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FUNCTIONALS ON THE SPACE OF SOLUTIONS TO
A DIFFERENTIAL EQUATION WITH
CONSTANT COEFFICIENTS.

THE FOURIER AND BOREL TRANSFORMATIONS

C. 0. KISELMAN

0. Introduction.

A classical theorem of Poélya [9] relates estimates for an entire function
F of exponential type in one variable with analytic continuations of a
function, the Borel transform of F, which is defined in a neighborhood
of infinity. It is natural to regard this as a result connecting on one
hand the behavior of the Fourier transform

(i(C1:Ca) = p((@y,25) b e—i(x1£1+ng2))
of a measure or distribution u for vectors ({,,,) satisfying
C1+ié‘2 =0,

and on the other hand the location of the singularities of the potential
U, of u
1 2

Uy 2) = pu (w P

lw), z=x,+1x, € C, |2| large .
7(z—w)
In both cases we need to know only how u operates on the analytic func-
tions.

Similarly, the results of V. K. Ivanov [6] concerning the singularities
of the potential

1
U, x) = u (yH I), x € R3, |z| large ,

dn|r—y
of a measure yx in R3 can be interpreted as giving a relation between
the Fourier transform 4 and the “Borel transform” U, of a functional
on the space of harmonic functions in R3, that is, the space of solutions to

3 o2y
Au =3 —=0
1 Ox?
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28 C. 0. KISELMAN

Ivanov’s results have been generalized by Kozmanova and Mesis [7] to
solutions in R3 of the equation

Au+cu = 0,

where ¢ is an arbitrary complex number.

The purpose of the present paper is to prove that the Fourier trans-
form T and the Borel transform, or outer potential, U, of T' are connected
in the expected manner if 7' is a continuous linear functional on any of
the spaces

Dp={ucP'R"); P(—Du=0}, &, = {ueé&R"); P(-Dyu=0},

of distribution or C* solutions to a differential equation with constant
coefficients. Roughly speaking, if all derivatives D*P(%) of 7, wherever
they are defined, are bounded for all ¢>0 by an expression

C(L+ [Z)Ne exp (sup .. (&, Im ) + ¢ ImZ])

where K is a convex compact set, then U, can be continued as a solution
of P(D)V =0 to the complement of K. (The converse holds trivially.)
We express the latter condition by introducing the notion of carrier.
We thus obtain an (incomplete) analogue of the Paley—Wiener theorem
for functionals on 2’y or &p which by an immediate generalization ex-
tends to functionals on the space of solutions in an arbitrary convex
open subset of R®. For precise statements see Theorem 4.1. In some-
what vague terms this result can be described as follows: If 7' is the
restriction of a function in &” to the set of zeros of P considered as an
algebraic variety with multiplicities, then there exists an extension of 7'
to all of C» preserving a given bound for 7. Our result is therefore a
particular instance of Ehrenpreis’ fundamental principle. It is hoped
that the paper may nevertheless be of some interest in view of the fact
that the method of proof is completely elementary, the main tool being
the estimates for residue integrals given in Section 3.

I am indebted to Lennart Carleson for pointing out that the original
proof of Theorem 4.1 could be significantly simplified.

Notation. We shall use the standard notation of distribution theory.
Thus, for example, C®°(Q2)=&(2) will denote the space of arbitrarily
many times continuously differentiable functions in an open set Q in
R7; OF(R2)=2(2) is the subspace of functions vanishing outside some
compact subset of 2. With their usual topologies, these spaces have
duals &'(2) and 2'(92), respectively. We shall often write 2’ for 2'(R"),
etc. For the definition of the topologies in all of these spaces see Schwartz
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[10]. We write suppu for the support of u, the smallest closed set outside
which the function or distribution » vanishes. It is convenient to denote
by 2(M) the set of all functions in & whose supports are contained in
an arbitrary set M <R”. We shall also use the symbol u, defined by
w(x) =u(—x) for functions and by %(p)=u(p), p € 2, for distributions.
If A and B are sets in R?, we denote by A+B their vector sum
{x+y;x e A,ye B}. In contradistinction to this, 4\ B will stand for
the set An[B where [|B is the complement of B. We shall often regard
Cn as the complex dual of R™ and write (x,{)=37x;{; for the bilinear
pairing of these spaces.

1. Preliminaries.
Let us equip the space

(1.1) D'p = {uePD'(R"); P(—Du=0]

of all distribution solutions to a constant coefficient differential equation
with the topology induced by the strong topology in 2'(R*)=2’. Here
P(—D)=P(—D,,...,—D,) where P is a polynomial and D;= —19/ox;.
Then a continuous linear form 7' on 2'p can always be extended to all
of &' in view of the Hahn—Banach theorem ; hence there exists a function
@ € @ such that

(1.2) T(w) = u(p) foreveryue2P'p

(veflexivity of @, see Schwartz [10, p. 75]). We shall say that ¢ repre-
sents 7. Two functions ¢, and ¢, represent the same functional if and
only if

(1.3) u(p,—@,) = 0 foreveryueP'y.

This is obviously true if ¢, —@,=P(D)y for some function y € &. Con-
versely, if (1.3) holds, a well-known theorem of Malgrange [8] shows that
there exists a function y € 2 such that ¢, — g, =P(D)y.

In analogy with this we also consider functionals on the space of C*
solutions to P(—D)u=0,

(1.4) Ep = {ue &R ; P(—Du=0}.

Here & has the topology induced by &(R”?)= & which implies that every
continuous linear functional 7' on &, may be extended to a distribution
HEE"

Tu) = plw) if ueép.

Again, we shall say that u represents 7' if this holds. It follows that u,
and u, represent the same functional if and only if u; —u,=P(D)v for
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some ve€ &’. In short, the Malgrange theorem shows that (&p) =
&'[|P(D)&’ and that (2'p)' = 2|P(D)2, a result which remains valid in a
P(—D)-convex open subset of R? (see Definition 3.5.1 in Hérmander [5]).

DEriNiTION 1.1. We shall say that a continuous linear form T on 9’
or &p (in short, a functional T') is carried by a compact set K <R® if for
every neighborhood L of K there exists a representative of T with support
contained in L.

Every functional on 2’y defines a functional on &p by restriction,
for the topology in & is stronger than that induced by 2',. Conversely,
let S be a functional on &p. Then we may define Sx¢ for p € 2 by

(S*@)(u) = S(@*u), wueD,.

This means that u*¢ represents S*¢ if u represents S. It follows that
Sx*¢ is continuous in &Z'p for convolution with a fixed function in @
maps P'p continuously into &p. It is also clear that S*¢ is carried by
K +suppe if S is carried by K.

When P is hypoelliptic, that is, when @', <&, we can express the
notion of carrier in several equivalent ways:

LemwMa 1.2. Suppose that P is hypoelliptic. Then D' p= & p with identity
also of the topologies. The following three conditions on a compact set
K <R” and a functional T on D' p=Ep are equivalent.

(i) K carries T as a functional on D' p, that is, T has representatives in
D with support in an arbitrarily prescribed neighborhood of K.
(ii) For every neighborkood L of K there is a constant C such that |T(uw)| £
C sup, |u| for every ue @' p=6Ep.
(iii) K carries T as a functional on & p, that is, for every compact neigh-
borhood L of K there exists a representative ue &' of T with
suppu < L.

Proor. Let E be a fundamental solution for P(D), that is, a distribu-
tion F in R” such that P(D)E =6, the Dirac measure at the origin. Then
the restriction of £ to R»\ {0} is a C* function since P(D) is hypoelliptic.
Define
(1.5) ¢ = P(D)(1-{)E,

where f € 2 and f=1 near 0. Then (1—f)E isin &, hence p € . The map
D'peu b urpe&p

which is always continuous is equal to the identity in view of our choice
of ¢. In fact,
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w—ury = uxP(—D)E —uxy = usxP(—D)fE = P(— DyufE

where the last expression is zero if P(—D)u=0. Hence the topology in
2'p is stronger than that in &p which proves that they are in fact
equally strong. In particular, the continuous functionals on 2’ and &p
are the same.

A slight modification of this argument shows that (iii) implies (i).
In fact, suppose that (iii) holds and that L is an arbitrary neighborhood
of K. Choose &¢>0 such that K+ B, <L where B,={x e R"; |z|<¢}.
Then K+ B, is a neighborhood of K and we can by assumption find
u € &' such that u represents 7' and suppu <K + B,. Define

Y =uxped,
where ¢ is given by (1.5). Then

[9@ u@) dz = wegxi(0) = w@ru) = ptw), we sy,
since p*xu=u if P(—D)u=0. Hence p represents 7' and

suppy < suppu + suppp < K + B, + suppy .

However, it is clear that suppp <suppf and that we can take f with the
prescribed properties such that suppf<B,. This gives

suppy < K + 2B, < L
and proves (i).
Now suppose that (i) holds and take ¢ € & representing 7' with
suppe < L. Then

@) = |[ ) uw) x| < [lgl de suprful, wesp.

This shows that (i) implies (ii).

Finally, if (ii) holds, the Hahn-Banach theorem shows that 7' can be
extended to a measure y with support in a given neighborhood L of K,
hence (iii) is valid. This concludes the proof of Lemma 1.2.

2. The Borel transformation.

Let E € 2’ be a fundamental solution for a differential operator P(D)
with constant coefficients. We define the potential U, of a function
p €2 by

Uy,=U,p=9¢+E.

Now suppose that ¢, and g, represent the same functional 7' on the space
2’ p of solutions to P(—D)u=0. By a theorem of Malgrange which we
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have already invoked in Section 1 this implies that ¢; —@,=P(D)y for
some function y € 2. Hence

U —UW = (p1—g@a)*E = P(Dyy*E = vy,

P1

so that U, =U,, outside some compact set. (By the convolution theo-
rem we even know that the support of y is contained in the convex hull
of suppg, U suppg,.) The germ y, U, of U, at infinity is therefore inde-
pendent of the particular representative ¢ we have chosen for 7. Note
that U, is a C* function and satisfies P(D)U,=0 outside the support
of . We shall call Up=y,U, the potential of T' or the Borel transform
of T'. This is justified by the terminology in the following two special
cases.

ExampLE 1. Let n=2, P(D)=0/0z= }(iD,— D,). Then 9’ is the space
of entire functions in R?=C and 7 is called an analytic functional. As
our choice of fundamental solution we take

1

=,
70(2y +12,)

If p € 9(R?) and |z| >sup(|y|; y € suppg) we get

_ P(y) dy (y1+
Usle) = ;fo1+ixz— (y1+7:?/2 f #y )2 (0, +12,) k+1

13 A

k41’
7wy x1+zx2) +
where

4y = [ o) @ +ige dy = T(y > @r+iga)

T being the analytic functional represented by ¢. Apart from the factor
1/n this is the usual Borel transform of 7'; equivalently, nU, is the
Borel transform of the entire function ¢ - T'(z > e@1+%2X),

ExampLE 2. Take P(D)=4= —-31D; and

1
E = —m When n‘-"=2 )
-2)w,

1
= —log|z| when n=2,
27

where w,, is the area of the (n— 1)-dimensional unit sphere. Then ¢+ &
is the usual Newtonian potential of the mass distribution ¢. (Newton
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himself proved that y (£ #*¢) is determined by the mass [edx of a
rotationally symmetric planet ¢, hence by the harmonic functional it
represents.)

The Borel transform can also be defined for functionals on &p. Then
we put Up=y, (u*E) where u is a distribution with compact support
which represents 7. We therefore have to consider germs of distribu-
tions rather than functions. With only formal changes, Theorems 2.1
and 2.2 below as well as their proofs remain valid.

THEOREM 2.1. Let P(D) be an arbitrary differential operator with con-
stant coefficients and T a functional on D'y (see (1.1)). Suppose that

(iv) there exists a function V € &([K) such that P(D)V =0 in [K and
yocV = UT‘

Then T is carried by K. Conversely, if K carries T and either P is elliptic
or K is convex, then (iv) follows.

Proor. Assume that (iv) holds and let L be an arbitrary compact
neighborhood of K. We shall then find a representative ¢ of 7' with
support in L. Take fe 2(L) such that f=1 near K and define

(2.1) p = PD)1-f)V € D(L).
We shall prove that ¢ represents 7', that is,
u(p) = u(y) when ueP'p,

if w € Z is an arbitrary representative of 7'.
Now if y represents T' we have y, ,U,=Up=1y,V, hence (1-f)V=V=
U, in a neighborhood of infinity. We thus obtain

p—y = PD)(1-f)V-U,) € P(D)D,

so that @ and v represent the same functional 7'. This proves that T is
carried by K.

Conversely, assume that K carries 7' and let K;, j € N, be a sequence
of compact neighborhoods of K such that K;2K;,, and NK;=K. In
case K is convex we take all K; convex, too. Choose a representative
@; € D(K;) for each j and denote by

V, = U%. = @B

J

the potential of @;. It is clear that P(D)V;=0 in [K;. Now V;-V,,,
is zero in a neighborhood of infinity and satisfies P(D)(V;—V;.;)=0 in

[K;. Hence, if P is elliptic, ¥V;—V;,;=0 in the unbounded component

Math. Scand. 23 — 3
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Q; of [K; and we may therefore define V(zx)=V,(x) if x € ;. Since UQ;
is equal to the unbounded component of [K, we may take ¥V =0 in the
other components of [K to satisfy (iv) in this case.

Assume now, on the other hand, that K and K; are convex. Bythe
convolution theorem we know that the supports of P(D)(V;—V,,,) and
V;— V., have the same convex hull, for V,— V,,, € 2. But the support
of P(D)(V;— V;,,) is contained in the convex set K;, hence V; and V;,,
agree in [K;. Taking V(z)=V,(z) if ¢ K; we have completed the proof
of Theorem 2.1.

It is clear from the proof that the theorem holds in a more general
setting. Let for example £2 be a P(— D)-convex open set in R” (see Defini-
tion 3.5.1 in Hérmander [5]). Then if y denotes the operation of taking
the germ at 92U {0} we may define (with an obvious extension of our
notation): Uy =y (K *¢) if p € 2(2) represents a functional 7' on 2’ ,(2).
The following condition is then necessary and sufficient for a compact
set K <@ to carry 7.

(iv)" For every compact neighborhood L of K there is a function V e
E(2\ L) such that P(D)V =0 in Q\ L and yV=U,.

Similarly for functionals on &p(£2).

There need not exist a smallest convex compact set K such that
condition (iv) of Theorem 2.1 holds. However, if P is elliptic and n> 1,
it is easy to see that this is true, in other words, there exists a smallest
convex carrier of 7. By contrast, if P is hyperbolic, no functional =0
on 9'p or &p has a smallest convex carrier.

Let us note that the germ of the function ¥V in (2.1) is not uniquely
determined by the functional 7' it defines and that the Borel transform
of T' depends on the choice of fundamental solution E. This makes the
Borel transformation somewhat unsatisfactory from a logical point of
view. We shall therefore introduce the space By as follows. Let By be
the space of all germs at infinity of C* solutions to the equation P(D)V =0
outside some compact set, and define Bp as Bp modulo the class of
germs of C* solutions to P(D)V =0 in the whole space R*. We write U"
for the class in Bp of a germ U € Bp. Then we can state

TaeorEM 2.2. (Grothendieck). The map o
(@'p) 3T «(T)=Upe Bp

of the space of all continuous linear forms on 'y into the space Bp of
equivalence classes of germs of solutions to P(D)V =0 is a bijection which
18 tndependent of the fundamental solution E.
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The theorem is contained in the paper [4] from 1953. At that time,
of course, one had to assume the existence of a fundamental solution.
See also Bengel [1].

Proor or THEOREM 2.2. Define a map f: Bp — (2',) as follows.
For every U € Bp choose a compact set K and a function V e &([K)
such that P(D)V=0 in [K and (y,V) =U". Then choose fe 9 such
that f=1 near K and define ¢ by (2.1). The functional

D'p3u b u(p)

will be denoted by B(U’). Note that formally (U’) depends on our
choice of V and f. However, we shall prove that «of is the identity in
Bp and that fo« is the identity in (2'p)’. Thus it will follow that «
and f are inverses of each other, in particular « does not depend on ¥
since 8 does not, and g does not depend on ¥V or f any more than «.

We first establish that fox=1I. Let T'€ (2'p)’. Then B(x(T')) is rep-
resented by

@ = P(D)(l_f)V3 where (yooV) = (UT) ’

that is, y(V+ W)= Uy, for some function W e &(R"*) with P(D)W =0.
It follows from the first part of the proof of Theorem 2.1 that P(D)
(1=f)V+W) represents 7. But it is clear that P(D)(1-f)W=
P(D)(—fW) is orthogonal to 2’'p, hence ¢=P(D)(1—f)V represents
T, that is, B(x(T))="T.

Next, if U € Bjp is given, we choose V such that y V=U and
P(D)V =0 outside some compact set. We then have to show that the
potential U, of g =P(D)(1—f)V satisfies

(reUp) = o(B(U)) = U",

that is, U,— V=W in a neighborhood of infinity for some function W
such that P(D)W =0 in the whole space. It is clear that

W=U,-(1-f)Veé&
has all desired properties for
P(D)W = P(D)Exp—(1—-f)V) =dxp—¢p =0.

Therefore «xof=1. The theorem is proved.

3. Estimates for residue integrals.
The proof of Theorem 4.1 will require estimates for residue integrals
of the form
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Cl, ¢ ey cn)
Ay
f P Cly LR Cn) Cn

where P((,...,(,) is a polynomial in ¢, with {;,...,{,_; regarded as
parameters. This is altogether a problem in one complex variable but
we have to be careful to obtain the right kind of uniformity in ¢,,. ..,
Cn-1-

To describe the kind of result we need we first formulate a special
case of the main estimate (3.6).

Lemma 3.1, Let P(7)=cII{*{(v—1;) be a polynomial in one complex
variable with discriminant

.D = H]<k(TJ_Tk')2 .

Suppose that all the roots z; lie in some circle with radius R and that I is

a curve surrounding k of them. Then, if f is analytic near =,,...,t,, and
satisfies
(3.1) If(z)] £ M when P(7)=0,
we get
: p —1)(m—
(3.2) ff _ 2k M (2R)in-Dn-
P() o] D[}

Proor. If I' surrounds 7; only, Cauchy’s integral formula gives

27 |f (70)]

le| TTjqr 71— le

flr)dv|
ey

Multiplying both numerator and denominator by the ¥(m —1)(m—2)
factors missing to make the denominator equal to |c| |[D|} and using
|t;— 7;] < 2R we obtain

ffP(r

The integral to be estimated is a sum of k similar terms. This proves
(3.2).
The next two lemmas play an auxiliary role in the proof of Lemma 3.4.

< 27| f(7y)| (2R)Em-Dn-2)
le| | D|?

LemMA 3.2. Suppose that a polynomial P satisfies
|P(7)] < C(|7|+R)y™, 7eC.
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Then we obtain the following estimates for its derivatives:

(m—k)!

[P®(7)| < Cek (le|+R)™*, 1eC, 0Zksm.

Proor. By Cauchy’s integral formula we have
P'(7)] < -t supy_, [P(t+0)| S Cri(el+r+Rm.

Choosing 7= (|t|+ R)/(m — 1) to minimize the right hand side we obtain

P s o1 +m—_1_7)m_1m(irx+R)m-1 < Com(jr|+Ryn-1.

(If m=1 we get |P'|<C.) The general result now follows by iteration.

LemmMA 3.3. Let P be a polynomial satisfying

|P(7)] £ O(7|+RB)™, <eC.
Then

33 a\k /1
. (81:) (ﬁ) (z)
when P(t)+0, k20. Here A, is a constant which depends only on m

and k; in fact, we may take

A, = &EmE(2k-1)!11.

(17l +RByn

Ami |P(7)[k+1

IA

Proor. We claim that

(0for)k Pt = @, P!

where @, is a polynomial. Indeed, §,=1 and
Qrn = Q'P — (k+ 1)@, P,
so the assertion follows by induction. Now suppose that
(3.4) Q(7)l = C*efm* (2k—1)!! (|7| + R)Mom—D
holds for a certain & (it certainly does for k= 0). Then Lemma 3.2 implies
Q' (1) < Ckekimkk(m —1)(2k—1)!! (|7 + R)km-D-1

We also have
[P'(7)] £ Cem(|7|+R)™

so the recursion formula for @, ., gives
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1Qpsa(7)] S CHHLk+LmE (2 — 1)1 (2km +m — k)(| 7| + R)(+Dm-D

<
< Ch+Lek+lpk+1 (2h 4 1)1 (7] + R)k+Dom-D |

Thus (3.4) is proved for all £= 0 which implies the desired estimate for
QPF*-1=(8/ov)c P-1.

We can now prove a more general estimate for residue integrals.

LeMMA 3.4, Let P=P,™ ... P/ be a polynomial in one complex vari-
able with all its zeros contained in a disk of radius R> L. Define Q=P ...
P, and let D be the discriminant of Q. If I' is a cycle which surrounds
(once) some of the zeros of P and f is analytic near those zeros and satisfies

(3.5) If9(z)] = M when Pi(zr) =0 and O0=j<my, 1=5Ek<s,

Jor those T which lie inside I', then
(3.6) J‘ f(7)dz
‘ ) P

Here c is the leading coefficient of P, m the degree of P and u=
sup (my,; P, is non-constant) <m. The constant 4,, depends on m only.

- A, M(2R)¥™
T o |Dp#

When m; =1 for all & we get an estimate which is somewhat less sharp
than that of Lemma 3.1. This lack of precision, however, is inessential
for our purposes.

Proor or LEMMA 3.4. Let 74,...,7, be the zeros of @. It suffices to
prove (3.6) when these are all different, for otherwise D=0. The cycle I"
is contained in the domain of f and has winding number one or zero

with respect to 7,...,7,. We may therefore assume that I" encloses
just one 7;, say 7,, a zero of P,. Then we get
(v) dz (v)dz 2t o\™!
1= [l [ O 2 () s,
g () 7 (r—7)™8(7) (my—1)! \o7

where S(7)=P(t)(r—1,)™™. Hence

m1—1 -1 .
= (m‘j ) 2 \@forps 2z

s ———
(my—1)! J=0

for the derivatives of f which occur in the expansion of (6/ot)™1(fS-1)
are taken care of by (3.5), with k=1. By Lemma 3.3 we can estimate the
derivatives of S-! by
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[(0/00) 8-Y()| < Ay slel (7] + R) ™™D |S(7)| 31,
To estimate S(7), we note that

D = Tsaln =5l Thejeelm—1
whereas

ISl = lel Ijpalma—750%,

where a;=my if 7; is a zero of P (k is determined by j since the 7;’s are
all different). Hence

1 1 |Dj= 1 ooy ,
Sel ~ 1D S(ey)]  jof (D L= Thasarlmi =
(2R)tuntn—1)-mtmy

o —

le| [ D]t

Inserted in the estimate for the derivatives of S-1 this gives
|(@J0TV SHTY)| S Ay 50| (2R)HE-DGD-mim | D|—hutjh
Using also the trivial estimate
|D| = (2Ry""-D,
the last inequality can be simplified to

(2/oxY 8-3(zy)| < A L (2R)hunr--mimicd | Dt

m—ml,j IGI

We shall now finally use the assumption that 2R>1. Since —m+m,;—j
<0 we get

1(9/97Y 87X ()| £ Bplel~* (2R)i*nn=b| D42, 0<j<m, .

(One also has —m+m;—j= —m+1 so it is easy to obtain a bound
for R small.)

To finish the proof we only have to note that ju?n(n— 1) is not greater
than 3m%. The lemma is proved.

We shall also need the following two well-known estimates.

Lrmma 3.5. Let
q
P(L) = 3 (L) £,
0
be a polynomial in n variables (&',C,)=(Cy,- - .,Cn_1:Cn) Of degree m and

suppose that o, is independent of ¢’ and different from zero. We can then
find a constant ¢ which depends only on c,,. . .,c, and m such that every
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root o of P(0',0)=0 has distance not greater than ¢ from the set of roots ©
of P(L',7)=0if
O<esl and |0'—0| < o(1+[L"])"et,

where r=mqg—q®+q—1=m?.

Proor. Let M, be the set
{o € C; |o—1|=¢ for some 7 € C such that P({’,7)=0}.

What we have to prove is that the zeros of o+ P(6',6) are contained
in M, if 0’ is close to {’. Note that on the boundary of M, we have
[P, 7)| = |col €2 It is therefore sufficient to find a & such that

|0'—¢('| £ 6 1implies |P(0',7)—P(L',7)| <|cole? when 7€ M, .
Now if |6'—¢'| <1 we have

37 |[P(0,7)—P,7) < ?lc,-(f)')—c,-@'n |je-3
= ?C‘f(h £ 16" — 2] [<le

where y, is the degree of ¢; and we have chosen C; to make
lgrade,(Z)] < C;(1+1Z) .

But it is well-known that the zeros of P({’,7) satisfy |t|<A(L+[{|)
for some constant A where y=supy;[j<m—q+1; hence |7]|=Z
(A+1)1+Z)) if reM, and ¢<1. Inserting this estimate in (3.7)
we get since y;=<jy,

P8, 1)~ P(C,0)] < 10" =2 @+ |22 S Cy(A +1)a .
1

The desired estimate therefore follows if ¢ is not greater than 1 and satis-
fies

q
02213 Ci(A+1)7-7 < |eqf .
1

LemMMA 3.6, Let F be an analytic function defined in a neighborhood of
{¢+1N; ve C,|7| 6} for some {,N € C* and some 6>0. If P is a poly-
nomial in n variables with principal part p, it follows that

[P(ON)F ()] £ supps |[P(C+7N) F(C+ N .
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For a proof we refer to Malgrange [8, Lemme 1, p. 286] or Hérmander
[56, Lemma 3.1.2].

Combining Lemmas 3.4, 3.5 and 3.6 we can now prove

Lemma 3.7. Let P be a polynomial of degree m in n complex variables
decomposed as a product P=P,™ ... P™s, where P,,..., P, are irreducible
and mutually prime and m;=1. Assume that

q
P() = %}%(C’) a2,
where ¢y 18 independent of (' and different from zero. Let 6’ be an arbitrary
vector in C*=1, and let I'(0') be a cycle in the complex {,-plane with distance
at least €,(0") to all zeros of v+ P(0',7), 0<¢&(0')<1. The winding num-
bers of I'(6') with respect to the zeros are supposed to be +1 or 0. Finally
let G be an analytic function such that

(3.8) [(9[eL, P G(L) = M), O0=j<my,
when
18— 0] < &5(0")

and & 1s a zero of some Py, 1 <k=<s, such that ,, lies inside I'(6'). Then

G(6',7) dv
f PO, 7)

re)

(1+16))e ,
S C— =5 Sy M ()

&9 o0

where ey=1nf(e;,&,), C 18 a constant depending only on P, and a,b are
numbers depending only on the degree m of P. In particular C, a,b are
independent of 6’ as well as of the functions &, &,.

Proor. By Lemma 3.5 no zero of v P({’,7) lies on I'(6’) when
&= 0] = Cy(L+107])™ey(6')7 = 6,(0") < 1
for some constant C; depending only on P. Hence
L. G 7)dr
F(o',¢) = P!;,)_P(-CT,—I)_
is an analytic function of {’ in a neighborhood of the set
{{'eCnly |U'—06'1264(0)} -

From Lemma 3.4 we obtain if D denotes the discriminant of P, ... P,
regarded as a polynomial in [,
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A M) (2R

F,0)) < R
O = = D

87— 6'] < 6,(6") = Inf(6,(0"),5(6")) -

Here y=supm; <q<m, and R({’') = } is chosen so large that all zeros of
P(l',7) satisfy |v|SR({'); it suffices to take R({')=C,(1+ |¢'|)m-2+L,
It follows that

IDE)FO,0)] = CME) A+, 10 —06,6),

for some constant C. Here a’ depends on m and ¢ only (and therefore
has an upper bound depending only on m). Since

[D(C)] £ (20,(1 +|¢'|)m-ea+1)a@-D |

we moreover get if v is the smallest integer = 1u2,

(3.10)  [DEYF(@O,0) = C"ME)A+IN™,  |'—01<0y(6"),

where a'’ depends only on m. Now D is not identically zero since P, . . . P,
is free from multiple factors (see e.g. van der Waerden [12, §§ 34, 35]).
Choose a vector N’ € C*-! such that |[N'|=1 and d(N')=+0, d denoting
the principal part of D. Then Lemma 3.6 gives

(3.11)  |d(Sx(6")N') F(6,0")] < SUPjpr_gi<ayen| DY F(6°,27)] .
Combining (3.10) and (3.11) we obtain
8(0")°[AN")P|F(6,0')] < O supjp_p<amnM(E)1+1ED™,

where ¢ is the degree of the discriminant D. Now (3.8) follows because ¢
and » < }(u2+ 1) have bounds depending only on m.

In the applications of this lemma we shall always let ¢, and ¢, be tem-
perate functions of the form B(1+]6’|)-4. For vectors §’ in an arbitrary
subset S of C»-1 the estimate (3.9) will therefore display only a ‘“‘tem-
perate loss” in comparison with (3.8), provided (3.8) holds in a ‘“‘tem-
perate neighborhood’ of S.

4. The Fourier transformation.

If ¢ is a function in 2 we define its Fourier transform ¢ by
#0) = [ple) X@D dz, ecn.

Suppose now that ¢, and ¢, both represent a functional 7' on the space
9'p (see (1.1)). As noted in Section 1 this implies that ¢, —@,=P(D)y
for some function y € 2. This means that ¢,(l) — gs(¢) = P(¢)9(Z). Con-
versely, if (p,— @,)/P is analytic it follows that (p, —@,)/P =9 for some
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function y € & and thus ¢, and ¢, represent the same functional. Simi-
larly we find that two distributions u, and u, € &’ represent the same
functional on &, (for definition see (1.4)) if and only if j, — ji,=P» for
some » € &, and this, in turn, is equivalent to (g, — #,)/P being analytic.
Here i is defined by

i) = ple ey reCn.

We thus have, if 4(C") denotes the space of entire functions in C»,

PIP-G = P|P-A(C")n D
and

&'|P-& = &'|P-A(Cn &',

both of which are subspaces of 4(C")/P-A(C"). We define the Fourier
transform 7' of a functional 7' on 2’ or &p as the equivalence class of
the Fourier transform of an arbitrary representative of 7. In both cases
T is an element of A(Cr)[P-A(C") which determines and is determined
by T.

In particular 7' has well-defined values in the set of zeros of P. How-
ever, T is not determined by these values if P has multiple factors.
It is therefore important to note that some derivatives D*T(¢) may be
well-defined if P({)=0 and |x| is not too large. In fact, if P is divisible
by P,™ and P,({)=0, then D*Py(;) vanishes when |x|<m,. Hence
multiples of P do not affect the value of D*@({) which means that
D*1(¢) is defined.

Theorem 4.1 below will give a correspondence of the Paley—Wiener
type where the estimate of 7' is valid exactly for those derivatives of 7'
which can be formed in general, viz. D*T(¢) if ¢ is a zero of P, and
|¢| <m;, where P=P,™ ... PM™. 1If P does not have multiple factors
knowledge of the values of 7 at the zeros of P is sufficient. This is for
instance the case in Ivanov’s theorem [6] where P(D) is the Laplace
operator in three-dimensional space. Let us briefly indicate Ivanov’s
method of proof to compare it with that of Theorem 4.1. Ivanov does
not consider functionals on the harmonic functions explicitly, but ex-
presses them as outer potentials of measures, which is equivalent as we
have seen in Section 2.

Let ¢ € 2 represent T € 9'p where P(D)=A, and let n>2. Then

7¢) = [ o) = da
Q

if 3¢;2=0 and 2 contains the support of p. We suppose that 2 has a
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piecewise smooth boundary 02 and shall define a differential form w
with C% coefficients such that dw = @(x)e ™ dx;A . .. Adx,. Then

=de=a}[w

provided 2 and £ are given suitable orientations. Ivanov’s idea is
now to blow up 2 to a half-space containing suppp. If w is suitably
chosen, the integral over 02 (which consists of a hemisphere and a disk)
will tend to the integral of w over the boundary of the half-space; that
is, the contribution from the hemisphere tends to zero. If the half-space
in question is {x; x, > 0}, Ivanov’s choice of w becomes

o, f) = 3 ““<””5>[an£*dx+ > & da; —zcj—*dx]

n

where U=¢ * E, E being the standard fundamental solution for 4 which
was given in Example 2 of Section 2, and where

wdw; = (—1)7-Yday A ... adej_yada; A ... Ada, .

Note that w is only defined for {, &0 so we have to use different choices
of w to cover the whole set of zeros of 3 (;*=0. It is easy to see that

do = AU % dagy A ... Adx, = ¢ e XD dx A ... adx, .

The important property of w is that, after letting the radius of the hemi-
sphere tend to infinity, we obtain, provided z,, >0 when x € supp¢,

U ,
@1) P = —2fe-@<“>% @,0)da’, C=(&, —i|¢), & e Ru-1,

where the integral is abolutely convergent. (Actually, also the oppo-
site hemisphere is needed to get (4.1).) This means that &' P, —il&))
is the Fourier transform of 2’ - —2(8/ox,)U(x’',0) so the Fourier inver-
sion formula gives

22V w0) = @t f o) P(g, —i|g)) e
ox

n RA-1
or, after a translation,
(4.2)

0 , N
-2 ——g(x) = (2m)-n+1 eXHD Py dE', x,<inf(y,;y €suppe) .

ox.
n L=, =D
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It is this formula which defines the continuation of the outer potential
of T once a bound for 7' is known.

For general differential operators one cannot hope for a formula like
(4.1). Our method will therefore be to generalize (4.2) directly. Note
that the integral in (4.2) involves the zero of 7~ P(&,7) which has
negative imaginary part. In general there will be more than one zero
taken into account and the value of 7' at the single zero will be replaced
by a residue integral operating over several zeros of v P(¢',7). This,
in short, is the motivation for Lemma 3.7.

THEOREM 4.1. Let P be a mnon-constant polynomial and write P=
P P where P,,...,Pg are trreducible and mutually prime, m;, 2 1.
Then a functional T' on the space D' p (or &p) of distribution (or C*) solu-
tions to P(— D)u=0 in R™ is carried by a convex compact set K <R™ if and
only if the following condition holds:

(v) For every > 0 there are constants C, and N, such that

(4.3) |D"‘T(C)[ < O, (14|¢])Ne exp(HK(Iij)+e]Imc_T|),
when
(4.4) P) =0, |x|<my, k=1,...,s.

Here D*1'(¢) is defined as D*p() for an arbitrary representative ¢ of 7.
We have also written

Hg(n) = sup,cx<®,m), neR™,
for the supporting function of K.

Proor or THEOREM 4.1. Suppose that 7' is a functional on &p and
carried by K. This means that for every ¢ > 0 we can find a representative
u € & of T such that suppu <K +¢B (B is the unit ball). Hence, by the
Paley—Wiener theorem (see e.g. Hormander [5, Theorem 1.7.7]), we ob-
tain for some constants ¢ and N

4@ = C(1+ (2N exp(H (Im¢) +&[Im{])

so that (4.3) holds for =0, ¢ arbitrary. The necessity of (v) therefore
follows from the estimates

ID*i(C)l = C, supp <, |4 +0)| -

If T is a functional on 2’', we have representatives in 2 < ¢&” so the
same argument applies. (We even get the better estimate (4.5) below.)
We shall first prove the sufficiency of the condition (v) when T is
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a functional on 2'p. Let us note that in this case it follows from (v)
that there are constants C,, depending on >0 and ¢= 0 such that

(45) ID*P(E)| £ Cpg(1+1¢)7 exp(H g(Im¢) +¢|Tm])
when (4.4) holds. In fact, if ¢ represents 7' we get
(4.6) ID*@(5)] £ Co(L+2])~2 eimel

provided a is so large that |#|<a when @(z)+0 (see e.g. Hormander
[5, Theorem 1.7.7]). We suppose in addition that |z|<a when x e K.
Then if e|Im(| = (N,+¢) log(1+|¢|) we get from (4.3)

(4.7) ID*T()] £ C,(1+¢])2 exp(H c(Im¢) + 2¢ Tm¢])
On the other hand, if ¢|Im¢| < (N, +¢) log(1+|¢|) we must have
a[lmf| = 2a(N,+q)e* log(1+(¢]) + Hg(Im() ,
thus (4.6) with ¢ replaced by r implies
ID*T()] S Cp(1+ |2y +2Netdl exp(H (Im?)) ,

so that, with r=¢ + 2a(N,+q)/e, we obtain (4.7) with another constant.
Changing notation in (4.7) we have proved (4.5).

To establish the sufficiency of (v), we shall prove that condition (iv)
of Theorem 2.1 follows from (v) with (4.3) replaced by the apparently
stronger estimate (4.5). To this end we shall construct, for a dense set
of unit vectors 5 on the unit sphere in R”:

A. A fundamental solution E, e D’ for the operator P(D).

B. A4 C* function V, which is defined in {x; (x,n)>Hg(n)} and satisfies
P(D)V,=0 there and which moreover coincides with E, +¢ when
(&, m)>Hg(n) and |x|>r. Here ¢ is an arbitrary representative of T
and r a fixed large number.

As a motivation for our interest in this construction, let us first prove
that (iv) follows if B, and V, with the described properties can be found.
Let E be an arbitrary fundamental solution for P(D) and define

W,=V,+(E-E)*p.

This is a C* function in {x; (x,n) > Hg(n)} and P(D)W,=0 there. When
(x,m)>Hg(n) and |z|>r we have W (x)=E+p(x). Hence W, defines a
continuation of the Borel transform U, of T'. If it can be proved that
W, and W ) coincide where they are both defined we will thus have
a continuation of U, to the whole complement of K, that is, (iv) holds.
The missing argument is provided by the following lemma.
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LemMMA 4.2. Let there be given, for a dense set M of unit vectors 7,
solutions W, of the equation P(D)W,=0 defined when (x,n)>Hg(n), K
a given convex compact set in R™. Assume moreover that W, (x)=F(x)
when {x,m)>Hy(n) and |x|>r, where F is a function independent of
defined for |x|>r. Then W, =W @ in their common domain of defini-
tion for any two vectors n®,y® e M.

We have formulated this lemma for functions. With obvious changes
in language only, the lemma and its proof are valid for distributions.

When P is elliptic the lemma follows at once in view of the unique-
ness of the continuation of a real analytic function. In general it may
happen that the conclusion is false if we have just two solutions W,
and W ) defined in half-spaces.

Proor or LEMMA 4.2. We may assume that r is so large that H () <
r|nl. We shall first prove that W )(a)= W, (@) if {a, 70 > H 1 (q®)
and 2 [y — @] < (a,7®y — Hn®).

Let ©2; be the half-space (possibly the whole space R™)

{z; @) > He(?)}, j=1,2.
Consider the half-space
Q = {x; {o,n®)>Hg ")+ 2r|n® —n®[}

which contains a. It is then obvious that x € 2,002, if v € 2 and |z|=7.
Define W=W, )~ W, o in {zxeQ;|z[sr} and W=0 elsewhere in Q.
This defines a solution of P(D)W =0 in all of 2, for when |z| >r we have
Wn(l)(x) = W”Q)(x) whenever both members happen to be defined. Since
W is zero outside a bounded set in the halfspace 2 we must have W =0
in all of 2 in view of a well-known theorem on unique continuation of
solutions to a constant coefficient differential equation (cf. the proof of
Lemma 3.4.3 in Hérmander [5]). In particular W qya)=W (a).

What we have proved shows of course that 7~ W, (a) is a locally
constant function in {y € M; {a,n) > H x(n)} where M denotes the dense
sot of unit vectors for which W, is given. But we have also proved that
this function is uniformly continuous when {a,n)—Hg(n) stays away
from zero. Hence n+ W,(a) can be extended to a locally constant func-
tion in { € R7; || =1 and {a,n) > H(n)}, a set which is connected in all
non-trivial cases. Therefore W,(a) is independent of 7. Lemma 4.2 is
proved.

Proor oF THEOREM 4.1, CONTINUED. We now turn to the construction
of fundamental solutions E, for P(D). Suppose that p(n)=c+0, where
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p is the principal part of P. This is true for a dense set of vectors on the
unit sphere in R®. After a change of coordinates we may assume that
7=(0,...,0,1). We then obtain

P(Z) = ¢f,™ + terms of order less than m in £, .

We shall define a distribution E=F, by the Hérmander—Tréves for-
mula (see Tréves [11] or the exposition in Friedman [2] or Gel’fand and
Silov [3])

- , €g.
P&, &, +my,)

(4.8)  Eg) = (27) f de'

Rn—1 na=H (&)

Here H is a real-valued function in R*»-1 which satisfies (4 and a are
constants):

1. 0sH((')= A for & e R,

2. H is constant in every interval in some subdivision of R?-! into a
union of such;

3. |P(&,&,+in,)|2a>0 when n,=H(&'), £, €R, & e Rr-1,

The surface {{+ine C*; 9 =0, 9, =H(&')} is called Hormander’s steps.
For definiteness in later arguments it is advantageous to choose H as
follows. For every £ € R*-1, at least one of the m+ 1 strips

{reC; Imzr—k|l<}}, k=0,...,m,

must be free from zeros of 7~ P(&',7). We define H(£')=Fk for some k
such that the strip
{reC; Im7—ki<}}

does not contain any root of P(&',7)=0. It is possible to do this in a
way consistent with requirement 2 above. We may then take a= |c|/4™.
Also, in the application of Lemma 3.7 to follow, we may take the quan-
tity &;(0') of that lemma equal to }.
It is easy to prove that ¥ is in fact a distribution and that P(D)E = 4.
By a translation of ¢ we obtain

(4.9) Ux) = Exgx) = Ey px+y))
= ([ SO0 e
where "

P(&',7) € dr

(410) f(El’xn) = P(EI T)

Imr=H()
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Now let ¢ € 2 be a representative of 7. We shall define a continuation
of y, U by means of the formula

(¢.11) V@ = @ [ 0 e, e
RA—1
where

(&', 7) e*n* d

(4.12) 9(&',x,) = PE )

rE)

Here I'(¢’) denotes a closed simple curve surrounding precisely those
zeros of P(&’,v) which satisfy Im 7> H(£') 2 0. We claim that V is in C®
when xz, > Hg(0,...,1) and that U(x)=V(x) when x, > H4(0,...,1) and
|x] >r for some r which does not depend on the direction =(0,...,1)
we have chosen. (It follows from Holmgren’s uniqueness theorem that
this is true if 9 is non-characteristic and r is allowed to depend on %, but
this result is insufficient for our purposes.)

We shall first prove that V is indeed a C* function when =z, >
Hx(0,...,1). It follows from (4.5) that

|(0)ov) (@(', ) en")]
< Cu(1+ e, )™=t (140" + 7))~ exp (H g, p(Im ", Im 7) ~ 2, Im 1),

when P,({',7)=0, 05j<my, 1<k=<s. When Im7=0 we get
(8]0 (p(C", 7)€
(4.13) < Co(1 42, )1+ 0'|)~2 exp(H g1, p(Im{’, 0) +
+Imz(Hg(0,...,1)+e~2,))

at the zeros in question. Hence, if z, 2 H(0,...,1)+¢, the left hand side
of (4.13) is majorized by

an(§'>xn) = an(l + ]xnl)m_l (1 + IC,')_’] exp(HK+¢B(Im CI’O)) :

Applying Lemma 3.7 we obtain

~

P(',7)

(4.14) @y

< Cog(L+ [yt (1+[']) 7244 exp(H g1, p(Im ", 0))
for any closed curve I'({') in the upper half-plane with distance to the

zeros of P(¢',7) bounded away from zero. (Note that log M, ({',z,) is
Lipschitz continuous in ¢’ so that the supremum operation in (3.9),

Math. Scand. 28 — 4
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with e;=1, is absorbed by a multiplicative constant.) In particular we
get by taking (' =¢’ real in (4.14),

(4.15)  [g(€,@,)] S Clg(l+lm, [yt (L4[&])0ts, & e Rn-1,

Now it is easy to see that the function V defined by (4.11) is infinitely
differentiable in R*-1x I, where I is a bounded interval, if

(4.16) £ b sup,,f|&'17|(0/0x,)eg(&",x,)]

is integrable in R~ for all j,k= 0. We have just proved that this is true
for k=0 if x, = Hg(0,...,1)+¢& when z, € I. However, we note that

’ B (’l:T)k(;’(E,s T) eixm dt
(9] 0x,)eg(& @) = P(&,7)

re)

and that £,*@({) satisfies (4.5) if @(¢) does. The estimate (4.15) is therefore
valid also with g replaced by (9/dx,)*g which proves that (4.16) is inte-
grable for arbitrary j,k=0. It follows that V is C° when z,>
Hg(0,...,1)+¢, hence when x,>H, (0,...,1). It is also clear that
P(—D)V =0 there.

Next we shall prove that U(x)= V() if «,, >r where r is so large that
Kusuppe<rB. This will follow without any use of Lemma 3.7. In fact,
if Im7=0 we have

[‘;’(f', t)eiwutl < C(1+]|7))-2 Sr—zIme

This inequality shows immediately that the contour in (4.10) can be
changed to that in (4.12) without affecting the value of the integral
provided z,>r. Therefore f(&',z,)=g(¢,x,) and consequently U(x)=
V().

If P is elliptic it now follows that U(x)= V(x) when z, > H (0,...,1)
and |2'| >r. In the general case we have to prove this separately; we are
done if we prove that & v f(&',x,) —9g(&',x,) can be extended to an entire
function of exponential type at most ». The extension is given by

P(L,T) e

h(cl’xn) = f —P(T‘—E—)_dr’
Imr=AQ+[¢']) ’

where A is so large that P({’,7)+0 when Imv>A4(1+{’|). Obviously
¢’ v h(¢',2,) is entire and to estimate its type we define the integration
contours Imt=H(&') and I'(¢') for complex & while preserving their
properties, in particular I'((’) shall contain precisely those zeros of
P(¢',7) for which Im7> H(¢'). We then have
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P v) e

(817) W) = [ e

Imz=H({) T(C’)]
The first integral in (4.17) is easy to estimate; we have
[P, 7)€ < Cp(1+¢'| +|])-2 gMmet-anims
when Im72>0. In view of the fact that |P| and z, Imv are bounded
from below on the contour of integration we obtain
‘;(C” 7) Dl
P(',7)

(4.18) dr

< Cq’e'”m“f(l+|C’l+|t|)—q d .
Imr=H(") R

The second integral in (4.17) is estimated by means of Lemma 3.7. The
result is (4.14). Combining (4.14) and (4.18) we see that (' A({',x,) is
indeed the Fourier transform of a function with support in {z’; |2'| <r}.
But this function is precisely z’ - U(x)— V(z). This proves our claim
that U(z) and V(x) agree for z, > Hg(0,...,1), |2'|>r, and thus com-
pletes the proof of Theorem 4.1 for functionals on Z'p.

If T is a functional on &, we can use the reasoning above as follows.
Let u € & represent T' and let U,=pu*E be the potential of u with re-
spect to the fundamental solution I defined by (4.8). Let U, ;=U, *¢;
be regularizations of U, where ¢;(x)=j"¢(jz), ¢ € D(B) being a fixed
function with integral one. Then we obtain if suppu<rB, z,>r+1/j
and I'(¢’) is defined as in (4.12),

U,,i@) = Expxg;)
(419) i(ET) P& ) € do

= @y [ enay [ BRI

R~1 rE

Since u*g@; € 2 and has Fourier transform figp; satisfying (v) with K
replaced by K + B/j, the arguments above show that the right hand side
of (4.19) defines a smooth function V; when x, > H(0,...,1)+ 1/j which
moreover agrees with U, ; when x, > Hg(0,...,1)+1/j and |z >7r+1/j.
Considering V; as a distribution we obtain

/2(‘::': T) aj(é’a T) 17)( '—5,, - T) dT
P, 7)

Vi) = e [ ag |

J
R7—1 r¢)

provided suppy is contained in the domain of definition of V;. Now let
v be a fixed and let j tend to + co. Using estimates analogous to (4.15)
we find that the integral converges to
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A

/2(5” T) 1.0( —E,a - 1)

P2 dr.

V) = a7 [ ae

R7—1 rE)

In view of the Banach—Steinhaus theorem the limit V(y) defines a distri-
bution V in {z;z,>Hg(0,...,1)} and it is obvious that P(D)V=0.
(That V is a distribution follows also directly from similar estimates of
the integral defining it.) It is also clear that ¥V and U, agree in the
open set {x; x, > H(0,...,1), || >r}. The rest of the proof is analogous
to that for functionals on 2’;,. Theorem 4.1 is proved.

We note two simple consequences of the theorem.

CoROLLARY 4.3. 4 functional on D'y and its restriction to &p have
the same convex carriers.

Proor. Theorem 4.1 shows that the convex carriers of a functional are
completely determined by its Fourier transform. But the latter is an
element in A(C"?)/P-A(C") which is the same for a functional on 2',
and its restriction to &p.

COROLLARY 4.4. Let P=QR where Q and R are without common factor.
Then a functional on D' p is carried by a convex compact set K if and only
if its restrictions to D'y and D'y are carried by K. Similarly for (6p)'.

This is also an immediate consequence of Theorem 4.1.
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