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QUASI-MARTINGALES

K. MURALI RAO

Introduction.

A supermartingale is said to have a Doob decomposition if it can be
expressed as the sum of a martingale and a decreasing process. A dis-
crete parameter supermartingale always has a Doob decomposition
[3, p. 104]. The problem of the existence of a Doob decomposition of
a continuous parameter supermartingale was settled by Meyer [3, p.122];
a simple and natural approach to this problem can be found in [5].
A more general problem than that of the Doob decomposition, namely,
the decomposition of a process into a sum of a martingale and a process
whose paths are of bounded variation, has been studied by Fisk [1] and
Orey [4]. Fisk settled the problem in case of processes with continuous
paths and Orey generalised it to right continuous processes. One
problem remained, that of characterizing all right-continuous quasi-
martingales (or ‘“F-processes” in the terminology of Orey). We shall
solve this problem and at the same time give an elementary proof of
Orey’s result. Little more than the definition of martingales and prop-
erties of conditional expectations are needed to read Section 1, which es-
sentially contains the solution of the problem. The remainder of the paper
is concerned with the analogy between supermartingales and quasi-
martingales. The term ‘“‘quasi-martingales” is borrowed from Fisk.

The problem was suggested to the author by Professor K. It6. The
author records his indebtedness to him for his kindness.

We shall assume that we are given an increasing right-continuous
family F(t) of o-fields. A process X(¢) is said to be adaptcd to F(f)
if X(¢) is F(¢)-measurable for all £. All our processes will be assumed
adapted to F(t). The parameter set is always the set of non-negative
real numbers. Unless otherwise mentioned all random variables con-
sidered are assumed to have finite expectations.

For definitions and properties of martingales etc. we refer to [3].
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DeriniTION 1.1. We say that a process X(¢) has a Riesz decomposition
if
X(@t) = Y(@)+ Z(@),

where Y (f) is a martingale and Z(¢) a process such that
E(|Z(t))) -0 ast— oo,
The Riesz decomposition is essentially unique. If
X(t) = Y () + Zy(t) = Yo(t) + Zy(2)
are two Riesz decompositions of X(¢), we must have
E(|Y#)—Y,(t)]) >0 ast—oco.

However, |Y,(t)— Y,(t)| being a submartingale, E(|Y(t)— Y,(¢)|) is a
non-decreasing function of ¢. It follows that E(|Y,(t) — Y,(t)|) =0, that is,

P(Y,(t)=Y,t) =1 for every ¢.

DeriniTiON 1.2. We shall call a process X(f) a quasi-martingale iff
there exists a constant M such that

SUp 31 cicn E(|X(ti) _E(X(ti+1)|F(ti))l) =M,

where the supremum is taken over all finite sets ¢, <¢,... <¢, of non-
negative real numbers. If for a quasi-martingale X(f) we have

lim, , E(|X(t)]) =0,

we shall say that X(¢) is a quasi-potential.

Obvious quasi-martingales are the following: martingales; super-
martingales X(¢) such that inf E(X(f)) > — oo; sub-martingales X(¢) such
that sup E(X(t)) <oo. It is obvious that the sum and difference of two
quasi-martingales are again quasi-martingales.

An ordinary potential is a quasi-potential. The difference of two

potentials is a quasi-potential.

TreEOREM 1.1 (Riesz decomposition). Every quasi-martingale can be
written in essentially one way as the sum of a martingale and a quasi-
potential.

Proor. We have already seen that Riesz decompositions are essentially
unique. We need only show the existence.
Let s;<s,<...<8,<... be any (fixed for the present) strictly

increasing sequence with lims, =oco. Put
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A6) = X(s;) — B(X(51,)1F(s))
X(-) being a quasi-martingale implies 3;E(|4(7)|)S M. Let ¢ be any

fixed real number and let

Y(i) = B(X(s)|F(1)) .

For s;=t we have

BAG)F®) = Y)Y 6+1).
Therefore

E(1Y (@) - Y (i+1)]) = E(A()])
which implies that

SE(1Y(0) = Y (i +1)]) < oo
It follows that
q(t) = lim,;_, o, ¥(¢)
exists almost surely and in L;. The L,-convergence of Y,(¢) obviously
implies
E(q(t)| F(s)) = lim;_, o B(Y,(5)| F(s)) = lim;_,, B(X(s;) | F(s)) = qs)
that is, ¢(¢) is a martingale. Now we show that
B(IX(s)—q(s)) >0 as 5; > oo
Given £>0 we can choose 3, large enough so that
ngioE(!A('i)l) < e.
Let kz4,. Since g(s;) is the limit in L; of ¥ (m) we can choose m+1
(depending on k) with
E(lg(sy) — ¥ y(m+1)]) < fe.

We then have
(L.1) E(1X(s) —q(sp)l) = E(|X(s) = Yg(m+1)]) + e

Also, for j >k,
so that
E(1A())) 2 E(|Yo(j)— Yo(j+DI).
Hence
B(X(3)~ Yy m+ 1)) £ SgjanB( Y 50) = Y li+ 1))

< SisisnB(14(5)]) £ Zipsi BIAG)) S te

by the choice of i,. Comparison of the last inequality with (1.1) shows that

Math. Scand. 24 — 6
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lim,_, o, B(|X(s;) —gq(s;)]) = 0.

Thus we have shown the following: To any sequence s; <s,< ... strictly
increasing to oo there corresponds a martingale ¢(f) such that

E(|X(#)—q(t)]) >0 ast—oo

along the sequence.
Consider the sequence 1,2,3,... . Let Y(¢) denote the corresponding
martingale such that

E(|X(n)—Y(n)]) >0 as n—>oo.
We claim that
limt-éooE(lX(t)'— Y(t)[) =0.

Otherwise there would exist a strictly increasing sequence t,<f,<...
increasing to oo such that

lim; , JE(|X(t;)—Y(t;)]) = ¢

for some ¢>0. Superimpose this sequence with 1,2,... and let the
resulting sequence be s;<s,<..., where s, 1 c. Let R(f) be a mar-
tingale such that

lim,_, o B(|X(s;) - B(s;)]) = 0.

T—»00
Now Y(t) — R(t) is a martingale and so E(] Y (t) — R(¢?)|) is a non-decreasing
function of ¢. However, we have
E(|Y(n)-R(n)]) = B(|X(n)-Y(n)| + E(|X(n)— R(n)]) .
The right hand side tends to zero by the choice of the martingales
Y (¢), R(¢). Therefore
P(Y(t)=R() =1 for every ¢.

This implies that E(|X(s;)— Y(s;)|) > 0 as s; > oo, and this is against
the choice of the sequence k. To complete the proof, put Z(¢) = X () — Y (¢).

In the following X(¢) will denote a quasi-potential. We note that for
every ¢ and every sequence ¢, <t,< ... strictly increasing to o we have

(1.2) limy,_, o, E(X(t;) | F(t)) = 0 a.s.

and in L,. That the limit exists has been shown in Theorem 1.1. The
limit can only be zero since

ImE(|X(#)]) =0 asi—>oo.
Put for every £k=0,1,2,..., n=0,1,2,. ..,
(1.3) A(k,n) = B(X(k2)— X((k+1)2-")|F(k2-")) .
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By the definition of a quasi-potential we have

(1.4) sup, S, B(1A(k,n)]) £ M < oo .

It is easily shown, using (1.2), that

(1.5) X(i2-") = E(Z,.5:4(k,n)|F(i2—m)) .

Let the potentials X ,*(¢) and X_"(f) be defined by
X, Mt) = Zpztomprn B(A* (k)| F (1)) ,
X _Mt) = Zrztomsr B(A=(k,n)[F(D)) ,

where [27¢] denotes the largest integer smaller than or equal to 27 and
z+=max(x,0). We shall show that X 7(¢) is indeed a potential. That
X _(t) is a potential follows similarly. We have if s=<t,

E(X ,™t)| F(s))
= Zrztongr1 B(A*(k,n) | F(9)) £ Zpztomarn B(A*(k,n) | F(s))
= X_."™s).

This shows that X ,*(¢) in a supermartingale. Also

E(X+"(t)) = Ek;[znz]ﬂE(A +k, n))

is trivially right continuous and tends to zero as ¢ — oco. Thus there
certainly exists a right-continuous-with-left-limits modification of X ,*(¢);
however, we do not need this fact.
Next we shall prove that X *(¢) £ X ,"+(¢) a.s. If 122 ¢ < (44 1)277,
we have
X ™t) = Skzina B(A¥(k,n) [ F(D)) -

Suppose 2i2-+D < ¢ < (204 1)2-+D, Then
X () = zkgzi+1E(A+(k>”+ 1)|F(t))
= B(A+(2i+1,n+ 1) | F({t)) + Sz B(AH(k,n+ 1) | F(t))
= E(4+(2i+1,n+1)| F(t))+
+ Droinn E({A(2k,n+ 1)+ 442k + 1,0+ 1)}| F(2))

2 s B({A+(2k,n+ 1)+ A+(2k+ 1,0+ 1)}| F(2))

2 Sisin B({A2k,n+1)+ A2k +1,n+ 1)} F(2)
because (z+y)*<zt+yt,

= Sioe1 B(B({A(2k,n+ 1)+ A(2k+1,n+ 1)} | F(2k2-+D)) | F(t),

because F(2k2-+D)> F(t) for kzi+1,
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2 Siin B({B(A(2k,n+1)+ A2k + 1,0+ 1)| F(2k2-0+)}+ | F(1)) ,
because E(f+|B)= Ef|B)*,
= s B(A(k,n)* | F(8) = X, ™¢),

because E(A(2k,n+1)+A4(2k+1,n+1)|F(2k2-"+D)) is equal to A(k,n).
This finishes the proof in case 22-®+) < ¢ < (27+1)2-0+D, If
(21 +1)2- V<t < (¢4+1)2" the term E(A+(2i+1,n+1)|F(f)) does not
occur in the expression for X "+1(¢); except for this, the proof is identical.
The proof that the X_7(f) are increasing is absolutely similar. Define

X, () = sup, X, ™t), X_(t) = sup,X_™1).

If we had taken X ™, X_"™ as right continuous, then X, X_ would
necessarily be right continuous, by Theorem T16 p. 99 of [3]. In any
case X () is defined outside of a set of zero probability which may
depend on ¢. The inequality (1.4) implies

sup, B(X M0)+ X _™0)) = M .

Therefore X ,(f) and X _(¢) are non-negative supermartingales; (1.4) also
implies that
limy_, o B(X (1) + X_7(t)) = 0

uniformly in %, which in turn means that X _(f), X_(¢) are potentials.
If r=142-% is a dyadic rational, we have from (1.5)
X(r)= (X )= X 1) = AG2%,n)
so that

E(|X(r)—(Xy(r)—X_(r))]) £ lim inf B(|452"*,n)|)

n—»o00

lIA

lim inf # (‘X(r)—X (7’—{—%)

):

Now we note that E(X_(¢)) and E(X_(t)) are right continuous functions
of t; this is easily established. The last inequality together with this
fact implies:

Nn—>00

TaEOREM 1.2. If X (1) is a quasi-potential and mean right continuous,
that s, if
limg 0 E(| X (t+h)—X(t)]) = O for every ¢,

then there exist two potentials X ,(t), X _(t) such that
E(|X(t)-X () +X_(t)]) = 0 for every t.
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2.

We shall now investigate the similarities between quasi-martingales
and supermartingales. Note that every finite set of random variables
with expectations is trivially a quasi-martingale. Lemma 2.1 below
gives an inequality similar to the supermartingale inequalities.

Lemma 2.1. Let F; be o-fields and let X, be adapted to F,, 1<i<n.
Assume that each X, has finite expectation and put
Ai=X — B 7,+1]F1J)7 15i€n—-1, 4, =X
A,(+) = Zi, 4% A,(=) = 37,4,

n

Then for every 4> 0,
(2.1) 2P(maxX;21) £ 31E(4;%) + E(X,/maxX;22) £ E(4,(+)).

The inequality (2.1) is not as simple-minded as it looks. We shall
see this in a moment. Since (—z)*t=a~ it follows at once from (2.1)
(changing X, to —X,) that
(2.2) APminX;< -1) £ 3"1E(A;7) — B(X,: minX,;< —1)

< B(4,(-)) .
If the X, form a supermartingale, then 4,=4;* and 4,-=0, and hence
(2.1) and (2.2) reduce to (2.3) and (2.4) below:

(2.3) AP(maxX,=1) = E(X,)-EX,)+HEX,: maxX,;21)
= E(Xy)+EX,),
(2.4) AP(minX,;<-1) = —HE(X,:minX,<-1) £ B(X,).

Suppose now that #,;,7,,... is a sequence of independent random
variables with finite variances and vanishing expectations. Let C,,C,,. ..
be a non-increasing sequence of positive constants. For an arbitrary
but fixed integer NV, put

Xy = CRyilm+ ... +ny)?  0=isn,
and let F; be the o-field generated by 7,,. . .,%,,;. Independence clearly
implies
d; = X;— BE(X ;| Fy)
= (ngg - C§V+¢+1)(7]1 +.oo Fed)? — 0%v+i+1E(77%v+i+1): 0si=n—-1,
so that
Ai+ § (C%V+i'—0%\7+i+1)(771+ L +77N~+i)2 .
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An application of (2.1) yields

RPmaxy geninCOxlm+ ... +ml22)
= A2P(max X, =A%)
S 30Ok — CRan) B+ o 4+m30) + OXn B + - +1yn)
= O Em?+ ... +n5°) + 211}73}\41 CirE(n,?) ,

which is the inequality of Hajek—Renyi [2, p. 242].

Proor or LeEmma 2.1. For any ¢ <n—1, if we replace in
(%) 4+ X,

A;+ by A; for j =1, the resulting expression is smaller than or equal to
(*). Thus
E(Z2i4;5+ 4,1 F) 2 Sicia it + X, 2 X,
If B; denotes the event that ¢ is the first integer for which X,= 1, we
get
APmaxX,;21) = A3, P(B;) = 2;E(X;: B))
< 3 E(B(SpZ 4t + 4,0F): By)
S SVEEALY) + BE(X,:UBy).

For definitions of the stopping times 7' and the related o-fields F(T')
we refer to [3, pp. 65-74]. It is known that for a right continuous
process Z(t) the function Z(7T') is measurable for every stopping time 7'
with respect to the o-field F(T').

DEeriniTION. Let 7 denote the collection of all stopping times. A
right continuous process Z(¢) is said to belong to the class (DL) iff for
each non-negative integer N the collection {Z(T'AN), T' € Z } is uniformly
integrable; it is said to belong to the class (D) iff the collection

{Z(T'AN),T € 7, N any non-negative integer}
is uniformly integrable.

A supermartingale X(t), such that E(X(¢)) is a right continuous func-
tion of ¢, has a right-continuous-with-left-limits modification [3, p. 95].
The results of the last section therefore show that a mean-right-con-
tinuous quasi-martingale always has a right-continuous-with-left-limits
modification. We shall henceforth assume, unless otherwise stated, that
all processes considered are right continuous and have left limits at
every time point.
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DEerINITION. A right continuous process 4(t) with almost surely non-
decreasing sample paths and P(A4(0)=0)=1, is called an ¢ncreasing
process. An increasing process is called integrable iff supE(A(t)) < oo;
it is called natural iff

B(JY()dA(t) = B(fgY(t—)dA®)

for every bounded, positive martingale Y (f) and every s> 0. The proof
of the following theorem can be found in [3, pp. 105-122]:

TaEOREM 2.1 (Meyer). 4 supermartingale X (t) has a Doob decomposition
(2.5) X(0) = M) — AQ)

where M(t) is a martingale and A(t) an increasing process, if and only if
X(t) belongs to the class (DL). There then exists a decomposition for which
the process A(t) is natural, and this decomposition is unique.

REMARK. Suppose X(¢) is a non-negative supermartingale of class
(DL). Then M(t) is obviously non-negative and E(A(t))<E(M(t))=
E(M(0))=E(X(0)). Therefore A(#) is natural integrable increasing.
Consequently, X(t) belongs to the class (D) iff M(f) is a uniformly
integrable martingale.

DEriNITION. A process M () is called a local martingale iff there
exists an increasing sequence of stopping times 7', such that

1. P(T,=n)=1, P(T, —> c)=1;
2. M(tAT,) is a uniformly integrable martingale for each n.

The following theorem is due to K. It6 and S. Watanabe [6].

THEOREM 2.2. Let X (t) be a non-negative supermartingale. Then we can
write

(2.6) X(t) = M(t) - A() ,
where M(t) is a local martingale and A(t) a natural integrable increasing
process. This decomposition is unique.
Proor. Since X(¢) 20 is a supermartingale, we have
(2.7) P(supX(f)<oo) = 1.
Define the stopping times 7', by
T, = {inf(t: X(t)zn)} an.
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Then T,=<7T,,, and (2.7) implies that P(T, - o)=1. Put X,(f)=
X(@tAaT,). Then X, (¢) is a supermartingale of class (D) because

0=X,t) =X(T,)vn.
By the Remark following Theorem 2.1 we can write
(2.8) X,(t) = Mu(t) — Ay(t)

where M, (t) is a uniformly integrable martingale and 4,(¢) is a natural
integrable increasing process. Also X, (7T,At)=X,(t). Since M, (t)
is a uniformly integrable martingale, so is M, (T ,Af). A, 1(T,At)
being the stopped process (at time 7',) of a natural process is itself
natural [3, p. 112]. The uniqueness of the decomposition implies that

M, (T at) = M,t) for all ¢,
A, (T at) = A4,0¢) for all ¢.

The processes M(t), A(¢) defined by
M@y =M, if t=T,,
A@) = A,¢) if t=T,,

are therefore well-defined. Clearly M(¢) is a local martingale and A(z)
is increasing. Since

E(A@t)) = lim,,_, (E(A@t): T, =1)
= lim,_ , E(A4,():T,2t)

< lim,_, (4,(8)

< lim,_,  B(X,(0)) = lim,_, . B(X(0)) = E(X(0)),

we see that A(t) is integrable. If Y(¢) is any positive bounded martingale
we have

B([{ Y (s)dA(s) = limn%E(on(s dA Tazt)
=limn_mE( (s— )dA (): T, 21)

a2t
= lim,_, , B(J5 Y (s —)dA(s): Ty =1)
= B([§ Y(s—)dA(s)),

proving that A(f) is a natural process. The uniqueness of the decom-
position is established similarly.

A non-negative local martingale M(¢) is necessarily a supermartingale.
Indeed if s<t and A € F(s),
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EM@): A) = lim,,_,  E(M(1): Q[ T,2t)
= lim,_, (E(M(tAT,): AT, 21)
< limn_,mE(M(tATn) €T, 2 s)
= lim,_, JE(M(sAT,): A,T,=s) (since M(taT,) is a
martingale)
= E(M(s): %) .

Therefore the difference of two positive local martingales is necessarily
a quasi-martingale. The results of Section 1 and Theorem 2.2 therefore
lead to

THEOREM 2.3. 4 right continuous process X(t) 1s a quasi-martingale
if and only if it has a generalised Doob decomposition

X(@) = Y(t) + My, () — B(t),

where Y (t) is a martingale, M,,,(¢) ts the difference of two non-negative
local martingales, and B(t) is the difference of two natural integrable in-
creasing processes. This decomposition is unique.

REMAREK. Being the difference of two integrable increasing processes,
B(t) has paths of bounded variation and the expected total variation
of B(t) is finite.

Certain results not obvious from the definition of a quasi-martingale
or the fact that it is the difference of two super-martingales follow from
the decomposition proved in Theorem 2.3. Our starting point in this
section is the decomposition

(3.1) X(t) = M(t) — B()

of a quasi-martingale into a local martingale and a natural process
with expected total variation finite. This decomposition is unique.
We have

TuEOREM 3.1. Let X(t) be a quasi-martingale (right continuous and with
left limats) with the decomposition (3.1). Then
1. X(t) belongs to the class (DL) if and only if M(t) is a martingale; ot
belongs to the class (D) if and only if M(t) is a uniformly integrable
martingale.

2. Let for each natural integer k the stopping time R be defined by
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R, = {inf(t: | X(¢)|2k)}Ak.

Then X(t) belongs to the class (D) if and only if {X(R,)} is uniformly
integrable. Thus, if X(t) has continuous sample paths, then

X(t)e (D) <> kP(sup,|X(t)|2k) >0 as k> oo .

Proor. 1. M(t) being a local martingale, there exists a sequence 7',
of stopping times such that M(7, At) is a uniformly integrable martingale
for each n. If X(¢) belongs to the class (DL) so does M(t) and therefore
{M(T,At), all integers n} is uniformly integrable for each t. If s<t and
B e F(s) we have

B(M(t): B) = lim,_, o B(M(tAT,): BT, 2t)
= lim, , E(M@¢AT,): BT, 2s)—
E(M@tAT,): B, s=T,<t).

- hmn—)oo

The second term tends to zero by uniform integrability and the fact
that 7, — o a.s., and hence

E(M(t): B) = lim,_, E(M(sAT,): BT,2s) = E(M(s): B) .
If further X(¢) belongs to (D), M(¢) must clearly be uniformly integrable.

2. A local martingale stopped at a bounded stopping time is easily
seen to be a local martingale. X (R, af) belongs to the class (D) since

| X(Bpat)] < kv | X(RBy)]

So does M(R;At); it must therefore be a uniformly integrable martingale.
Hence M (R,) is a martingale with respect to F(R,). The uniform inte-
grability of X(R,) implies that of M(R,). It follows that M(t) is a
uniformly integrable martingale and this is true iff X(f) belongs to the
class (D). Here we have used the easily proved fact that R, tends to
infinity with probability one; this follows, for instance, from the decom-
position given in Theorem 2.3.

TarorEM 3.2. Let X(f) be a quasi-potential and suppose |X(t)|=C
where C is a constant. Then in the decomposition

(3.2) X(t) = E(B(«)| F(t)) — B(t) = M(t) — B(t),
where B(t) 1s natural, we have
E(B()?) £ 2CE(V),

where V is the total variation of B(t).
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Proor. The decomposition (3.2) clearly exists. Put
Alk,m) = Ic2 n) E(X k+l /F (k2- n))

The naturalness of B(t) implies that the B(oc,n) converge to B(co) weakly
in L,. We have

E(|B(co,n)|) £ 3, E(|A(k,n)|)
< 3, E(1B((k+1)2-") — B(k2-")))
< EW).
Define
Bk+1,n) = 3;,4(j,n) ,
M(k,n) = E(B(co,n)|F(k2-m)) .

It is easy to verify that
B(k,n) + X(k2-™) = M(k,n) .

If X(¢) is square-summable so is A(k,n) for all k,n. The same is true of
B(k,n). Assume now that |X(f)] £C. Using the fact that B(k+1,n) is
F(k2-")-measurable we can easily verify that

E(Eng—l(B(k+ 1,n)— Bk, n))( (((k+1)2 —n)+X(k2_n)))
= 2E(M(N,n)B(N,n)) — E(B*N,n))
E(M(N,n)B(N,n))+ E(B(N,n)X(N 2-%))
= E(M(N,n)?)— E(M(N,n)X(N2-)) + E(B(N,n)X (N 2-"))
= B(M(N,n)?) - E(X(N2-)?).

This implies that
E(M(N,n)*) < B(X(N27?)+ B(Zy<y-114(k,n)| 2C)

2CE(V)+E(X(N2")2) .

A HIA

As N - o we get, since X(f) ~ 0 a.s. as ¢t > oo,
E(B(co,n)?) £ 2CE(V).

B(cc) is the weak limit of B(co,n). Therefore
E(B(0)?) = 2CE(V).

We are now justified in making the following calculations which lead
to the “Energy formula’:
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X(¢)
E(f?(M(tHM(t—))dB(t) —E(f7(B(t)+ B(t—))dB(t))
(

THEOREM 3.3. Let X(t) be a continuous quasi-martingale. Then in the
decomposition (3.1), M(t) and B(t) are continuous.

Proor. Let R, ={inf ({: |X(¢)| 2k} A k. Then R, incrcases to o a.s.
Putting X, () = X (R, At), we have | X, (¢)| k. The process X,(t) is the
sum of a martingale and a quasi-potential. This martingale is bounded
by % (see the proof of the Riesz-decomposition). It follows that the
quasi-potential is bounded by, say, 2k. Hence by Theorem 3.2, the
natural process is square summable. We are therefore justified in
making the following calculations. Write

Xi(t) = My(t) — By(t) .
‘We then have

E([3(X(t)— Xy(t—))dBy(t)) = B(& (Bt —)— By(t)dBy(t)) -

The left side is zero by continuity and the right side is the expectation
of the sum of squares of the jumps of B,(¢). It follows that B, (t) is
continuous and hence M,(f) is continuous. By the uniqueness,

M, () = M(tAR,), Bu(t) = B(IAR}).

ReMAREK. If X(¢) belongs to the class (D) and is continuous, Theorem
3.3 gives Fisk’s result.
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