taking s_4 sufficiently close to u, we have

$$\begin{split} E[y(t)^2] \, < \, \varepsilon^2 \; , \\ P\left[\sup_{u < t < s_4} y(t) < a + \varepsilon \right] \, > \, 1 - \tfrac{1}{2} \varepsilon \; , \\ P\left[\sup_{u < t < s_4} y(t) > a - \varepsilon \right] \, > \, 1 - \tfrac{1}{2} \varepsilon \; . \end{split}$$

By taking s_2 sufficiently close to u and s_3 sufficiently close to s_4 , we have

$$P\left[\sup_{s_2 \le t \le s_3} y(t) > a - \varepsilon\right] > 1 - \frac{1}{2}\varepsilon.$$

We shall take s_1 in (u, s_2) arbitrarily.

Let f(t) be a polygonal function of t vanishing on $[0,s_1] \cup [s_4,1]$, equal to 1 on $[s_2,s_3]$ and linear in each of $[s_1,s_2]$ and $[s_3,s_4]$. Then x(t)=f(t) y(t) is a Gaussian process satisfying our conditions.

Lemma 6.3. Suppose that $\alpha_1(t)$ and $\alpha_2(t)$ satisfy $(\alpha, 1)$ and the following condition (stronger than $(\alpha, 2)$):

$$\{t: \alpha_2(t) > 0\}$$
 is nowhere dense.

For any Gaussian process $x_1(t)$ with $\alpha(t,x_1) = \alpha_1(t)$ and any $\varepsilon > 0$, we can construct a Gaussian process $x_2(t) \in L$, $0 \le t \le 1$, satisfying the conditions:

- (a) $\alpha(t, x_1 + x_2) = \alpha_1(t) + \alpha_2(t)$,
- (b) $||x_2(t)|| < \varepsilon$,
- (c) $P[\sup_t |x_2(t)| > \sup_t \alpha_2(t)] < \varepsilon$.

PROOF. We can assume that $c = \sup \alpha_2(t) > 0$. If otherwise, $x_2(t) \equiv 0$ will satisfy our conditions trivially.

Write $\alpha(t)$ for $\alpha_1(t) + \alpha_2(t)$. The set $\{(t, \alpha(t)) : \alpha(t) > 0\}$ is a subset of $[0,1] \times [0,\infty]$. Let $\{(t_n,\alpha(t_n))\}_n$ be a countable dense subset of $\{(t,\alpha(t)) : \alpha(t) > 0\}$. Then the sets $\{t_n\}_n$ are dense in $\{t : \alpha(t) > 0\}$ and so dense in its closure F. By our assumptions $(\alpha,2')$, F is nowhere dense and its complement G is a dense open subset of [0,1]. Since $\alpha(t) \ge \alpha(t,x_1)$, we have $\alpha(t,x_1) = 0$ for $t \in G$, so that the sample path of $x_1(t)$ is continuous in $t \in G$ with probability one.

Using Theorem 2 and Lemma 4.1, we can find $\{t_{1n}\}_n$ in G tending to t_1 as $n \to \infty$ such that

$$P\left[\overline{\lim_{n\to\infty}} x_1(t_{1n}) = x(t_1) + \frac{1}{2}\alpha_1(t_n)\right] = 1.$$

Since the path of $x_1(t)$ is continuous in $t \in G$, we can find, for each t_{1n} , a closed interval $I_{1n} \subset G$ containing t_{1n} in its interior such that

$$P\left[x_1(t_{1n}) \ge \inf_{I_{1n}} x_1(s) \ge x_1(t_{1n}) - 2^{-n}\right] < 2^{-n}.$$

This implies

$$P\left[\overline{\lim_{n}\inf_{I_{1n}}}x_{1}(s) = \overline{\lim_{n\to\infty}}x_{1}(t_{1n})\right] = 1$$

by Borel-Cantelli's lemma. Thus we have

$$P\left[\overline{\lim_{n\to\infty}}\inf_{I_{1n}}x_1(s)=x(t_1)+\tfrac{1}{2}\alpha_1(t_1)\right]=\ 1\ .$$

By taking I_{1n} sufficiently small, we can achieve that the $\{I_{1n}\}_n$ are disjoint. Then $\sum_n |I_{1n}| \le 1$ where $|\cdot|$ denotes length. Therefore $|I_{1n}| \to 0$ and so I_{1n} tends to t_1 by $t_{1n} \to t_1$.

It is clear that $\bigcup_n I_{1n} \cup \{t_1\}$ is a closed set which does not contain t_2 . Therefore we can find a neighborhood U of t_2 which does not intersect this closed set. In the same way as above, we can find a sequence of disjoint intervals $I_{2n} \subset G \cap U$, $n = 1, 2, \ldots$, tending to t_2 such that

$$P\left[\overline{\lim_{n\to\infty}} \inf_{I_{2n}} x_1(s) = x_1(t_2) + \tfrac{1}{2}\alpha_1(t_2)\right] = 1.$$

Continuing this procedure we can get a double sequence of disjoint closed intervals $I_{kn} \subset G$, $k, n = 1, 2, \ldots$, such that I_{kn} tends to t_k as $n \to \infty$ for each k and that

(6.1)
$$P\left[\overline{\lim_{n \to \infty} \inf_{I \neq n}} x_1(s) = x_1(t_k) + \frac{1}{2}\alpha_1(t_k)\right] = 1, \quad k = 1, 2, \dots.$$

By removing a finite number of intervals from $\{I_{kn}\}_n$ we can achieve that $I_{kn} \subset (t_k - 1/k, t_k + 1/k)$ for each k.

Take $\varepsilon_{kn} > 0$ such that

$$\sum_{kn} \varepsilon_{kn} < \min \left(\frac{1}{2} \varepsilon, \frac{1}{2} c \right)$$

and set

$$x_{kn}(t) = x(t; I_{kn}, a_{kn}, \varepsilon_{kn})$$
 (see Lemma 6.2),

where $a_{kn} = \frac{1}{2}\alpha_2(t_{kn})$ if this is finite and = n otherwise, so that $a_{kn} \uparrow \frac{1}{2}\alpha_2(t_{kn})$ as $n \to \infty$ for each k. We shall prove that

$$x_2(t) = \sum_{kn} x_{kn}(t)$$

is a Gaussian process satisfying our conditions.

Since this implies

$$\begin{array}{lll} x_2(t) \,=\, x_{kn}(t) & \text{ on } & I_{kn}, & k,n=1,2,\dots\,, \\ &=\, 0 & \text{ elsewhere} \ , \end{array}$$

 $x_2(t)$ is well-defined and $x_2(t) \in L$. Therefore $x_2(t)$ is jointly Gauss distributed, separable and measurable.

By $||x_{kn}(t)|| < \varepsilon_{kn}$ and $\sum \varepsilon_{kn} < \infty$, the series $\sum_{kn} x_{kn}(t)$ converges in the

mean uniformly in t and so $x_2(t)$ is continuous in the mean and we have

$$||x_2(t)|| < \sum_{kn} ||x_{kn}(t)|| < \varepsilon$$
,

which proves (b). Observing that

$$\begin{split} P\left[\sup_{t} x_{2}(t) > c\right] & \leq \sum_{kn} P\left[\sup_{t \in I_{kn}} x_{2}(t) > c\right] \\ & \leq \sum_{kn} P\left(\sup_{t} x_{kn}(t) > a_{kn} + \varepsilon_{kn}\right) \\ & \leq \sum_{kn} \varepsilon_{kn} < \frac{1}{2}\varepsilon \;, \end{split}$$

we have

$$P(\sup_{t}|x_2(t)|>c)<\varepsilon,$$

since the probability law of the sample path of $x_2(t)$ is symmetric by $Ex_2(t) = 0$. Thus (c) is proved.

Now we shall prove that $\alpha(t, x_2) \leq \alpha_2(t)$.

If $t_0 \in G$, then t_0 has a positive distance from F. Since I_{kn} is in the 1/k-neighborhood of $t_k \in F$, a small neighborhood U ($\subseteq G$) of t_0 does not intersect I_{kn} with $k \ge k_0$, $n = 1, 2, \ldots$, for some k_0 . Since $I_{kn} \to t_k \in F$ for each k, U can intersect only a finite number of intervals among $\{I_{kn}\}_{kn}$. Let us denote these intervals by $I_{k(i),n(i)}$, $i=1,2,\ldots,m$. Then $x_2(t)$ is the sum of $x_{k(i),n(i)}$, $i=1,2,\ldots,m$, as far as t lies in U. Therefore the path of $x_2(t)$ is continuous in U and so $\alpha(t_0,x)=0 \le \alpha_2(t_0)$.

If $t_0 \in F$, then $x_2(t_0) = 0$ by our construction. Take an arbitrary $\delta > 0$. Then there exists a neighborhood U_1 of t_0 such that

$$\sup_{s \in U_1} \alpha_2(s) < \alpha_2(t_0) + \delta.$$

Take a neighborhood U_2 of t_0 such that $\overline{U}_2 \subset U_1$. Then the distance $\varrho(U_2,U_1^c)$ is positive. Since the $\{I_{kn}\}_{kn}$ are disjoint and $\sum_{kn}|I_{kn}| \leq 1$, we have only a finite number of intervals among $\{I_{kn}\}_{kn}$ with the length $\geq \varrho(U_2,U_1^c)$ and only such intervals can intersect both U_2 and U_1^c . Since each I_{kn} has positive distance from t_0 , we have a neighborhood U_3 ($\subseteq U_2$) of t_0 such that $I_{kn} \subseteq U_1$ as far as I_{kn} intersects U_3 .

Write Σ' for the summation over those indices (k,n) for which I_{kn} intersects U_3 . Then any interval I_{kn} with the index (k,n) appearing in Σ' is contained in U_1 . By taking U_3 small enough, we can achieve that

$$\sum_{kn}' \varepsilon_{kn} < \delta$$
.

We then have

$$\begin{split} P\left[\sup_{s\in U_3} x_2(s) \; > \; \tfrac{1}{2}\alpha_2(t_0) + 2\delta\right] \\ & \leq \; \sum' P\left[\sup_{s\in U_1} x_{kn}(s) > \sup_{s\in U_1} \alpha_2(s) + \delta\right] \\ & \leq \; \sum' P(\sup_{s\in U_1} x_{kn}(s) > a_{kn} + \varepsilon_{kn}) \; < \; \sum' \varepsilon_{kn} \; < \; \delta \; , \end{split}$$

by the construction in Lemma 6.2. Therefore we get

$$P\left[\overline{\lim_{s\to t_0}}x_2(s)>\tfrac{1}{2}\alpha_2(t_0)+2\delta\right]\,<\,\delta$$

for every $\delta > 0$. Letting $\delta \downarrow 0$, we have

$$P\left[\overline{\lim_{s\to t_0}}x_2(s) \geqq x_2(t_0) + \tfrac{1}{2}\alpha_2(t_0)\right] \ = \ 0. \qquad (\text{Note } x_2(t_0) = 0.)$$

This implies that $\alpha(t_0, x_2) \leq \alpha_2(t_0)$ by Theorem 2.

Thus $\alpha(t, x_2) \leq \alpha_2(t)$ is proved for every t. By the definition of the oscillation function we have

$$\alpha(t,x_1+x_2) \leq \alpha(t,x_1) + \alpha(t,x_2) \leq \alpha_1(t) + \alpha_2(t) = \alpha(t).$$

We shall now prove that

$$\alpha(t, x_1 + x_2) \geq \alpha(t) .$$

Consider first the case $t = t_k$. It holds that

$$(6.2) \quad P\left[\overline{\lim}_{s \to t_{k}} \left(x_{1}(s) + x_{2}(s)\right) \ge x_{1}(t_{k}) + x_{2}(t_{k}) + \frac{1}{2}\alpha(t_{k})\right]$$

$$\geq P\left[\overline{\lim}_{n \to \infty} \sup_{I_{kn}} \left[x_{1}(s) + x_{2}(s)\right] \ge x_{1}(t_{k}) + x_{2}(t_{k}) + \frac{1}{2}\alpha(t_{k})\right]$$

$$\geq P\left[\overline{\lim}_{n \to \infty} \left(\inf_{I_{kn}} x_{1}(s) + \sup_{I_{kn}} x_{2}(s)\right) \ge x_{1}(t_{k}) + x_{2}(t_{k}) + \frac{1}{2}\alpha(t_{k})\right]$$

$$\geq P\left[\overline{\lim}_{n \to \infty} \inf_{I_{kn}} x_{1}(s) + \lim_{n \to \infty} \sup_{I_{kn}} x_{2}(s) \ge x_{1}(t_{k}) + x_{2}(t_{k}) + \frac{1}{2}\alpha(t_{k})\right].$$

Since we have

$$P[\sup_{I_{kn}} x_2(s) < a_{kn} - \varepsilon_{kn}] < \varepsilon_{kn}$$

by virtue of $x_2(s) = x_{kn}(s)$ on I_{kn} , we get

(6.3)
$$P\left[\lim_{n\to\infty}\sup_{I_{kn}}x_2(s)\geq x_2(t_k)+\frac{1}{2}\alpha_2(t_k)\right]=1$$

by $x_2(t_k) = 0$ and $\sum_n \varepsilon_{kn} < \infty$. By (6.1), (6.2) and (6.3) we get

$$P\left[\overline{\lim_{s\to t_k}}\left(x_1(s)+x_2(s)\right) \geqq x_1(t_k)+x_2(t_k)+\tfrac{1}{2}(t_k)\right] \ = \ 1 \ ,$$

that is, by Theorem 2,

$$\alpha(t_k, x_1 + x_2) \geq \alpha(t_k)$$
.

For $t \neq t_k$, $k = 1, 2, \ldots$, the point $(t, \alpha(t))$ is an accumulation point of $(t_n, \alpha(t_n))$, $n = 1, 2, \ldots$. Therefore we have a subsequence $\{s_n\}$ of $\{t_n\}$ such that

$$\alpha(t) = \lim_{n} \alpha(s_n)$$
.

By Theorem 4 (a) $(\alpha, 1)$ we have

$$\alpha(t, x_1 + x_2) \ge \overline{\lim}_n \alpha(s_n, x_1 + x_2) = \overline{\lim}_n \alpha(s_n) = \alpha(t)$$

which completes the proof of Lemma 6.3.

Now we shall come back to the proof of Theorem 4 (b). We shall first assume

$$(\alpha, 2'')$$
 $\{t : \alpha(t) \ge c\}$ is nowhere dense for every $c > 0$;

this is stronger than $(\alpha, 2)$ but weaker than $(\alpha, 2')$. Set

$$\alpha_0(t) = 0,$$

$$\alpha_1(t) = \max(\alpha(t), \frac{1}{2}) - \frac{1}{2},$$

$$\alpha_n(t) = \max(\min(\alpha(t), 2^{-n+1}), 2^{-n}) - 2^{-n}, \quad n = 2, 3, \dots.$$

It is then easy to verify the following properties of $\alpha_n(t)$:

$$\begin{array}{ll} 0 \, \leqq \, \alpha_n(t) \, \leqq \, 2^{-n-1}, & n=2,3,\dots\,, \\ \sum_0^n \, \alpha_i(t) \uparrow \alpha(t) \\ \{t: \, \, \alpha_n(t) > 0\} \text{ is nowhere dense }. \end{array}$$

Starting with the Gaussian process $x_0(t) \equiv 0$ whose oscillation function is $\alpha_0(t) \equiv 0$, we can use Lemma 6.3 to define a sequence of Gaussian processes $x_n(t) \in L$, $0 \le t \le 1$, $n = 1, 2, \ldots$, satisfying

- (a) $\alpha(t, \sum_{i=0}^{n} x_i) = \sum_{i=0}^{n} \alpha_i(t)$,
- (b) $||x_n(t)|| < 2^{-n}$,
- $\text{(e)} \ P[\sup_t \lvert x_n(t) \rvert > \sup_t \alpha_n(t)] < 2^{-n}.$

Now set

$$x(t) = \sum_{n} x_n(t) .$$

By Borel-Cantelli's lemma it follows from (c) and $\alpha_n(t) \leq 2^{-n-1}$, $n \geq 2$, that this infinite series converges uniformly in t with probability one.

Therefore x(t) is well-defined, separable, measurable and jointly Gauss distributed, and we have

$$\alpha(t,x) = \lim_{n} \alpha(t, \sum_{i=0}^{n} x_i) = \lim_{n} \sum_{i=0}^{n} \alpha_i(t) = \alpha(t).$$

It follows from (b) that this infinite series converges also in the mean, uniformly in t, so that x(t) is continuous in the mean.

We shall now remove the assumption that $T_c = \{t : \alpha(t) \ge c\}$ is nowhere dense.

Let I_1, I_2, \ldots be the maximal intervals contained in the set $T_{\infty} = \{t : \alpha(t) = \infty\}$. Since, by $(\alpha, 2)$, $\{t : c \le \alpha(t) < \infty\}$ is nowhere dense, I_1, I_2, \ldots are also the maximal intervals contained in the set T_c (c > 0).

We now define

$$\beta(t) = 0,$$
 $t \in I_n^{\circ},$ $n = 1, 2, \dots,$
= $\alpha(t)$ elsewhere.

Then $\beta(t)$ satisfies $(\alpha, 1)$ and $(\alpha, 2'')$. Therefore we can construct a Gaussian process $y(t) \in L$, $0 \le t \le 1$, such that $\alpha(t, y) = \beta(t)$, as we proved above.

By Lemma 6.1, we can construct a sequence of Gaussian processes $y_n(t) \in L$, $0 \le t \le 1$, $n = 1, 2, \ldots$, such that $\alpha(t, y_n) = \infty$ on I_n , $y_n(t) = 0$ on $[0, 1] - I_n^{\circ}$ and $||y_n(t)|| < 2^{-n}$. Now consider

$$x(t) = y(t) + \sum_{n} y_n(t) .$$

Then

$$x(t) = y_n(t) + y(t), \quad t \in I_n^{\circ}, \quad n = 1, 2, \dots,$$

= $y(t)$, elsewhere,

and $x(t) \in L$, $0 \le t \le 1$. Therefore x(t) is jointly Gaussian, measurable and separable. Its continuity in the mean follows from $||y_n(t)|| < 2^{-n}$.

To complete our proof, we need only to show that $\alpha(t,x) = \alpha(t)$. Since x(t) = y(t) on the set $G = [0,1] - \overline{\bigcup_n I_n}$ which is open in [0,1], we have

$$\alpha(t,x) = \alpha(t,y) = \beta(t) = \alpha(t), \quad t \in G.$$

Since $x(t) = y_n(t) + y(t)$ and y(t) is continuous in I_n° , we have

$$\alpha(t,x) = \alpha(t,y_n) = \infty = \alpha(t), \quad t \in \bigcup_n I_n^{\circ}.$$

If $t \in \overline{\bigcup_n I_n} - \bigcup_n I_n^{\circ}$, then t is an accumulation point of $\bigcup_n I_n^{\circ}$ and so we get

$$\alpha(t,x) \ge \overline{\lim_{\substack{s \to t \\ s \in UIn^{\circ}}}} \alpha(s,x) = \infty$$

by Theorem 4 (a) $(\alpha, 1)$.

REFERENCE

 Yu. K. Belayev, Continuity and Hölder's conditions for sample functions of stationary Gaussian processes, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. 2., 23-33. Univ. Calif. Press, 1961.

AARHUS UNIVERSITY, DENMARK
AND
KOBE UNIVERSITY, JAPAN