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INFINITE
DIMENSIONAL COMPACT CONVEX POLYTOPES

R. R. PHELPS

0. Introduction.

In this paper we extend the notion of “compact convex polytope” to
infinite dimensional subsets of locally convex spaces. We want the
extended class to include the Choquet simplexes [15] and, of course, to
coincide with the usual notion for finite dimensional sets. (With the
exception of Alfsen [1], the extensions made previously, e.g. Bastiani [3]
and Maserick [13] [14], do not contain the infinite dimensional simplexes.)
We would also like the extended class to possess many of the properties
which are known to hold for finite dimensional polytopes and for sim-
plexes. Now, there are two ways (dual to each other) of characterizing
finite dimensional polytopes in terms of simplexes; this fact will lead to
two different definitions in the infinite dimensional case. The first of
these ways is the following:

A finite dimensional compact convex set K is a polytope (that is,
() has finitely many extreme points) if and only if there exists a finite
dimensional simplex § and an affine continuous map ¢ of § onto K.

(To prove the “only if”’ portion, simply take S to be the simplex of all
probability measures on ext K.) The dual characterization is the follow-

ing (cf. [9]):

A finite dimensional compact convex set K is a polytope if and
(B) only if there exists a finite dimensional simplex § and an affine
variety M such that K is affinely equivalent to SnM.

(The connection of this with (x) comes from the fact that the polar
body of a polytope is a polytope, the polar of a simplex is a simplex,
and the adjoint of a surjection is an injection.)

Each of these two characterizations could be made the basis of our
definition, by simply deleting the words ‘“finite dimensional” wherever
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they appear. This would be unsatisfactory, however; in the first case,
every compact convex set K is the continuous affine image of the simplex
of all probability measures on K, and in the second case, there are finite
dimensional sets which are not polytopes yet are of the form SnM for
an infinite dimensional simplex S. These considerations have led us to
the following definitions:

A compact convex set K is an «-polytope if there exists a simplex S and a
continuous affine map ¢ of S onto K such that p='(x) is finite dimensional
for each x in K.

A compact convex set K is a f-polytope if there exists a simplex S and a
closed affine variety M of finite codimension such that K is affinely homeo-
morphic to SnM.

Incidental to his study of simplexes, Alfsen [1] defined and briefly
discussed a class of “polyhedra’” which is formally different from the
class of a-polytopes, but which turns out to be the same.

The above definitions lead to two distinct classes of sets which share
only some of the properties of finite dimensional polytopes. For instance,
neither class can contain any infinite dimensional centrally symmetric
sets, and as a consequence, both classes fail to be closed under finite
intersections and finite vector sums. On the other hand, both classes
share two of the important properties of simplexes. For instance, it is
known [4] that a G, extreme point of a simplex is a “peak point’ (point
of strict maximum) for some continuous affine function; in fact, any
closed @, face of a simplex is known [5] [8] [11] to be such a “peak set’.
Both classes of polytopes have this property; for x-polytopes, this fol-
lows from a nontrivial extension of the simplex result which has been
proved by L. Asimow [2]. The proof for g-polytopes is easy for extreme
points but somewhat harder for faces; the latter depends on a geometric
lemma whose proof was kindly supplied us by A. Lazar.

Another property of simplexes which is true for both kinds of poly-
topes is the result, proved for simplexes by A. Lazar [11] [12] and D. A.
Edwards [8], that any continuous affine functional on a closed face ad-
mits a continuous affine extension to the entire set. (In fact for sim-
plexes, the extension can be chosen to be norm preserving, but — as
pointed out by Lazar [11] — this aspect fails even for two dimensional
quadrilaterals.) We show by example that this extension property can
fail for sets which are not polytopes.

The remainder of the paper consists of four sections. In Section 1 we
establish the necessary notation and definitions, Sections 2 and 3 are
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devoted to x- and g polytopes respectively, and Section 4 contains addi-
tional examples and remarks.

We wish to acknowledge helpful conversations on the subject matter
of this paper with Professors H. H. Corson, V. L. Klee and A. Lazar.

1. Definitions.

Throughout this paper, when we refer to a compact convex set K, it
will be understood to be a nonempty subset of some locally convex space.
This insures that the Banach space 4(K) (supremum norm) of all continu-
ous real valued affine functions on K has sufficiently many elements to
separate points of K. Moreover, it then follows that K is affinely homeo-
morphic to the weak* compact convex set (which we again denote by K)
of all linear functionals L in A(K)* for which L(1)=1=||L|. (For detailed
proofs of these and other facts in this section, cf. [15].)

A simplex S is a compact convex set such that the cone of nonnegative
functionals in A(S)* (of which S is a base) defines a lattice ordering on
A(S)*. This is equivalent [16] to the assertion that 4(S)* is an abstract
L-space, that is, A(S)* is a vector lattice, and =0, y =0 in 4(S)* im-
plies [le+yll=|l2[l+ llyl-

We denote by P(K) the set of all Borel probability measures on K,
and by Q(K) (or simply by @) the subset of P(K) consisting of those
measures which are maximal with respect to the ordering

u > A < u(f) = A(f) for every continuous real valued
convex function f on K.

If u € P(K), the resultant 7, of y is the unique point of K which satisfies
f(r,) =[x fdu for each fin A(K). When restricted to Q(K), the resultant
map 7 is still onto, and is one-to-one if and only if K is a simplex.

In the weak* topology of C(K)*, the set P(K) is a simplex. The set
Q(K) is “almost” a simplex, since the cone generated by it is lattice
ordered, but @(K) is not generally weak* compact.

A subset F of a convex set K is called a face of K if F is convex and if
x,y € F whenever z,y ¢ K and Ax+ (1 — 1)y € F for some 0<A< 1.

If K,,K, are compact convex sets and if ¢: K; — K, is continuous and
affine, then by the linear extension of ¢ we mean the map ¢ from A(K,)*
to A(K,)* induced by ¢ [so (¢L)(f)=L(fop) if L e A(K,)*, fe A(K,)].
When no confusion can result, we will denote ¢ simply by ¢. (If we
identify each K, with its natural embedding in A(K,)*, then A(K,)* is
linearly generated by K, and ¢ coincides with the linear extension of ¢.)
The map ¢: K; —~ K, will be said to have finite dimensional kernel
provided its linear extension has finite dimensional kernel.
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2. The class of a-polytopes.

Our first task in this section is to establish the equivalence between
our definition and the one of Alfsen referred to in the Introduction. Let
K< A(K)* be compact and convex, let @ be the set of maximal prob-
ability measures on K, and let £ be the linear space (of signed measures)
generated by @. If r is the resultant map from @ onto K, then we can
extend 7 to a linear map from  onto 4(K)*. Call K an Alfsen polyhedron
if this extension has finite dimensional kernel.

TrEOREM 2.1. If K is a compact convex set, then the following asser-
tions are equivalent :

(i) K s an «-polytope.

(i1) There exists a stmplex S and a continuous affine map from S onto K
having finite dimensional kernel.

(iii) The set r—1(x) is finite dimensional, for each x in K.

(iv) K is an Alfsen polyhedron, that is, the resultant map r has finite
dimensional kernel.

Proor. It is obvious that (ii) implies (i) and that (iv) implies (iii).
We prove that (i) implies (ii) as follows: Suppose that S is a simplex
and ¢: § - K a continuous affine surjection with ¢~!(z) finite dimen-
sional for each # in K. We regard ¢ as a linear map from A4(S)* onto
A(K)*, and we wish to show that ¢ has finite dimensional kernel. We
use the fact that A(S)* is a Banach lattice (in fact, an L-space), under
the ordering defined by the cone R+S generated by S. If {,} is an
infinite linearly independent sequence in ¢-1(0), we can write xz,=
z,*—x,~ and assume without loss of generality that |jz,-||=2-". Let
z=>x,”; this series converges in norm. Define

Yn = x+xn = (Zk=|=nxlc—)+xn+ —2— 0.

Clearly, ¢(y,) = () for each n, and {y, } is an infinite affinely independent
set. We will obtain a contradiction if we show that x € § and {y,}<S.
Now, S={y: y=0 and |y||=1}. Obviously, =0, and

lall = (@,1) = S(@,~1) = 327 = 1,
so ze 8. For fin A(K), {px,.f) = (%, fop); taking f=1, we see that
0= (g 1) = @uld = @ 10— (@, 1),
so {x,*,1>={(x,~,1)=|lx,"||=2""; it follows that (y,,1)=1 and hence

Y, € S for each n.
In order to prove that (iii) implies (iv), one uses the above argument;
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it only requires the fact that the space E is closed (in the total variation
norm) as a subspace of the space of all finite regular Borel signed measures
on K. This follows easily from the fact (see, e.g. [15, p. 64]) that ue E
if and only if |u|(f—f)=0 for each f in C(K).

Lemma 2.2 below shows that (i) implies (iv), while Lemma 2.4 will
show that (iv) implies (ii).

Lemma 2.2. Let K, and K, be compact convex sets and let ¢ be o continu-
ous affine map of K, onto K,. Let T denote the induced map p — poqp-t
of P(K,) into P(K,), and let r; denote the resultant map from P(K,) onto
K;, 1=1,2. Then

(i) 7' is a surjection.
(i) Q(K,) =T[Q(Ky)]
(iil) ro(Tp)=(ryu) for each u in P(K,).
(iv) {Ae Q(K,): rd=a}<T{ue QK,): ru € o}, for each x in K,.

Proor. (i) This is a standard result, using the monotone extension
theorem and the fact that ¢ is a continuous surjection.

(ii) Note first that if 1 and u are in P(K,) and if 1>y, then 74> 7.
Indeed, if ¢ is a continuous convex function on K, , then g o ¢ is continuous
and convex on K, so that

(T2)(g) = Mgeg) 2 ugog) = (Tu)g) -

Suppose, now, that v € Q(K,). Choose y in P(K,) such that Tu=». By
a standard application of Zorn’s lemma, there exists a maximal measure
Ain Q(K,) with 1> u. Consequently, TA>Tu=v, and since » is maximal,
Th=w.

(iii) It suffice to show that A[ry(Z'u)]=~h[p(r,u)] for each affine con-
tinuous function 4 on K, (since these functions separate points of K,),
and this is immediate from the definitions of »,, r, and 7'.

(iv) If 2 € Q(K,) and r,d=2, then by (ii), there exists u in Q(K,) such
that Tu=A. From (iii) it follows that

p(rip) = ry(Tu) = rod = =,
which yields (iv).

CoroLrARY 2.3. If K is an «-polytope, then it is an Alfsen-polyhedron.

Proor. Suppose ¢(8)=K, where S is a simplex and ¢ is a continuous
affine map, with ¢—2(x) finite dimensional for each z in K. Let r, denote
the resultant map from Q(K) onto K ; by “(iii) implies (iv)” of Theorem
2.1, it suffices to show that r,~'z is finite dimensional, for each z in K.
If r, denotes the resultant map from @(S) onto S, then r,~1(p~1z) is
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finite dimensional, and the desired result is immediate from (iv) of
Lemma 2.2.

It remains to prove that (iv) implies (ii). If K is an Alfsen polyhedron,
then it is the weak* continuous affine image of @ under the resultant
map r, and the latter has finite dimensional kernel. The problem is that
@ is not necessarily weak* compact. The next result shows, however,
that there is a new topology under which @ is compact and r remains
continuous.

Lemma 2.4. Suppose that K is a compact convex set and that the extended
resultant map r (from the space E generated by Q(K) onto the space A(K)*)
has finite dimenstonal kernel N. Then there exists a locally convex topology
T on K such that Q(K) is t-compact and r is T-continuous.

Proor. Let ¢ be the quotient map of £ onto E/N and let p be any
projection from X onto N which is continuous from the norm (total
variation) topology on E to the norm topology on N. Define ¢: E —
E|N x N by tu=(qu,pp); it is straightforward to verify that ¢ is a linear
bijection. Now, the map s: u+ N — ru is a linear bijection between E/N
and 4(K)*, so we can use it to carry the weak* topology of A(K)* to a
(locally convex) topology on E/N. Thus, with this topology on E/N
and with the norm topology on N, the product topology on E/N x N is
locally convex and can be carried by ¢ to a locally convex topology =
on E. In terms of nets, we see that u, — u in the z-topology if and only
if ru, > ru and pu, - pu. In particular, r is t-continuous. To see that
@=Q(K) is z-compact, we first note that v is independent of which
projection p we use. Indeed, if p’: £ — N is another such projection,
and if 7’ is the resulting topology on E, then by definition, (¥,7’) is
homeomorphic to E/N x N, which is homeomorphic to (#,7). Next,
since @) is norm bounded and p is a bounded operator, the set p@) has
compact closure in the finite dimensional space N. Also, the fact that s
is a homeomorphism shows that s-'K is compact in the s-induced
topology on E/N. It follows that J=s"1K x p@ is compact in E/N x N,
so t~1J is T-compact and clearly contains . It remains to show that @
is t-closed. Suppose that u,€@, p€ F and pu, - u in the z-topology.
To show that u € @ we need only show that it is a probability measure.
Now, ru, -~ ru and r@ = K is closed, so ru € K. This implies two things;
first, there exists 4 in @ with rA=ru (hence A —u € N). Second, using the
definition of r and the affine constant function 1, we see that 1=
{ru,1>=u(K). It remains to show that x> 0; suppose not. Since ¥ is a
linear subspace of C(K)*, u is not in the positive cone of the latter space,
and hence there exists a function f;=0 in C(K) with {u,f;><0. Also,
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writing u, =1—pu we see that (u;,f;> >0 and we can assume it equals 1.
We can then choose u,,...,u, in N such that (u,,f;>=0 for k=2 and
U1, oy -+ Uy, Torm a basis for N. We next choose f,,. . .,f, in C(K) such
that {u;,f;)=290;, 1,j=1,2,...,n. Finally, we define a norm-continuous
projection p from ¥ onto N by

pv = Zp_ 1 VSt -

Since pu, — pu, we have 0= {u,,f1> = {u,f1) <0, a contradiction which
completes the proof.

It is evident from Theorem 2.1 (ii) that if K is a finite dimensional
«-polytope, then it is the continuous affine image of a finite dimensional
simplex and hence is a polytope in the classical sense. On the other hand,
if K is a finite dimensional polytope, then ext K is finite, so Q(K) is the
finite dimensional simplex of all probability measures on extK and 7 is
a continuous affine surjection with finite dimensional kernel. Thus,
the class of finite dimensional x-polytopes coincides with the usual class
of polytopes.

ProrosiTION 2.5. If K, K, are compact convex sets, if p: K, - K, 1s a
continuous affine surjection with finite dimensional kernel (or with ¢=—(z)
Sinite dimensional for each x in K,), and if K, ts an «-polytope, then K,
is an «-polytope.

Proor. This follows easily from the definition or from Theorem 2.1 (ii),
since a composition of two affine maps of the type involved is of the same

type.
ProrosiTiON 2.6. A4 closed face F of an «-polytope K is an o-polytope.

Proor. If § is a simplex and ¢: S — K is a continuous affine surjec-
tion, then @~1(F) is a closed face of S, hence is itself a simplex. The
result is now immediate.

CororLaARY 2.7. If {K,} is an arbitrary family of compact convex seis,
and if the Cartesian product K=T] K, is an x-polytope, then each K, 1s
an o-polytope.

Proor. Given y,, choose z€Il,., K with z cextK,, y+y,. Let
Ky=K,, x {z}, so that K, is a compact subset of K. It is easily verified
that K, is a face of K, hence is (by Proposition 6) an x-polytope. Further-
more, K is obviously affinely homeomorphic to K, , so the latter is an
a-polytope.

We show in Section 4 that the product of two simplexes need not be
an «-polytope.



12 R. R. PHELPS

ProrosiTioN 2.8. If K s an infinite dimensional centrally symmetric
compact convex set, then K is not an «-polytope.

Proor. We assume that 0 is a center of symmetry for K. By the
Krein—Milman theorem, extK is infinite. Since xzecextK implies
—z eext K, each of the measures u,= }¢, + 3¢,y is maximal (since it is
supported by ext K [15]) and has the origin 0 as resultant. Thus r-1(0)>
{u,: * € ext K} and the latter set contains an infinite linearly independent
subset, which implies that r-}(0)nQ(K) is infinite dimensional. By
Theorem 2.1, then, K is not an «-polytope.

As we will see in Section 4, the above proposition leads to a number
of examples which show that the usual operations which preserve finite
dimensional polytopes fail to preserve «-polytopes, in particular, there
exist simplexes S, and S, such that the compact convex set conv (S;US,)
is not an «-polytope. We have an affirmative result of this type, how-
ever, if one of the sets is assumed to be finite dimensional, this is a
consequence of the following proposition.

ProrosiTION 2.9. Suppose that K is a compact convex subset of a
locally convex space E and that B is a finite subset of K. If K is an «x-poly-
tope, then so is the convex hull K' of KUB.

Proor. It suffices to prove this when B is a single point z, ¢ K and
then use induction. Suppose that S<A4(S8)* is a simplex and that
¢: S — K is an affine continuous surjection with ¢p—1(x) finite dimensio-
nal for each z in K. Let §'<A(S)*x R be the convex hull of S x {0}
and e=(0,1); then S’ is a simplex and every point in S” has a unique
representation of the form Ae+ (1 —24) (s, 0), where se S and 011, De-
fine ¢’: 8" - K’ by

¢'(de+ (1=2) (5,0)) = Azg + (1—A)p(s) .

This is easily seen to be a continuous affine surjection, so we need only
show that if 2" € K’, then

{he+(1=2)(5,0) = &' =g+ (1—D)p(s)}

is finite dimensional. If x'==x,, this is the single point e, so assume
a' +x,. Let J denote the segment obtained by intersecting K with the
line through x’ and z,. (This might be a single point.) Since z’ =z, +
(1 —A)p(s) and since 0= A <1, we have

’

i
‘P(@*m

—_

—7)
-2

2,€d .

[
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Thus, Jde+(1—1)(s,0) € conv[{e} up=1(J)],

and the latter set is finite dimensional, that is, the inverse image of z’
under ¢’ is contained in a finite dimensional set, which completes the
proof.

As mentioned in the Introduction, it is known [8] [11] that any con-
tinuous affine functional on a closed face of a simplex admits a continuous
affine extension (even norm preserving) to the entire simplex. Further-
more, it is impossible to find norm preserving extensions even for quad-
rilaterals in the plane. Continuous extensions exist, however, for x-poly-
topes (and S-polytopes), and the proof is far simpler than that for sim-
plexes. (The proof for B-polytopes reduces to the theorem for sim-
plexes.)

THEOREM 2.10. Suppose that K is an «-polytope and that F is a closed
face of K. If g is a continuous affine functional on F, then there exists a
continuous affine functional f on K which extends g.

Proor. Choose a simplex S and a weak* continuous affine surjection
@: A(S)* -~ A(K)* for which N=¢~1(0) is finite dimensional. The set
I'y=¢"1(F) is a closed face of S and g;=gop e A(F,). Let M=R+F,—
R+F, be the subspace generated by F; it is known [7] [11] that M is
weak* closed, hence is a dual Banach space. It is easily checked that ¢,
is weak* continuous on the unit ball conv(F,u(—F,)) of M, hence (by
the Krein-Smulyan theorem) its linear extension (call it g;) is weak*
continuous on M. Let N;=NnM and choose a subspace N, of N such
that N=N;+ N, and N,nN,={0}. Clearly ¢,(N,)=0 and we can extend
¢, to a linear functional g, on M + N by setting g,(V,) =0 and extending
linearly. Since NV, is finite dimensional, the set g,~1(0)=g,71(0)+ N, is
weak* closed, so g, is weak* continuous on M + N. By the separation
theorem (applied to the graph of g,) we can extend g, to a weak* continu-
ous linear functional f; on 4(S)*. Since f;(N)=0, we can define f on K
by f(px) =fi(z) for each x in S, and f is easily seen to be continuous on K.

We conclude this section by stating Asimow’s theorem [2] on peak sets.

THEOREM 2.11 (Asimow). If K is an a-polytope and if F is a closed face
of K which is a Gy set in K, then there exists f in A(K) such that f(F)=0
and f(x)>0if xe K~F.

3. The class of 3-polytopes.

We first state the definition of f-polytope more precisely than was
done in the Introduction.
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DEeFINITION. A compact convex set K is a S-polytope if there exists a
simplex § and continuous affine functions k,,%,,...,k, on S such that
K is affinely homeomorphic to {x € S: hy(x)=0, ¢=1,2,...,n}.

It is obvious that by this definition, K is a S-polytope if and only if
K is affinely homeomorphic to M nS, where M is a weak* closed sub-
space of finite codimension in 4(S)* (and we identify the simplex S
with its canonical embedding in 4(S)*). We will also refer to M nS as
a finite codimensional slice of S, so K is a B-polytope provided it is af-
finely homeomorphic to a finite codimensional slice of some simplex.

ProrositioN 3.1. A4 finite dimensional compact convex set is a f-polytope
if and only if it is a polytope.

Proor. The “if” part is proved in [9, p. 71]; the idea of the proof
was sketched in our Introduction. To prove the converse assertion, sup-
pose that K is a finite dimensional g-polytope. Without loss of generality,
we can assume that K=MnS<A(S)* for some simplex S and weak*
closed subspace M of finite codimension in A(S)*. Since K is finite
dimensional, it has nonempty interior relative to the affine variety which
it generates; let x be a relative interior point of K. By Caratheodory’s
theorem, x is a finite convex combination of extreme points of K, and by
a theorem of Dubins [6] (see also [10]) each extreme point of K is a finite
convex combination of extreme points of §. Thus, « is in the convex
hull 8; of a finite subset of ext.S. It is known that the convex hull of a
finite number of closed faces of a simplex is again a simplex, a fact proved
rather easily in this special case where the faces are points. Thus, §;
is a finite dimensional simplex, and we need only show that K =MnS;.
Since §; <8, we have MnS; =M nS=K. Suppose, on the other hand,
that y € K, y+x. Since « is a relative interior point of K we can choose
ze K and 0<A<1 so that x=4y+(1—41)z. Since z € §; and the latter
is a face, we have y € S; and the proof is complete.

ProrosrtioN 3.2. If K, and K, are B-polytopes, then K, x K, is a
B-polytope.

Proor. For 1=1,2 there exist simplexes §;, weak* closed subspaces
M, of finite codimension in A(S;)* and affine homeomorphisms ¢,: K, -
M;nS;. Let ScA(S;)*x A(S,)* be the convex hull of (8,x {0})u
({0} x 8,), let K=K, x K, and let ¢: K — 8 be defined by

P21, 25) = (3@1%1, 30a%5) = 321, 0)+ (0, @p7,) .
Define f: 4(S;)* x A(8p)* - R by f(u,v)=<u,1), and let M =(M,x M,)n
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f1(%$). Taking the product topology in every case, we will show that S
is a simplex, that M NS is of the form {(u,v) € 8: fy(u,v)=0,i=1,...,n}
where f,...,f, € A(S), and that ¢ is an affine homeomorphism between
K and MnS.

It is clear that ¢ is affine, continuous and one-to-one, since each ¢;
is. Furthermore, ¢,(x;) € M, implies 3p,(x;) € M, for each 7, so @(x,,2,) €
M, x M,. Since flp(xy,%,)]={3p:x,1>=1%, we have p({)cMnS. On
the other hand, if (u,v) e M NS, then there exist s, in §; and 0151
with

(,v) = A(s3,0)+ (1 —2)(0,8,) = (Asy,(1—2)s,) .

Since f(u,v)=1%, we have A=%. Now, (u,v)=($s,,38,) € M, x M, implies
s;,eM;n8;=g,(K,), so that (u,v) € p(K) and ¢(K)=MnS.
By hypothesis, there exist A,,...,h, in A(S;) and ¢,...,g,, in 4A(S,)
such that
P(Ky) =8;n{rel;: hx)=0,j=1,...,n}

and @,(K,) has a similar description in terms of ¢,,...,q,,. These func-
tionals on A(S,)* can be considered as functionals on A(S,)* x A(S,)* by
letting hj(w,v)=h;(w), j=1,...,n and g,(u,v)=g,(v), h=1,...,m. These
are continuous in the product topology, hence on S. If (x,,x,) € K,
then h;[g(x,,2,)]=h;j(3p,2;, $p,2,) = 0 for each j; similarly, g,[¢p(2;,2,)]=0
and clearly f{p(x;,2,)]=1%. Conversely, if a point (u,v) of S satisfies the
above set of equations, then 0=~h;(u,v)=h;(w), 0=g,(v) and f(u,v)=14,
that is,
(w,0) e My xM)nf23)nS=Mn8 = pK).

Thus, p(K) is a slice of S and it remains only to show that S is a simplex.

Following a suggestion by L. Asimow, we simplify our earlier proof of
this fact by showing that S is a base for a lattice-ordered cone in
A(S;)* x A(S,)*. Indeed, it is easily verified that since each of the cones
R+S; (t=1,2) is lattice-ordered, then so is B*+S; x BR+S,. Furthermore,
if (r181,798,) is & nonzero element of this cone, then r=r; +r, > 0 and hence

(r181,7283) = 7 [r1771(81,0) + 75r71(0,8,)] € R*S,
which completes the proof.

ProrosiTioN 3.3. If K is symmetric and infinite dimensional, then K is
not a B-polytope.

Proor. Suppose that K= — K and that K=8nM, where § is a sim-
plex and M has finite codimension. We’ll show that 0 admits two diffe-
rent representations as a convex combination of extreme points of S,
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contradicting the fact that § is a simplex. Indeed, if x € ext K, then by
Dubins’ theorem [6] [10], = is a convex combination of a finite subset
E,<extS, hence 0=}x+4(—=x) is a convex combination of B UE_,.
Since the latter is finite, its linear span N is finite dimensional, hence
NnK is a proper subset of K. Choose y € ext K ~N; then 0 is a convex
combination of K UE_,<extS, and y ¢ N implies E,UE_,¢ N, so
this representation of 0 differs from that obtained from z.

The first part of the next lemma is due entirely to A. Lazar, and we
are grateful to him for his permission to include it here. It is the main
step in proving that closed G, faces of g-polytopes are “peak sets’ for
affine continuous functionals.

Lemma 3.4. Suppose that K is a compact convex set, that HNK is a
closed slice of codimension one, and that F is a closed face of HNK. Then
there exists a closed face F, of K such that F=HnF,. If F is a G5 in
HnK, then F, is a G5 in K.

Proor. We assume that K < A(K)* and that
H = {x e A(K)*: f(x)=0}

for some f in A(K). We can also assume that inff(K)<0<supf(K).
[Otherwise, if inf f(K)=0, say, then HnK is a closed G, face of K and
F,=F will suffice.] We define F, to be all points « in K such that either
x € F or there exist z in F and y in K such that z=Ax+ (1 — 1)y for some
A with 0<i<1.

It is straightforward to show that F;nH=F and that if x e F,,
z=Au+(1—2A)w (u,ve K, 0<i<]1), then u,v € F;. It remains to prove
that F, is closed and convex. Each of these makes use of the following
sublemma:

If z,,z,, € F,, with f(x;)>0 and with corresponding points y,,y, € K,
21,25 € F such that z; € (x;,y,), then there exists z € Fn(xy,y,).

Assume for the moment that this has been proved. To see that F is
convex, suppose that z,,2, € F; and 0<A<1; we want to show that

x = A+ (1—A)x, € F,.

This is obvious from the definition if f(a,;)f(z,) <0, so assume that
f(z;) >0, say. With the notation in the sublemma, (z,,y,) intersects I,
and consideration of the triangle with vertices z,, z, and y, shows easily
that « € F,. To see that F, is closed, suppose that {z,} is a net in F,,
with z, > 2 € K; we want x € F;. Without loss of generality we may
assume that f(z,)> 0 for each «. Pick some one z, and call it z;. Let
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¥, be the corresponding element of K with f(y,) <0 such that (z,,%,)
intersects #'. The sublemma implies that for each « there exists z, in
Fn(x,,y,), that is, there exists 0 <A, <1 with

2y = )”onxa + (1 - }”oc)yl and 0= la:f(xa) + (1 - 2'a;)f(yl) .

g I =Sl
T @) =fly) @ —f)

and 0<A=1. It follows that z, > Az + (1 —21)y;=2. Since z, € F and F
is closed, we have zc F. Thus, either 2z=xe F<F,, or f(z)>0 and
z € (x,9;), hence x ¢ F;.

We now turn to the proof of the sublemma. Since f(y,) <0, we can
choose w in (zy,¥,) and » in (x,,%;) such that f(u)=0=f(v). Let C be
the convex hull of x,, y,, @5, ¥,, and consider the two cases (I) C is two-
dimensional and (II) C is three-dimensional. In case (I), let z=v. A
consideration of the two possible cases (the segments [x;,%,] and [z,,¥,]
disjoint or intersecting) shows that z is either on a segment in F or is
an endpoint of a segment in HnK which has an interior point in F,
so that the entire segment is in F. In case (II), the fact that inff(C) <
0 <supf(C) implies that HnC is two-dimensional, wlth vertices u, v, z;
and z,. Since C is a tetrahedron, a sketch makes it clear that %,» and
24,25 are opposing pairs of vertices of the quadrangle Hn(C, and the
diagonals necessarily intersect at w, say. Since [2,,2,]<F, we know
w e F, and since F is a face, both » and v are in F. If we let z=wu, the
proof of the sublemma is complete.

It remains to prove the assertion concerning Gy faces. Suppose first
that

Thus,

Fec@<HnNnK, Gopenin HnKkK.

We can find an open convex subset U< K with F;,<U and UnH <@,
as follows. For each z in (HNK)~@G there exists » in A(HnK) with
kh(x) <0< infh(F), by the separation theorem. Since (HnK)~ @G is com-
pact, we can find A,...,h, in A(HnK) such that

HNK)~G<cUt{geHnK: hyz)<0}.

If J is the convex hull of the union of the sets {x € HNK: hy(x) <0},
then J is compact, convex and contains (HnK)~@G. Since F is a face,
it is readily verified that it is disjoint from J, and hence F,; is disjoint
from J. By the scparation theorem again, there exists # in A(K) with
suph(J) <0 <infk(F,), and we can take U={xe K: h(xr)>0}. Suppose
now that

F =N@G, eachG,openin HNK .

Math. Scand. 24 — 2
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Choose open convex sets U, in K with U,>F, and U,nH<@G,, n=
1,2,... . We want to show that F, =NU,,, so suppose x € U, for each n.
Clearly x € F < F, if f(x)=0, so assume that f(z)> 0, say, and choose y
in F; with f(y) <0. Then

z=oxt+(l-—a)yeH if o=f@UH-f@17

since 0<a<1 and ye U,,, we have ze U,nH <@, for each n. Thus,
ze€ F< F, and since F, is a face, we have x € F,.

It is now easy to prove that a closed G, face of a f-polytope is a “peak
set.”

THEOREM 3.5. If K is a §-polytope and if F is a closed face of K which
is a Gy set in K, then there exists a continuous affine functional f=0 on K
such that F={xe K: f(x)=0}.

Proor. We can assume that K= MnS, where S is a simplex in 4(8)*
and M is a weak* closed subspace of finite codimension in A(S)*. By
Lemma 3.4 and an obvious induction argument, there exists a closed
face F, of S which is a G, set in § and for which F=MnF,. By the
known theorem [5] [8] [11] for simplexes, there exists ¢ in 4(S) with
g=0 and F,={xeS: g(x)=0}. Letting f be the restriction of g to K
produces the desired result.

The next lemma is the main tool in proving that a continuous affine
functional on a closed face of a f-polytope admits a continuous affine
extension to the entire polytope (Theorem 3.7). It also allows us to
show that a finite codimensional slice of a S-polytope is itself a f-poly-
tope; this obvious-sounding result requires us to extend functionals from
a slice of a simplex to the entire simplex. The hypothesis in the lemma
that K, is in no proper face of K is needed; as shown in Section 4, the
result can fail (even for n=1) if it is not met.

Lemma 3.6. Suppose that K is a compact convex set and that
K,={xeK: hz)=0,¢=1,2,...,n},

where by, h,,. . ., h, € A(K). If K, is contained in no proper closed face of K,
then any continuous affine functional g on K, has an extension to a continu-
ous affine functional on K.

Proor. Assume that K < A(K)* and let
M = {re A(K)*: hy(x)=0,i=1,2,...,n}.
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We first show that M is the same as the linear span [K,] of K,. For
k=1,2,...,n, let

K, ={rxeK: hi(x)=0,7=1,2,...,k},
80 that
K,<«cK,,<..cK,cK,<K,=K.

Since K, is not in any proper closed face of K, we can certainly assume
that

oy = inffy(Ko) < 0 < supfy(K,) = B .
Furthermore,

op = Inffy(Ky_ 1) < 0 < supf(Kyy) = By,

since otherwise K, would be in a closed face of K,_;, which in turn would
be (as a consequence of Lemma 3.4) in a proper closed face of K. Thus,
for each k we can choose u;,v,, in K,_; with

hy(ug) = o < 0 < B = hy(vy) .

Suppose, now, that 0+y € M ; we must show y € [K,]. If e denotes the
identically 1 function in A(K), we can assume that e(y)=0. [Indeed,
for any x in K,,, the function e vanishes on y —e(y)«, and if the latter is
in [K, ], then so is y.] It suffices to show that there exists z in K, and
o >0 such that x+«y € K,,, since we could then write y=a-1(x+ay) —
o~tz. For later purposes we will show that if |ly||=1, then there is a
certain lower bound for «. (There is obviously no loss in generality in
normalizing y.) The functional y on A(K)<C(K) can be extended to a
functional y=put+—pu~ on C(K) such that

1= [jull = wHEK)+u~(K) and 0 = p+(K)—p~(K) .

By restricting 2ut and 2u~ to A(K) it follows that there exists z, in K,
with z,+2y in K,. We next show that there exist z;, in K, and 1,>0
such that

2 +20hy € K.

Indeed, if 2, € K,, take 4, =1 and take x; =,. If xy ¢ K, then A,(z,) £ 0;
say hq(x,) > 0. Let

431 251

———; then 0 <
oy — () %1 —P1

A = = i<l

and with x; =220+ (1—A;)u; we get the desired result. (Recall that
hy(y)=0.) If hy(z,) had been negative, the analogous method would have
yielded (8,—o,)~1B; as a lower bound for 1,. Proceeding by induction,
we will finally obtain z, € K, and 4,,...,4, such that



20 R.R. PHELPS

T, +244,... 4,y € K,.

It is clear that there is a positive lower bound for the constant 1;4,...4,,
independent of y.

Returning to the function g on K, it is clear that it can be extended
to a linear functional on [K,]. In order to show that this extension
(which we still call g) is weak* continuous on M, it suffices to show that
it is weak™® continuous on the unit ball of M. (This is a consequence of
the Krein-Smulyan theorem and the fact that M is the dual of a Banach
space, namely, if NV is the linear span of A,...,k,, then M is the dual of
A(K)|N.] It is readily seen that for this it suffices to show continuity
on those y € M satisfying |ly|| <1 and e(y)=0. But the above argument
shows there exists m > 0 such that y =au—ov for u,v € K,, and 0 x<m.
Using this fact, together with the weak* compactness of K, and weak*
continuity of ¢ on K, , we easily see that ¢ is weak* continuous on M.
Since M has finite codimension, it is also easy to extend ¢ to a weak*
continuous functional on A(K)*, and this is, of course, defined by a
function in A(K) which is the desired extension of g to K.

TrEOREM 3.7. Suppose that K is a B-polytope and that F is a closed
face of K. If g is a continuous affine functional on F, then g admits an
extension to a continuous affine functional f on K.

Proor. Choose a simplex § and a weak* closed subspace M of finite
codimension in A(S)* such that K is affinely homeomorphic to (hence
may be identified with) M nS. By Lemma 3.4, there exists a face F;
of 8 such that F=MnF,. Let Fy be the smallest closed face of F,
which contains F. By Lemma 3.6, we can extend ¢ to a continuous affine
functional g, on F, (since F =M nF, is in no proper face of F,) and by
the Edwards—Lazar theorem [8] [11] we can extend g, from the face F,
to the entire simplex 8. We then let f be the restriction to K of this
last extension.

ProrostrionN 3.8. If K, is a finite codimensional slice of a B-polytope K,
then K, is a (-polytope.

Proor. By hypotheses, there exist functions f,f,,. . .,f, in A(K) such
that K,={xe K: f(x)=0, ¢=1,2,...,n}. Furthermore, there exists a
simplex S8 and functions ¢,,¢,,. . -,¢,, in A(S) such that if

M = {ye A(S)*: g)(y)=0, i=1,2,...,m},
then K is affinely homeomorphic to SN2/ ; let ¢: K - SnM denote this

homeomorphism. The restriction of ¢ to K, is an affine homeomorphism,
80 it suffices to produce hy,h,. . ., Py, in A(S) such that
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(*) P(Ky) = {yeS: hy(y)=0, 1=1,2,...,m+n}.

The functions fo@-1, ¢=1,2,...,n, are continuous on the f-polytope
¢(K) and hence, by the proof of Theorem 3.7 [¢(K) is a face of itself]
can be extended to continuous affine functions 2,,...,k, on 8. If we
define %, =g¢,, k=1,2,...,m, then it is immediate that (*) is satisfied
and the proof is complete.

4. Examples and remarks.

Almost all of the examples in this section are based on the same set,
so we first establish the notation which will be used throughout. In the
space [, of absolutely summable real sequences x=(x,)5_;, we let

8 = {#: x,20 for each n and >x,=1}.
We consider [, to be the dual of the space ¢ of all convergent real sequences
Y= Yu)oy, With y;=limy,. (The duality being defined by (z,y)=
Yz,Y,.) Under the weak* topology defined on !; by ¢, the set S is a
compact simplex and if J, is the sequence which equals 1 at n, 0 else-
where, then extS={d,};>,. Note that extS is weak* compact (in fact,
67:, - 61)

As we showed earlier, neither «-polytopes nor f-polytopes can be
infinite dimensional and centrally symmetric. This fact makes it easy
to show that neither of these classes of polytopes is closed under many of
the operations which preserve the class of finite dimensional poly-
topes. For instance, if K;=28, K,= —8 we see that (since it is centrally
symmetric) conv(K,;UK,) is neither an «-polytope nor a f-polytope.
The same conclusion holds for K, + K,, for the same reason. Similarly,
although the set [—1,1]< R is a one-dimensional simplex, the countable
product of it with itself (as a subset of the countable product of lines)
is centrally symmetric, hence not one of our polytopes. A final example
of this kind is the following.

ExampLE 4.1. There exist simplexes S; and S, such that S;nS, is cen-
trally symmetric and infinite dimensional, hence not a polytope.

Proor. Let x=(2-14+2-22-32-42-5_..) so that zeS. Define
8;=8—z and let S,=x—8=—8; . Both S; and S, are simplexes, and
8;nS, is centrally symmetric. It is readily verified that for n>1,
2-n-1(§, —§,) is in 8;n8,, so the latter is infinite dimensional and the
proof is complete.
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ExamrLE 4.2. There exists a simplex S and a point wé& S such that
K =conv(Su{u}) is not a f-polytope.

Proor. Let u=(—1,1,2-12-22-3  ); then
K = conv(Su{u}) = cl conv(ext Su{u}) .

Since extS is weak* closed, ext K ext Su{u}, and using the fact that
every point of K has the form Az +(1—2)u, x €8, 1e[0,1], it follows
casily that ext K = extSu{u}.
Suppose, now, that K is a B-polytope, so that pK=8"nM for some
simplex §’, affine variety M of finite codimension, and affine homeo-
morphism @. For each x € ext K there exists (just as in the proof of
Proposition 3.1) a finite subset E(x)<extS’ such that ¢z e conv E(x).
Consider the point
y = (0,271,2-2,2-3 ) = L(;+u) = > 2-0-D§, .
n=32
We have
P(y) = $9(%:)+ 3p(u) € conv[E(d,) U E(u)]

and

ply) = 2 27 Dg(8,) .

n=2

Each ¢(d,) has the form ¢(d,)=37" «, 1%, of a convex combination
of elements of K(d,) <extS’, so if we let

0 mp
no= z 2—(n-1) ( z (X,n, kazn,k) 5
n=2 k=1

then u is a probability measure which is supported by extS’ (hence is
maximal) and represents ¢(y). Since

¢(y) € conv[H(6;)UE(u)] < ext 8",

the uniqueness of maximal representing measures requires that {z, ,}<
E(6,)UE(u) and hence
@(6,) € conv[E(S,) U E(u)] for n=2,3,....

But this is impossible ; the latter convex set is finite dimensional, and the
@(4,)’s are affinely independent.

ExamrLE 4.3. There exists a ssmplex S and an inferval I such that the
product S x I is not an «-polytope. Moreover, there is an interval J in 1,
such that the vector sum S +J also fails to be an x-polytope.
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Proor. Let I=[0,1] and let x,=(2-1,2-2,2-3,...) e S. Foreachn>2,
let
x, = (271,2-2,...,2-7+2 2-n+1 9-n+1 0 0,0,. . .)

y, = (271,272, .. 2-7m42 2-n41 0 2-n 2-n-1 )
Then x,,7, € S and xy= iz, + 1y,, n=2,3,.... Thus, in X xI we have
(%, 3) = e, 1)+ 3(¥,,0), n=2,3,....

We will use this fact to show that (x,,1) admits an infinite dimensional
set of maximal representing measures. Since ext§={d,}>_; and

ext(Sx 1) = extSx {0juextSx {1},

it is clear that each of the following measures u,(n=2,3,...) represents
(%o, 3) and is supported by ext (S x I), hence is maximal. (We denote the
unit mass at the extreme points (d,,1) and (,,0) by ¢, , and ¢, ,, re-
spectively.)

n—1 n—1 (-3
— k-1 — ~k-1 -k
P = 2 275Ny 1427, 14 3 27K g o+ D 27K .
k=1 k=1 k=n+1

If we let

o0 [o¢]
_ k-1 k-1
po = 2 27F g 14+ 3 27k g o
k=1 k=1

then it is clear that u, also represents (z,, &), so our proof will be complete

2

if we show that the set {u, —ug}n_s is linearly independent. We have

oo oo
— 9-n-1 —k—1 —n-1 —k—1
fn—fo = 27" Ve, — D 27K g —27n e, (4 B 2R lg
k=n+1 k=n+1
n=2,3,.... Suppose that for some N >0 and real numbers «x,,x3,...,0y

we have u=3,Y,0,(tty— o) =0. Since Sx {0} and Sx {1} are disjoint
closed subsets of S x I it following that the restriction of u to each of
these sets is also zero; in particular, restricting u to S x I yields

N o0

>, (2—”“1%:1— > 2—"’—18,0,1) =0.

n=2 k=n+1
Since the extreme points {3, }%_, of S are isolated in the weak* topology,
we can find for each n=2 a function f, in C(Sx {1}) which satisfies
(65, 1)=0 unless k=n, and f,(5,,1)=1. Applying the above measure to
f2 yields a,=0. If we then apply it to f; we obtain a3=0, etc. By induc-
tion we conclude that each «,=0 and hence the set {u,—u,} (and its
trenslate {u,}) is infinite dimensional; this shows that Sx I is not an
«-polytope. Next, let f denote the weak* continuous linear functional
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defined on I, by f(x)=3z, and choose p €, with f(p)=1. We let J be
the interval {tp: 0=t <1} and we define ¢: SxI - S+J by

o(z,t) = x+itp, =zel, te[0,1].

It is easily verified that ¢ is an affine continuous surjection, and will be
a homeomorphism if it is one-to-one. But if x+fp=y+ sp, then applying
f we get s=t and hence x=y. Thus, S+ J is affinely equivalent to S x I,
so it is not an «-polytope.

The next example shows that a finite dimensional slice of a simplex
need not be a polytope.

ExaMPLE 4.4. There exists a simplex S and a three-dimensional sub-
space M such that SnM is not a polytope.

Proor. Let M be the subspace of [, generated by w,=(2"7), u,=
(2-37) and uz=(7-27"1-9-7). Note that u,, u,, u; are in S and are
linearly independent. The intersection SN consists precisely of all
points x of the form x=ou;+ xous+ xzu; Where o;+o5+a3=1 and
z, 20 for all n. The latter condition is equivalent to 2-"x,; +2- 3", +
7.27-1.9-nx, >0 for n=1,2,3,..., and this in turn is equivalent to

(*) “1+2(§)n0‘2+(%)(%)n0‘3 z 07 n=1>2y33' ]

Since M (under the obvious mapping) is linearly homeomorphic to R3,
we see that M n S is affinely homeomorphic to the subset C of R? con-
gisting of all o= (cxq, 09, 05) Which satisfy oy +ay+oag=1 and (*). This
means that C is a base of the cone K in R? defined by (*), so C will have
finitely many extreme points only if K has finitely many extreme rays.
But the latter will be true only if the polar cone K° to K has finitely
many extreme rays. Clearly, K° is generated by the elements

(1,2(%)11, (%)(%)n): n=1,2,...,

and since these lie in the plane {x: «, =1}, the cone K° has finitely many
extreme rays only if the closed convex hull of this set of points has finitely
many extreme points. But, these points lie on the parabola

{o= (01,009, 003) * ¥y =1, 3= (Dot}

hence each of them is extreme in their closed convex hull, which shows
that C must have infinitely many extreme points.

The next example is related to Theorem 2.10, Lemma 3.6 and Theorem
3.7.
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ExXAMPLE 4.5. There exists a metrizable compact convex set K, a closed
face F of K and a continuous affine functional on F which admits no con-
tinuous affine extension to K.

Proor. Let £ be the space of all real sequences, in the topology of
pointwise convergence. Let

F={xekE: ;=0 and |r,|<2" n=2,3,...}.
Let
Fi={xekE: =1 and |z,|Sn1, n=2,3,...}.

Both F and F, are compact and convex, and hence the convex hull K
of FUF, is compact convex and metrizable (since F is metrizable).
Since F={x e K: x;=0}, it is clear that F is a closed face of K. If we
define g on F by g(x)=>=, , then g is readily seen to be continuous and
affine. Suppose that f were a continuous affine extension of g to K.
Let 6,=(1,0,0,0,...) and let

x® = (0,2-1,3-1,...,n71,0,0,0,...) if n>1.

Clearly 8, € K, 2-mx™ € F and 6; + 2" € K. Furthermore, if o, = (27 + 1)1,
then 0<«, <1 and

%y (O +2") + (1 —00y) 0 = o, 0y + (1 — ) 272" .
By applying f to both of these convex combinations we obtain

FOr+a") = f(01) + 00,7 (1 — &) g(27"2™)
= f(0)+2" Zp L2k
= f(61) +Zplok™t .

It is clear from this that f(d; +a”) - o as n - oo, so that f is not even
bounded on K.

We next consider the relationships between the class of all x-poly-
topes and the class of all -polytopes. They both contain the simplexes
and the finite dimensional polytopes, of course. The product Sx I of
two simplexes defined in Example 4.3 is (by virtue of Proposition 3.2)
a p-polytope but not an «-polytope. Similarly, the set conv(Su{u})
defined in Example 4.2 is an a-polytope (by Proposition 2.9) but not a
p-polytope, so neither class contains the other. Finally, the next example
show that the intersection of the two classes contains an infinite dimen-
sional set which is not a simplex.

EXAMPLE 4.6. There exists an infinite dimensional set which is both an
a-polytope and a B-polytope, but not a simplezx.
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Proor. Define f on S by f(x)=2,+2,—x,—x5; then f is affine and
continuous and hence K=8nf-1(0) is a S-polytope. Furthermore, the
map ¢: 8 — K defined by

p(x) = (xp 3@y +2y), 323+ 25), (o + T5), $(23+Xy), 26, X7, X, - -+ +)

is easily seen to be a continuous affine surjection, so K is also an «-poly-
tope. Finally, we see that

e = 3(02+0,), e = 3(3+35), e3 = 4(d;4+35), ey4= $3+6,)
are distinct extreme points of K and
(0: %:%’11‘: ?}’07 0903' . ') = %(62_'—63) = %(64+65)

is an element of K having two different representations by probability
measures on ext K, so K is not a simplex.
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