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VERTICES OF CHOQUET SIMPLEXES

ERIK M. ALFSEN and TORE NORDSETH

The purpose of this note is to prove that every extreme point of a
Choquet simplex is a polyhedral vertex, and to apply this result to
clarify the relationship between Choquet simplexes and Bastiani poly-
hedra [2].

In the sequel we shall assume that K is a convex compact subset
of a locally convex Hausdorff space F over the reals, and we shall use
the symbol A(K) to denote the Banach subspace of Cr(K) consisting
of all continuous affine functions.

The support cone of K at a point x € E is the set

(1) Cone(2,K) = x + U, MK —x) .

A point z € K is said to be a polyhedral vertex of K if Cone (2, K) is closed
and proper (‘“‘saillant’’).

Clearly every polyhedral vertex is an extreme point. In fact it is a
vertex in the sense of Bohnenblust-Karlin [3], by virtue of:

ProrositioN 1. If = is a polyhedral vertex of a convex set K, then the
collection S, of supporting closed hyperplanes at x is separating; in sym-
bols :

2) Ngeyp, H = {a}.
Proor. Without lack of generality we assume x=0, and we consider
a point y 0.

Assume first y ¢ Cone(0,K). Since Cone(0,K) is closed, there is an
feE* and an « € R such that

(3) fy) < « = f(z) for all ze Cone(0,K) .

Clearly (3) prevails with 0 in the place of «, and so H=f-1(0) is a closed
supporting hyperplane at 0 which excludes y.

Assume next that yeCone(0,K). Since Cone(0,K) is proper,
—y ¢ Cone (0,K). By the first part of the proof, there is a supporting
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hyperplane H at 0 which excludes —y and hence also y. The proof is
complete.

Note that the definition of a polyhedral vertex is non-intrinsic since
it depends on the particular embedding of K in the surrounding locally
convex space E. In the theory of Choquet simplexes it is often assumed
that K is (canonically) embedded in the Banach dual space A(K)* en-
dowed with the w*-topology [5]. Then the simplex K is located on the
closed hyperplane

H, = {pe AK)* | p1)=1},

Cone (0, K) is a lattice cone, and every continuous affine function on K
can be (uniquely) extended to a linear functional. Moreover, the closed
unit ball of A(K)* is equal to conv(Ku—K), and if x € K and [z] is
the linear span of x, then

(4) Cone (x,K) = H,; n (Cone (0,K)+ [x]) .
We shall also need the following simple consequence of the decom-

position theorem for Choquet-simplexes [1]:

ProrositioN 2. If K is a Choquet simplex canonically embedded in
E=A(K)*, and if F is a closed face with complementary face F', then

(5) E =[FI®[F].

Proor. We have E=Cone(0,K)—Cone(0,K) and K =conv(FUF’)
[1]. It follows that E=[F]+[F']. It remains to be proved that
[FIn[F']={0}.

We assume that z e [F]n[F'], say
(6) 2 = (0% —xaUy) = (B101—Pavs)
where «;,8,20, u;e F, v;e F' for ¢=1,2. Now z € yH, for some y € R.
Then

y=01— 0y =f1—f,
and so we may define a number §=0 by

=01+ Py = xp + 4.

If =0, then a;=pf,=0 for 1=1,2. Hence 2=0, and there is nothing
more to prove. If §>0, then we may rewrite (6) as follows:

(7) o 07 Uy + B0 v, = g6 tuy + B0 10, .

By the unique decomposition theorem in Choquet simplexes [1],
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we obtain o, u; =ax,u, and Byv,=p,v;. Hence z2=0, and the proof is
complete.

Note that the space £ in Proposition 2 is not a topological direct sum
of [F] and [F'] in general.

TrEOREM 1. If K is a Choquet simplex canonically embedded in A(K)*,
then every extreme point of K is a polyhedral vertex.

Proor. We claim that the following formula is valid for any extreme
point z of K:

(8) (Cone (0, K) +[x]) n conv(Ku—K) = conv(Ku{—a}).

To prove this claim we only have to verify that an arbitrary point z
of the left hand side of (8) also belongs to the right hand side. Since
z e conv(KU— K), we shall have an expression

2=ty — (1—a)u,,

where u,,u,€ K and 0=« <1.

Let F be the (possibly non-closed) complementary face of {#} in K.
By the decomposition theorem for Choquet simplexes, we have an
expression

u; = Ax+ (1-4)y;

where y; € F and 04,1 for ¢=1,2. Hence
(9) 2 = (g — (1= )y) + (1 = Ay)yy — (1= ) (1 = Ag)ys -
Since z € Cone (0, K) + [x], we also have an expression
2= fx+yv,
where v € K, f € R and y € R+. Again the decomposition theorem yields
v=puxr+ (1-p)w,
where we F and 0su=<1. Hence
(10) z=(f+yu)z + y(l-plw.

Now z € 6H, for some ¢ € R. Since all the points at the right hand sides
of (9) and (10) are located on the hyperplane H,, the sum of the co-
efficients must be equal to é in both of these equations. Thus we obtain
an equation in «,B,9,4;,45, 4 which we solve for the (possibly) non-
positive parameter §, obtaining

f=20—-y-1.
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We may rewrite (10) as follows:
(11) 2= (2a—y—l+yp)r + y(l-—pw.

Assume first that «=0. By Proposition 2, the space A(K)* is the
direct sum of [z] and [F]. Hence we may compare the expressions
(9) and (11). Elimination of the parameter 4, from the two resulting
equations, yields

y—yu=0.
Substituting into (11), we obtain that z= -z if x=0. Hence

zeconv(Ku{—=x}) in this case.
Assume next that «>0. Then we may write (11) in the form

(12) z=ot—(l—x)x,
where
(13) t=oaNa—y+ypr + o ly(l-pw.

We claim that the right hand side of (13) is a convex combination.
It is easily verified that the sum of the coefficients is 1, and the last
coefficient is trivially positive. To prove that the first coefficient is
positive, we define

E =&X—-=y -+ Yy,

and substitute in (12), obtaining
2= (E=(1~a)z + y(1—p)w.
Again we may compare this expression with formula (9), obtaining
E—(1—o) = ady — (1 —a)hy .
Solving for &, we get
E=oly + (1—x)(1=24) 2 0.

This completes the proof that the right hand side of (13) is a convex
combination. Hence t€ K, and z € conv(Ku{—=z}) by virtue of (12).
Formula (8) is proved.

The rest of the proof is a simple application of the Krein-Smulyan
Theorem [4, p. 429]. By virtue of (8), Cone(0,K)+ [z] has a compact
intersection with the closed unit ball conv(KuU—K). Since we are in
a Banach dual space endowed with the w*-topology, we can conclude
that Cone(0,K)+ [x] itself is closed. Now it follows from (4) that
Cone(z, K) is closed. This completes the proof since Cone (x, K) is proper,
x being an extreme point of K.
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In [2] A. Bastiani has defined the concept of an infinite dimensional
polyhedron in a locally convex space. Bastiani’s definition is based on
the (non trivial) geometrical fact that a closed convex set K in R” is
a polyhedron iff Cone(x,K) is closed for every x € K [2, p. 271]. This
characterization can easily be translated to the statement that K is
a polyhedron in R” iff every extreme point x of K is a polyhedral vertex.
(Pass to R®/M, where M is the affine span of face(z).) This statement
could also reasonably be transferred to the infinite dimensional case as
definition of a polyhedron. In fact, this might be a more natural defini-
tion since it would comprise all compact simplexes K (canonically em-
bedded in A(K)*), whereas the original definition turns out to be very
restrictive, admitting no compact simplexes other than the finite dimen-
sional ones.

THEOREM 2. If K is a (compact) simplex such that Cone (x,K) s closed
Jor every point x in K, then K is finite dimensional.

Proor. We first observe that face(z) is closed for every x in K since
face(x) = K n (2x—Cone(z,K)) .

Next we claim that for any countable subset 4 of the extreme
boundary 0,K there exists a point x € K such that

(14) A = face(x)no.K .

In fact, let A={z; |2;€0,K, i=1,2,...}, and let # be the barycenter
of some probability measure u of the form

,u:iicxiezi, ;>0 for 1=1,2,....
i=
Clearly A —face(x)no,K, and if there was an element
y € (face(x) n 0, K)\ 4,
then for some 4 € ]0,1] and some z € K
x=y+(1-2)z,
and so  would be the barycenter of a boundary measure
v = Ae, + (1-A)y,,

which is different from u since it charges the point y ¢ A. This contra-
dicts the hypothesis that K be a simplex, and formula (14) is established.

Now it follows that for every countable subset 4 of 0,K there is a
closed face F of K such that
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A=FnoK.

Otherwise stated, every countable subset of ¢, K is closed in the struc-
ture topology of Effros [6]. This rules out the possibility that 0, K be
countably infinite, for then 0, K would be discrete in the compact struc-
ture topology.

Assume finally that 9,K is uncountable. Then we can construct a
sequence {4,} of countable subsets of 9,K with the finite intersection
property and empty intersection. For example we may start by choosing
an arbitrary countable set of points A,={x,,x, ;5 ...}, then form
Ay,={x,',%y,%s,. ..} where the first point z, is replaced by a new point
x," different from all z,,x,,..., next form A4d;={x,",z,",2;,...} by
replacing the first two points by two new points z,"’,z,” different from
each other and from all points previously chosen, and so on. Again
this contradicts the compactness, since the sets A4, are closed in the
structure topology.
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