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THE EXISTENCE AND UNICITY OF BEST
APPROXIMATIONS

E. W. CHENEY and D. E. WULBERT

I. Introduction. Terminology and notation.

One of the central problems in approximation theory may be described
thus: a linear subspace P (whose elements are termed ‘“approximants’)
is prescribed in a normed linear space K, and for each f in £ we seek its
best approximations in P. The latter are the elements p in P for which
IIf —pll=dist(f,P). If at least one such best approximation exists for
each f in &, then P is called an existence space, or briefly, an &-space.
If each f in E possesses at most one best approximation in P, then P
is called a unicity space or a %-space. Subspaces having both properties
are called &%-spaces. In the literature they are sometimes called Ceby-
Sev-subspaces. It is desirable to have general theorems which describe
the &-, the -, and the &% -spaces and to have concrete results of this
type in the normed linear spaces of greatest interest in analysis, such as
C[X] and L;[X]. There is also some interest in theorems which charac-
terize best approximations, as such theorems are basic in studying the
unicity problem.

These matters have been studied in a general setting by R. C. James
[6], K. Fan and I. Glicksberg [1], R. R. Phelps [11], and by Ivan Singer
in a long sequence of papers of which we mention two here [17], [18].
In the particular spaces C' and L, the most recent investigations are those
of A. L. Garkavi [2], [3], S. Ya. Havinson [5], B. R. Kripke and T. J.
Rivlin [9], R. R. Phelps [11], [12], [13], V. Ptak [14], and Ivan Singer
[18], [19]. The present paper continues these studies. We are especially
interested in obtaining characterizations of the &-, the %-, and the &%-
subspaces of C[X] and L;[X] by intrinsic properties of the approxima-
ting functions. In particular, we have sought theorems in which the
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zero sets of the approximants play a dominant role. The classical theorem
of Haar (Corollary 14 below) affords a model: An n-dimensional subspace
P of C[X] is a %-space if and only if each p € P\ {0} has a zero set con-
taining at most »—1 points. Several new theorems of this type are
given below.

In Section IT a number of results concerning general linear spaces is
collected. In many instances these theorems are elementary yet useful;
some proofs are given in outline only.

Section III is devoted to approximation in C[X]. A dimension-free
version of Haar’s Theorem, similar in spirit to one given by Phelps in [12],
is proved (Theorem 10).

Section IV concerns the Lebesgue space L,[X] over an arbitrary
measure space. The %-subspaces of L,[X] are characterized in a manner
fully analogous to the characterization in C[X] (Theorem 21).

Section V concerns the space C[X]nL,[X] endowed with the L;-norm.
The %-spaces are again characterized (Theorems 22-24). The %-spaces of
finite dimension or finite codimension are studied especially (Proposi-
tions 28ff.). Of special interest is a characterization of the finite-codi-
mensional %-spaces which possess a continuous metric projection (Theo-
rem 35). The paper concludes with a list of open problems.

A summary of notation is given here. E denotes a linear space, often
topologized or normed. E* denotes the linear space of continuous linear
functionals on E. X denotes a set, often furnished with topological or
measure structure. C or C[X] denotes the space of bounded, continuous,
real-valued functions on X, normed by |/f|l.=sup|f(z)]. C; or C,[X]
is the subspace of C consisting of f which satisfy [|f| < co, renormed by
Iflly=F1f|. For a set 4, A is the closure, co4 is the convex hull of 4,
co A is the closure of co4, ext A is the set of extreme points of 4, and
card A is the cardinal number of 4. If f is a function then

Z(f) = {z: f(2)=0}, S(f) = {=: |[f @) <[]} »
crit(f) = {x: |f()|=fllo}, D(f) = {x:fis discontinuous at z} .

If P is a linear subspace of E then Pt={p e E*: p(p)=0 for all p e P}.
If E is normed, then

dist(f,P) = inf{||f—p|: pe P}, P° = {fek:|f|=dist(f,P)},
S ={feB:|fls1}, S* = {peE*:|g|=1},

and E[P is normed by putting |||f+ P|||=dist (f, P).
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II. General theorems.

In the following lemma, F is a locally convex topological space, and
E* is its conjugate space, topologized with the o(£*, E)-topology. Let P
be any linear subspace of £, and let B denote an equicontinuous subset
of E*. A functional A is defined on E by the equation A(f)=
sup {p(f): ¢ € B}. Finally, for each fe E, we define B,={p e B: ¢(f)=

A(f)}-

1. LemMA. For an element f of E the following are equivalent:

(1) A(N)ZA(f~p) for all pe P,
(2) P*necoB; is nonempty.

Proor. Assume (2) and seclect ¢ € PncoB;. Then there is a net
¢* € coB; such that ¢* - ¢. Each ¢* is of the form ¢*=3,1,*¢,%, with
A7>0, 3, A%=1, and ¢, € B;. Thus for arbitrary p e P we have

A(f-p) 2 p(f—p) = ¢(f) = limg*(f)
lim3, 29 (f) = Uim3;2,5A(f) = A(f).

For the converse, suppose that (2) is false. The set P* is closed and
convex, and the set ¢coB; is compact and convex, by Theorem 18.5 of [8].
By a standard separation theorem [8], these two sets can be strictly
separated by a continuous linear functional, L. Since the conjugate of E*
under the topology o(E*,E) is E [15, p. 33], there exists an element g € £
such that L(p)=¢(g) for all p € E*. Hence g has the property

v

min {p(g): ¢ € co By} > max{p(g): ¢ € P*}.

If g ¢ P, then by the same separation theorem there would exist an ele-
ment ¢ € P* and ¢(g) > 0. Since Ap (for 1>0) has the same properties,
it would follow that max {p(g): ¢ € P!} = + co. Since this is impossible,
g € P. By Theorem 18.5 of [8], coB;, is equicontinuous. Hence the func-
tional 6(h)=min{p(h): ¢ € coB,;} is continuous. Since 0(g)>0, there
exists an element p € P such that 6(p) >0. Let B,={p € B: ¢(p)>310(p)}
and B,=B\B;. Then sup{p(f): p € By}=A4(f)—¢ for some ¢>0. Let
A>0. Then for ¢ € B; we have

o(f—2p) = A(f) — 346(p) ,

while for ¢ € B, we have

o(f—2p) = A(f) — ¢ + Ap(®)] -
Hence for appropriate 2 we obtain A(f—Ap) <A(f).
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Apropos the hypotheses of Lemma 1, we note that if E is a barrelled
linear topological space, then every o(£*, E)-bounded set in E* is equi-
continuous.

In the next result the setting is the same as for Lemma 1, except that
P is now finite-dimensional.

2. LEMMA. For fe E the following are equivalent:

(1) A(f)=A(f—p) for all pe P.
(2) PtncoB; is nonempty.

Proor. The implication (2) =- (1) follows from Lemma 1. For the
converse, assume (1). By Lemma 1 there is an element ¢, in PtncoB;.
Hence there is a net ¢* € co.B; such that ¢* - ¢,. Put C;={p|P: ¢ € B;}.
@|P denotes the restriction of ¢ to P. Then ¢*|P e coC; and ¢*|P —
@o| P=0. Since O is a compact subset of the finite-dimensional space
P*, 560}:006}. Hence 0 € coC,, and P*nco B; is nonvoid.

In the next result, ¥ is a pseudonormed linear space, and P is a linear
subspace of £. The unit sphere of £* is denoted by S*. For any fe E,
we write

Ay = {peS*: o(f)=Ifll}, Nsig) = sup{p(g): g 4,}.

The set of extreme points of a convex set K is denoted by ext K. Observe
that ext 4,<ext S*.
The equivalence of (1) and (2) in this theorem is a result of I. Singer [17].

3. PropositiON. For fe E the following are equivalent:

@) WA If—pl for all pe P.

(2) A;nP* is nonempty.

(3) For each p € P there exist ¢, € ext Ay and 2;,> 0 such that

ili = ]. a’nd
1=1

(4) NAf)S Nyf—p) for all p € P.

(6) Ny_p(f) SN, (f—p) for all pe P.

<1.

lei pu(p)

Proor. (1) == (2). This follows from Lemma 1 by taking B to be S*
and observing that B, is a convex set which is compact in the o(E*, K)-
topology.

(2) = (8). Let @, be an element of A,nP*. By the Krein-Milman
Theorem [8, p. 131] ¢, is in the o(E*, E)-closure of coextA,. If pe P,
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then the set U={pe E*: |p(p)| <1} is a o(E*, E)-neighborhood of 0.
Thus there is a point y in (@,+ U)ncoext A,. We can write y=3,;4;¢,,
with 1,>0, 3,4;=1, p;eextd,, and |(py—g@y)(p)|<1l. Equivalently,
122 0i(p)l < 1.

(3) = (4). For each pe P and &>0 there exists p=3,A,¢, with
p;eextA;, 1,>0, 3;4;,=1, and |p(p/e)| < 1. Hence ¢(f)=||f|| and ¢ € 4.
Thus

Nif—p) 2 o(f—p) = [Ifll—@®) > Nyi(f)—¢.

Hence N (f—p) = N(f).

(4) = (56). Ny ()= NAf)SN{f—2) = N;_,(f— D)

(5) = (1). If (1) is false, then for some p e P, ||f—2p| < |f—pl <IfI-
Let g € A; . Then ||f—pll=g(f—p)=i¢(f) + dp(f— 2p). Since ¢(f—2p)
<||f—pl, it follows that @(f)>|f—p|. Hence N, ,(f)>N, ,(f—p), in
denial of (5).

In the next result, ¥ is a normed linear space and P is any linear sub-
space of E. The symbols 4, and N, have their former significance, and
p* denotes {p € B*: ¢(p)=0}.

4. ProposiTION. Let f be an element of E having 0 for a best approxi-
mation tn P. For p e P the following conditions are equivalent:

@) IA=1f =2l

(2) nextAf_p 18 monempty.

(3) Ny _p(f)=Nsp(f—p).
(4) A _,NP=A4,nP.

Proovr. (1) = (2). If (1) is true, then 1p is also a best approximation to
f. By the Krein-Milman Theorem there exists an element ¢ in ext A;_; ).
Thus

1Al = Ifl+ 3If -2l = d9(f)+30(f—p) = (f—ip) = If -2l = IfIl-

Since |p(f)| < ||fll and |@(f—p)|<[f—pl=]/Il, it follows that ¢(f)=I//]
and that ¢(f—p)=|fl. Thus ¢(p)=0 and ¢(f—p)=|f—pl. Now if
@= 4@, + 3@,, with ¢, € 4;_,, then from the above we have

10— 1)+ 3ea(f— 3p) = o(f—3p) = [If -2l

Since |@;(f—4p)| S|If - pl, it follows that g,(f—3p)=|f—4p| and that
®; € As_yp)- Since g is an extreme point of the latter set, ;= g@,. Hence
@ is an extreme point of 4, ,
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(2) = (3). If pep*nextd; ,, then

Neo(f) = NAS) = Ifll = IIf=pll = Np_p(f—D)
= o(f—p) = ¢(f) = Ne(f) -

(3) = (4). If p e A;_,nP*, then ¢ € A; because ||f|| = |p(f)| =¢(f—p)=
I/=plzIfl. If pe AP, then g A, , because |f—pl|z¢(f-p)
() =IfI1Z2Ns_p(f)=N;_,(f—P)=If - pll.

(4) = (1). Since 0 is a best approximation to f, A,nP* is nonempty
by Lemma 2. By (4) 4;_,nP* is nonempty. By Lemma 2, 0 is a best
approximation to f—p, and hence p is a best approximation to f.

5. PrRoposITION. Let E be a normed linear space and let P and @ be sub-
spaces of B such that P <. Then the following are true:

(1) If q is a best approximation to f from Q, then ¢+ P is a best approxi-
mation to f+ P from Q[P.

(2) If ¢+ P 1is a best approximation to f+ P from Q|P and p is a best
approximation to f—q from P, then q+ p is a best approximation to f from Q.

(3) If P is an &-space in E and Q[P is an &-space in E[P, then Q is an
&-space in B.

(4) If P vs a U-space in E and Q[P is a U-space in E[P, then @ is a
U-space in E.

(8) If @ is an &-space in B, then Q[P is an &-space in E[P.

(6) If P is an EU-space in E and Q[P is an &U-space in E[P, then Q
18 an EU-space in K.

(7) If Pisan &-space in E and Q is a U-space in B, then QP is a U-space
i E/P.

(8) If P is an &-space in E and Q[P is a dual space, then Q is an &-space
n K.

Proor. (1) If ¢+ P is not a best approximation to f+ P then, for some
q' €@, we have dist(f—q',P)<dist(f—q,P)=||f—q|. Hence, for some
p' € P, we have |f—q —'||<|[f—¢||- But ¢'+p €@ because P<Q.
Hence this last inequality shows that ¢ is not a best approximation to f.

(2) For any ¢’ € @, we have ||f—q—p||=dist(f—q,P)=dist(f—¢',P) =<
If—¢'ll. Hence g+ p is a best approximation to f from @.

(3) This follows at once from (2).

(4) If the conclusion is false, then some fe £ has two distinct best
approximations ¢ and ¢’ from ¢. By part (1), ¢+ P and ¢’ + P are best
approximations to f+ P from Q/P. Since @/P is a %-space, we have
¢+P=q'+P. Hence ¢'=q+p for some pe P\ {0}. Thus



THE EXISTENCE AND UNICITY OF BEST APPROXIMATIONS 119

If=g—o2l = If -1 = If—4ll
= dist (f,Q) = dist(f—q,Q) < dist(f—q,P).

This shows that both p and 0 are best approximations to f—q from P.
Hence P is not a %-space.

(5) This follows immediately from (1).

(6) This follows immediately from (3) and (5).

(7) If the conclusion is false, then for some fe H, f+ P has two distinct
best approximations in @Q/P, say ¢+ P and ¢'+P. Then ¢—q' & P.
Since P is an &-space, there exist best approximations p and p’ for f—gq
and f—q' respectively. By part (2), ¢+ p and ¢’ + p’ are best approxima-
tions to f from . Since @ is a #-space, ¢+p=q'+p'. Thus ¢q—q¢' € P,
a contradiction.

(8) This will follow from (3) after establishing that any dual space M
in a normal linear space is an &-space. Indeed, for any f the closed spheres
8, with center f and radius dist(f, M)+ 1/n intersect M in weak* com-
pact sets, because M is a dual. Hence there is a point of M common to
all the spheres S,,, and this point is a best approximation to f from M.

Given a (not necessarily closed) linear subspace P in a normed linear
space F, we define

P° = {feB:|f|=dist(f,P)}.

The notation is suggestive because the elements of P° have 0 as a best
approximation in P. The next proposition records some of the elementary
properties of P°. The proof is straightforward.

6. ProrosITION. (1) P° 25 always closed.
(2) P is an &-space if and only if P+ P°=kE.
(3) P is an EU-space if and only if POP°=FH.

Let P be an &%-subspace of a normed linear space £. Thus each fe £
has in P a unique best approximation, which we denote by 7'f. The opera-
tor T is called the metric projection of E onto P, or the T'chebycheff map.
Define for 1= 0,

Pif) ={geE: T(f-9)-Tf+Tgl| =2llf-9l} .

The elementary properties of 7' and P, are summarized in the next
result.

7. PROPOSITION. Let P be an &U-subspace of a normed linear space K.
(1) If, for some fized 2, f, € P,(f) and f, — f, then Tf, — Tf.
(2) If, for some A, P,(f) contains a neighborhood of f, then T is continuous

at f.
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(3) If P°+P°<P°, then T 1s continuous.

(4) If P is a hyperplane, then T is continuous.

(5) If P° is boundedly compact, then T is continuous.

(6) If T' us continuous at the points of P°, then T is coniinuous.
Proor. (1) (| Tf=Tf IS ITf = Tf—T(f =L +IT(F=Fo) = (F=Lll +

W =Fall S AIf=fall+ 20 f = full = 0.
(2) This follows immediately from (1).

(3) If P°+P°<P° then for any f and g, (f—Tf)+(Tg—g)e P°.
Hence 0=T(f-Tf+Tg—9)=T(f—g9)—Tf+Tg. Thus P,(f)=E, and (2)
applies.

(4) In this case, elementary arguments show that 7' is linear. Hence
Py(f)=E, and (2) applies.

(5) If T is discontinuous, then for some sequence {f,} we have f, — f
yet the elements A, =f, —Tf, remain outside a neighborhood of f—17'.
If P° is boundedly compact, then we may assume (passing to a sub-
sequence if necessary) that A, — f—g for some g. Since

g = lim(f-»,) = lim(f,—%,) = lim7f,
and since P is closed, it follows that g € P. Since
If—gll = limlk,]| = lim dist(f,,P) = dist(/,P),

we have g=7f. But this is not possible, because f—g=Ilima, *f—TYf.
(6) If T is discontinuous, let f, — f and Tf, + Tf. Put g,=f,—T1f.
Then g, - f—Tf e P° but Tg,=Tf,—Tf + 0.

8. TaHEOREM. For an EU-subspace P of finite codimension in a normed
linear space H, the following properties are equivalent:

(1) The metric projection onto P is conlinuous.
(2) P° is boundedly compact.

Proor. The implication (2) = (1) is contained in Proposition 7. For
the converse, assume that (2) is false, and let {f,} be a bounded sequence
in P° which has no convergent subsequence. The cosets f,+ P are
bounded in E/P because [||f,+P|||=dist(f,,P)=|f,|. Since E/P is
finite-dimensional, we can assume (passing to a subsequence if neces-
sary) that f,+ P converges, say to f+ P, where fe P°. Let p, be the
best approximation of f, —f. Then

fo=f=Pall = dist(f,—f,P) = |[|(fu+P) = (f+P)Il| > 0.
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It follows that f, —p, - f But T(f,—p,) + Tf because

T(fn—pn)_Tf = Tfn_pn_Tf = —Pp = (fn'—f—pn)'l'(f_fn)"_’o .

An &%-subspace P in a normed linear space ¥ will be said to be an
&U*-subspace if the metric projection 7T'p of £ onto P is continuous.

9. THEOREM. Let P be an EU*-subspace in a normal linear space H,
and let Q be a subspace of E which contains P. Then the following are
equivalent :

(1) @ ts an EU*-subspace in E.

(2) Q/P is an EU*-subspace in E[P.

Proor. Assume (1). By Proposition 5, Q/P is an &%-subspace, and
we must show that its metric projection 7'y, p is continuous. Let f, +P —
f+P. Putg,=f,—T,fand g=f—-T,f. Theng,+P —g+P and g€ @Q°.
It follows that dist (g, —g,P) — 0, that |lg,, —9— T p(9, —9)|| = 0, and that
9n—Tp(gn—9) — g. By the continuity of 7',

Tpgn—Tp(gn—9) > Tplg) = 0.
Thus, g, —7'pg, - g. By the continuity of 7',
Tan—TPgn - TQg =0.
Thus dist (7,9, P) - 0, dist (T f,,— T f, P) > 0,and T, f,, + P - T, f+ P.
By Proposition 5, this implies that T'g,p(f,+P) > T o, p(f+P).

Now assume (2). By Proposition 5, @ is an &% -space, and we must
show that its metric projection 7', is continuous. By Proposition 6 it
suffices to prove the continuity of 7'y at points of @°. Let f, —~fe @°.
Then f,+P —f+P, and by the continuity of 7T, we have
To/p(fn+P) = To,p(f+P). By Proposition 5, Tyf,+P - Tyf+P=P.
Hence f—f,+T,f,+P — P. It follows that

diSt(f_fn+Tan7P) -0,
“f_fn+Tan”‘TP(f_fn_FTan)H -0 s
fn—Tan+TP(f—f1z+Tan) —)f .

By the continuity of 7'p,

TP(fn_Tan)+TP(f—fn+Tan) - TPf =0.

Since T'p(f,—Tof,) = 0 we have Tp(f—f,+Tof,) - 0. From a pre-
vious equation it follows that —7Tf,+f, —f, whence Ty f, — 0.
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The converse of Theorem 9 is not true. That is, there exists an example
of spaces P< @ < F such that P is an &%-space in K,  is an &U*-space
in B, Q/P is an &%*-space in E[P, and P is not an &%*-space in E.
Such an example is as follows. Let P be an &% -subspace of codimension
2 which is not an £%*-subspace. (See Theorem 36 below.) Let @ be a
hyperplane in K which contains P and is an &%-space. The &u*-
property of @ and @/P follows then from the general results in Proposi-
tions 5 and 8.

III. Approximation in C.

In this section X denotes a compact Hausdorff space, and C the space
of continuous real-valued functions on X with supremum norm. Given
a subspace P of C, we define as an «-set any set of the form
{z: |f(x)|=|f||} for some fe P°. Thus Y is an «-set if Y =X and if Y is
the critical point set for some function f which has 0 for a best approxi-
mation in P. With the aid of this concept, Haar’s Theorem on approxi-
mation in C can be stripped of dimensionality restrictions and given the
following form.

10. TaEOREM. T'he following properties of a subspace P in C are equiv-
alent:

(1) P is a U-space.

(2) O s the only element of P which vanishes on an x-set.

Proor. If (1) is denied, then there exists an f which has two distinct
best approximations in P, say p, and p,. Then p=}(p,+ p,) is another
best approximation to f, and 0 is a best approximation to f—p. The set
Y =crit(f—p) is then an «-set. For y € ¥ we have

+If-2l = (f—-2)¥) = 3(f—p) W) + 3(f-p)(¥) .

Since |(f—p)®)| = If —pdll=Ilf—pll, we see that (f—p;)(y)=(f—p:)¥),
whence (p; —p,)(y)=0. Thus p, —p, vanishes on Y.

For the converse, suppose that some nonzero element ¢ in P vanishes
on an x-set Y. Then Y =crit(f) for some f e P9 Without loosing gener-
ality we assume that ||f||=1 and |jg|| < 1. Following Haar’s original proof,
define A=(1—|gq|)f. If 0<0=1, then

|h—06q| < |k|+0lg] = 1—|q|+0lg| = 1.

Hence ||k —6g||<1. Since fe P°, Lemma 1 asserts the existence of an
element @ in PXnco 4;, where the closure is taken in the ¢(C*, C)-topology
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and the set 4,is defined as {§ sgnf(y): y € Y}. Here § denotes the evalua-
tion functional corresponding to the point y. It follows that |jp||<1 and
that ¢=I1im,3,A,°9,% with y,*e Y, 3,]4% =1, and sgnl,*=sgnf(y,*).
For any p e P we have

|l —pl|

v

ph—p) = p(h) = im 3;2,*h(y,*)
= lim,¥;4,°f(y") = lim,[|f| = L.

Thus dist (h, P) = 1, and all the elements 0g are best approximations to A.
It is possible to prove that dist(h,P)2=1 by assuming on the contrary
that ||h—p|/<1 for some pe P. Then for x € crit(f) we have ¢(x)=0,
h(x)= +1, and A(x)p(x) > 0. It is then possible to select 6> 0 in such a
way that ||f—0p||<1, a contradiction. This alternative proof avoids
use of the Hahn—Banach Theorem and the Krein—-Milman Theorem, but
involves more calculation.

In the preceding result the hypothesis of compactness on X can be
relaxed to pseudocompactness (every continuous real-valued function
on X is bounded).

Another characterization of the %-subspaces in C[X] has been given
by Phelps [12, p. 649]. His theorem involves the annihilator of the sub-
space and is also proved by an appropriate modification of Haar’s
original argument. In order to clarify the relationship between Phelps’
Theorem and Theorem 10 two technical terms are convenient. If ¢ is
an element of C*, then the support of ¢ is the smallest closed set 4 such
that I,<¢,. Here I, is the ideal {feC: f(x)=0 for all xe€ 4} and
¢, ={feC: p(f)=0}. Asubset of X is termed a 0-set if it is the support
of an element of P* which achieves its supremum on the unit sphere of C.
In these terms, Phelps’ Theorem asserts that a subspace P of C is a
% -space if and only if 0 is the only element of P which vanishes on a
0-set in X. The connection between x-sets and 0-sets is as follows.

11. PrROPOSITION. Every x-set contains a 0-set. The converse is gener-
ally not true.

Proor. If Y is an x-set, then for some fe P°, Y =crit(f). By Propo-
sition 3 there is an element @ in P* such that |¢[|=1 and ¢(f)=[f[. By
the Krein-Milman Theorem, ¢ is the limit in the o(C*,C)-topology of a
net 3,0,%9,%, where y,*€ ¥ and 3,|0,%|=1. Here § is the evaluation at y.
If g € C and g vanishes on Y, then ¢(g) =0. Thus Y contains the support
of . Since ¢ € P* and ¢ attains its supremum on the unit sphere at
flIIfll, it follows that its support is a 6-set.
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In order to see that a 0-set need not contain an x-set, let X be the
set of ordinals not exceeding the first uncountable ordinal Q. See, for
example, [7, pp. 24 and 59]. Give X the order topology, and define
P={feC:f(2)=0}. The evaluation functional Q annihilates P and
achieves its supremum on the unit sphere at 1. Hence the support of 0
is a 0-set. But the support of Qis {2}, and this contains no x-set.

In order to illuminate somewhat the nature of x-sets, and in order to
recover Haar’s Unicity Theorem, two elementary results are helpful.

12. LemMa. If P is a finite-dimensional subspace of C and if Y is an
o-set, then there exist points yy,. . .,y, in Y such that the corresponding set
of evaluation functionals is linearly dependent on P.

Proor. If Y is an «-set, then Y =crit(f) for some f € P°. In Lemma 2,
take B to be the set of all evaluation functionals and their negatives.
The conclusion is then that there exist points y; € Y such that 3;1,§; € P*
for some 1; with 3|1, =1.

13. LeMMA. Let P be any subspace of C, and let y,, . . .,y; be points of X
such that the corresponding set of evaluation functionals is dependent on P.
If {4,,...,4;} is a disjoint family of closed Gy-sets such that y;e€ A;
for i=1,...,k, then UA, is an x-set.

Proor. If 3;1,9;€ P+ and 3;|4;|=1, then by Tietze’s Lemma there
exists an f € C such that f(x)=sgni; forxe 4;,1=1,...,k, and |f(x)| <1
forx ¢ UA4,. By Lemma 1, fe P°. Hence U4, is an «-set.

14. CoroLrLARY. (Haar). Let P be an n-dimensional subspace of C. The
Jfollowing properties of P are equivalent:

(1) P is a %-space.
(2) O s the only element of P vanishing on n points.

Proor. If (2) is true, then every set of n evaluation functionals is
linearly independent on P. By Lemma 12, every «-set must contain
n+1 points. By (2), 0 is the only element of P vanishing on an «-set.
Theorem 10 yields (1).

Conversely, if (2) is false, then some nonzero element p € P vanishes on
a set of m points, say ¥y,...,4,. Thus {§,,...,§,} is dependent on P.
By Tietze’s Lemma, there exist closed Gy-sets 4, such that y,€ 4,. By
Lemma 13, Z(p)nU 4, is an a-set. By Theorem 10, P is not a %-space.
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The following elementary lemma, given without proof, will be useful
below.

15. LEMMA. Let A be a closed subset of a Hausdorff space X (not neces-
sarily compact). Let I be the ideal of all continuous functions on X which
vanish on A. If X\ A contains n or more isolated points, then dim (1) =n.
If X\ 4 consists of precisely n points, then dim (I)=n. If X is completely
regular and X \ A contains n or more points, then dim (I) 2 n.

16. ProrosiTioN. If P is a U-space of codimension m in C then
card[X \ crit (f)] =n for each fe P°.

Proor. If card[X \ crit(f)]>n for some fe P°, and if I is the ideal
of functions vanishing on crit(f), then by Lemma 15, dim(I)>n. Since
P is of codimension %, it contains a nonzero element p in common with I.
Thus p vanishes on the x-set crit(f), and by Theorem 10, P is not a
U-space.

IV. Approximation in L,.

In this section, a set X, a o-ring X of subsets of X, and a measure
pon X are prescribed. We denote by L, the Banach space of (equivalence
classes of) measurable real-valued functions f on X for which

171 = [ 171 < e

For fe Ly, put Z(f)={xr e X: f(x)=0}. Since f stands for an equiv-
alence class of functions, Z(f) stands for an equivalence class of sets,
which differ from each other only by sets of measure zero.

The following theorem characterizes best approximations in subspaces
of L;. The equivalence of (1) and (2) here is due to R. C. James [6, p. 291].
Kripke and Rivlin have recently proved this equivalence in the complex
case [9]. The implication (1) = (3) provides a quantitative form for
certain unicity theorems. The condition (4), which is more complicated
than (2), has the advantage that a strict inequality in (4) for all pe
P\ {0} can be shown to be equivalent to the assertion that 0 is the
unique best approximation to f. The proof of this is not included, how-
ever,

17. PROPOSITION. Let P be a linear subspace of L,. For fe L, the
Sfollowing properties are equivalent:
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(1) fe P°(that is, O is a best approximation to f from P).
(2) [psgnf= [y lpl for all pe P.

@) JIf+pI 211+ alfI+ alf+ | for all pe P. Here
A4 = A(f,p) = {e: [f(@)| <|p(x)| and f(z)p(x) <0} .
(4) Jpsgn(f+Pp)2 [z S| for all pe P.

Proor. For the implication (1) = (2) see the remarks above.
For the implication (2) = (3), assume (2), and let p be any element of
P. Define o(x) to be sgnf(x) on X \ Z(f) and to be sgnp(z) on Z(f). Then

*) [ir+niz [ 4mo+ [17+9
X\4 A

= [G+po+ [ir+p= [(r+m)o = [11+ [ 17481+ [po= [(F+p)0.
A A A A

From (2) it follows that

fpa=flpl+ fpaélfpsgnfl+ fpo
zH X\Z(H) XNZ(f)

=l fpo‘+ J po = 0.
Nz | XNaZp

Furthermore, on the set 4 we have fp <0 and |p| > |f|, so that sgn(f+ p)=
sgnp= —sgnf= —o. Hence [,(f+7p)o=0. Thus inequality (*) remains
true when the last two terms are dropped. This establishes (3).

For the implication (3) = (4) we have at once

[psentr+p) = [ 17+~ [fsen(f+)
= (1= [ = [

XNZ(f+p) Z(f+p)
For the implication (4) => (1), assume that (1) is false. Then for some
pe P we have [|f+2p|<[|f+p|<[|f]|. Define a linear functional ¢ on
L, by the equation

¢(9) =fgsgn(f+p)+ f g sgnf.
Z(f+p)
Then |jp||<1. From the inequality

IF+ 2l = ¢(f+p) = 3o(f) + 3¢(f+2p)
to(f) + 3if+ 200 < d9(f) + 3If + 2l

Al
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we conclude that ¢(f)> | f+ p|l. Hence

[rsenirem+ [ 171> [ir+0l= [(+0) senir+m)

Z(f+p)
in denial of (4).

18. CoroLLARY. Let P be a subspace of L,. Then for any f € P° and for
any p € P we have

If+2l =11 = lpll = 3lIf+ 2l =11l -

Proor. The inequality on the left follows immediately from the tri-
angle inequality. Now let 4 be the set of points x such that |f(z)| <
|p(x)| and p(z)f(x) <0. By Proposition 17

[121 =2 [ 1421 [ 0r+21=171)
A A A

IIA

2f(|f+pl—lfl)—!(lfﬂol—lfl)

= [ar+pi=ipp+ [ 0f+pi=11) s 2 [[if+pl-11]-

X\4

On the set X \ 4 we have |f| 2 |p| or fp=0. Hence

[1ol = [lr+i=171 = [lir+p1-111]-
X\4

x\4
Thus we have

Jisl = [+ [ 1o =3[ |r+p1-111]-

XN\4

In some of the proofs below it is necessary to know that the conjugate
space of L, can be identified with the space L, of essentially bounded
measurable functions, via the correspondence

o) = [f5. wels® gela fely.

This is the case, for example, when the underlying measure space is
o-finite. We prefer, however, to assume outright (when necessary) that
‘(L1*=Lm’].
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The next theorem has been given by I. Singer [17, p. 183]. It is also
a consequence of Proposition 3.

19. PropPosITION. (Singer). Assume that Li*=L_, and let P be a sub-
space of L,. Then f e P°if and only if some g € L. NP* has the properties
lgl=1 and [fg=[|f].

It is possible to show by an example that this theorem cannot be im-
proved by dropping the hypothesis “L,*=L_ . This example is due to
T. Botts and is described by J. Schwartz in [16]. Let X =[0,1], let 2
consist of all subsets of X which are countable or have countable com-
plement, and let u(A4) be the number of elements in 4. Define ¢(f)=
fzf(x)du. Then ¢ is a continuous linear functional on L; which is not
of the form ¢(f)=[fg for any measurable g. The hyperplane P =¢-1[0]
is an &% -space in L, but best approximations cannot be characterized
as in Singer’s Theorem. '

20. ProposiTioN. Let X be a nonatomic measure space such that L* =
Lo,. If P is a finite-dimensional subspace of Ly, then the following conditions
on f e L, are equivalent:

(1) fePe.
(2) fOT some geLom 92=1’ gJ—P’ and fgfzjlfl'

Proor. By Theorem 8 of Singer’s paper [18], property (1) is equivalent
to the existence of an k € L, such that A1 P, |h| <1, and [hf=[|f|. By
Lemma 2 of Phelps’ paper [13], this assertion in turn is equivalent to
property 2.

Corresponding to any subspace P in L, we define a class of sets called
“B-sets”. They are the sets Z(f) for some fe P°. The next proposition
characterizes the #-subspaces of L, in the manner of Theorem 10.

21. TugoreM. For a subspace P in Ly, the following properties are
equivalent :

(1) P s a U-space.
(2) 0 is the only element of P vanishing on a f-set.

Proor. If (1) is false, then some f e L, has two best approximations,
p, and p, in P. Let p=}(p,+p,). Then

[ar-pl=31-pl-31f—pah = 0.
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Since the integrand is nonpositive, it must vanish. Hence |f—p|=
3|f—p1 + 3| f—ps|. This shows that for every x in the f-set Z(f—p) we
must have (f—py)(@) = (f—p)(@) =0 and (p,—py)(z) =0.

If (2) is false, then the three conditions fe P°, pe P\ {0}, and
Z(f)<Z(p) can be met simultaneously. Define h=|p|sgnf. If ¢ is
arbitrary in P, then by Proposition 17 we have

qugnh = f qsgnf = qugnf— qugnf
X\ZHh) Zh)

éflql— f g sgnf
Z(f) ZWNZ()

= flql— j {lgl +gsgnf} = fiql-
Zh) ZIWNZ(f) Zh)

By Proposition 17, this inequality (for all ¢ in P) implies that k € P°.
Now let 0= 0 < 1. If (b — Op)(x) + 0, then p(z) + 0, f(x) + 0, |h(z)| = |p(z)| + 0,
and sgn(h— 0p)(x) =sgnh(x)=sgnf(x). Hence

[1n=6pl = [(h—0p) sgns < [nsgns+o [1pl = [nsgns = [l
P24

Here we have used the fact that [,|p|=0, which follows from the in-
clusion Z(f) < Z(p). Also, —0[p sgnf= 0], |p| because f € P° and Propo-
sition 17 applies. Thus the elements 0p are all best approximations to A.

V. Approximation in C,.

In this section, a set X, a o-algebra o/ of subsets of X, a measure u
on 7, and a topology 7 on X are all prescribed. We make the following
explicit assumptions:

(1) The topological space (X,7) is Hausdorff and completely regular.

(2) Every open set is measurable (that is, J <.«7), and every non-
empty open set has positive measure.

(3) Every singleton (a set with only one element) is of finite measure.

We denote then by C, the subspace of L, consisting of continuous
functions. Alternatively, C, is the normed linear space of integrable
continuous functions with norm ||f||=[|f|. Corresponding to a subspace
P in O, we define a class of sets in X called “y-sets”. They are the sets
Z(f) for fe P°. The next result is proved just as Theorem 21 except
that one must observe that the function & constructed there belongs to
C, since Z(f) < Z(p).

Math, Scand. 24 — 9
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22. THEOREM. For a subspace P of C, the following properties are equiv-
alent:

(1) P is a U-space.

(2) O ¢s the only element of P which vanishes on a y-set.

The following result is the analogue for C; of a result given by Phelps
[13] for L,. We use the notations ||g||,, =esssup|g(z)|, S, = {z: |g(x)| <||gllo}
and D,= {x g is discontinuous at x}. A subset of X i 1s termed a ““¢-set”’
(with respect to a subspace P) if it is of the form S,uD, for some measur-
able, essentially bounded, nonzero ¢ satisfying g | P.

23. THEOREM. Assume that L,*=L, . For a subspace P of O, the
Jollowing properties are equivalent :

(1) P is a U-space.

(2) O is the only element of P vanishing on a 5-set.

Proor. If (2) is false, then the conditions pe P\ {0}, Y <Z(p),
Y=8,uD, geL,, gL P can be simultaneously fulfilled. Without loss
of generality, we assume that |lg|l,=1. Define f=g|p|. Then fe O,
because D, < Z(p). If f(x)+ 0, then p(x)=+ 0, |g(x)| =1, and sgnf(x) =g(x).
Hence for arbltrary p eP,

[ir=w12 [7-p20 =[5 = [111.

Thus fe P°. Now let 0=0<1. If (f— 0p)(x)=0, then p(x)=*0, g(x)=
sgnf(z), |0p(x)| <|f(x)| and sgn(f—Op)(x)= g(x) Hence

[ir=0w1 = [ -0 = [0 = [151.

Thus P is not a %-space.

For the implication (2) = (1), it suffices (in view of Theorem 22) to
prove that every y-set contains a d-set. Let Y be a y-set. Then Y =Z(f)
for some fe P°. By Proposition 19, there exists a function g € L, such
that |||l <1, gL P, and [gf=[|f]. If f(x)=+0, then g(x)=sgnf(x) and
x¢S,uD,. This proves that the -set S,UD, is contained in the y-set
Z(f).

A subset Y of X is termed an ‘‘e-set”’ (with respect to a subspace P
of 0,) if Y is the boundary of a measurable set A4 satisfying [, p=[x 4P
for all p e P.

24, TuEOREM. Let X be a nonatomic measure space such that L;*=L_,
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and let P be a finite-dimensional subspace of Cy. The following are equiva-
lent:

(1) P is a U-space.
(2) 0 s the only element of P vanishing on an e-set.

Proor. In order to establish that (1) implies (2) it suffices (in view
of Theorem 23) to prove that each e-set is a d-set. If A is a measurable
set, such that [ p=[xp for all p e P, then define g(x) to be 1 on A
and —1 on X\ 4. Thenge L., and g1 P. Furthermore, D,uS,=D, =
boundary of 4. Hence the boundary of 4 is a J-set.

If (1) is false, then by Theorem 23, there is an element g € L and an
element p € P\ {0} such that g1 P and S,uD,<Z(p). By Lemma 2 of
Phelps [13], there is no loss of generality in assuming that g?=1. Thus D,
is the boundary of the set 4 ={x:g(x)=1}. Since gL P, we have [ ,p=
Jxup for all pe P. Hence D, s an ¢-set, and (2) is false.

An n-dimensional subspace P of C[X] is said to be interpolating if for
any set of »n distinct points z; € X and for any n real numbers ¢; there
exists an element p € P such that p(x;)=c; for i=1,...,n.

25. CoroLLARY. (Jackson—Krein). FHvery tnterpolating subspace of
C,la,b] is a %-space.

Proor. If P is an n-dimensional interpolating subspace of C[a,b] then
each function g such that ¢2=1 and g P must have at least n discon-
tinuities, because otherwise an element p e P would exist such that
sgnp=g, and then [gp > 0. In this connection see, for example, [4, p. 62].
It follows that each e-set must contain at least » points. By the inter-
polating property, 0 is the only element of P which vanishes on n or
more points. Hence by Theorem 24 P is a %-space.

If z is an isolated point of X, then let Z denote the characteristic func-
tion of the set {z} divided by its measure. Since z is isolated, {x} is open
and of positive finite measure. Thus Ze C, and [z=1.

26. LEMMA. If x is an isolated point of X, then T and —Z are extreme
points of the unit sphere S of Oy. Conversely, every extreme point of S is
an T or —Z for some isolated point x.

Proor. Let z be an isolated point and suppose that Z= }(f+g), where
NIfI=flgl=1. Then Z@)=4f(2)+3g(x). If f(z)>%(x), then [|f|>
T(x)ufx}=1. If f(x)<Z(z), then g(z)>Z(x) and [lg|>1. Thus f(z)=
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g(x) =z(x). It follows that f(y)=g(y)=0 for all y different from x. Thus
f=g9==.

For the converse, let f be an extreme point of S. If the open set
{x: f(x)+ 0} contains just one point, x, then z is isolated and f=cz.
Since [[f|=1, |¢|=1 and f= +Z. In the other case there exist two points
z; and an &> 0 such that |f(x,)| > ¢. Select open sets V, such that z; e V,,
VinVy,=0, |fl>e on V,;, and f is of constant sign on V,. Select b, e C
such that Ay x;)f(x;) >0, h;=0 off V,, and either 0<h,;<1or —15Ah,<0.
Since |,/ =1 and |f|>¢ on V; it is permissible to assume (multiplying
each A, by a small positive constant if necessary) that || <|f]| and
Sk =Jhy|. Put g=h,—h,. Since f=3}(f+9)+ 3(f—g). we shall have
a contradiction if [|f+g|=1. In fact,

[irsgt = [1remi + [irsnl + [ 1
Ve

V1 X\(ViuV2)

= [usremp + [asizmp + [ is1=1.
V1 V2

X\(V1uVy)

27. LEMMA. Let P be a subspace of C, and let f be an element of P°. If
x 18 an isolated point of X such that f(x)+0, then Z € P°.

Proor. Since fe P°, Proposition 3 implies the existence of ¢ € Pt
such that |¢||=1 and ¢(f)=|fl. By multiplying f by an appropriate
scalar, we can assume that f(x)==z(x). It follows that |f||=|f—Z| + |z
Consequently, ¢(f—Z)+¢(®) = |f— |+ [[El. Since |p(f—2)|<|f—7| and
()| < ||Z||, we conclude that ¢(Z)=|Z|. By Proposition 3, Z € P°.

For a set of functions, 4, we define Z(4)=N{Z(f): fe A}.

28. ProprosiTION. If P is a %U-space of dimension n in C,, then
card[Z(f)\ Z(P)]=n for every fe P°.

Proor. If not, the conditions fe P° and {,,...,2,1}2Z(f)\Z(P)
can be fulfilled. Let {p;,...,p,} be a basis for P. Since the equations

n
_Ecipi(xj)=0: j=1,....,m—1,
=1

have a nontrivial solution, there exists an element p in P\ {0} such
that Z(f)\ Z(P)<Z(p). Since Z(P)<Z(p), we have Z(f)<Z(p). By
Theorem 22, P is not a %-space.
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29. ProrosITION. If P is a U-space of codimension n in Cy, then
card[X \ Z(f)]=n for every f e P°.

ProoF. Suppose that fe P° and that card[X \ Z(f)]>n. By Lemma
15, the ideal I={g: Z(f)<=Z(g)} has dimension at least n+1. Every
element of I vanishes on Z(f), but 0 is the only element of P which
vanishes on Z(f), by Theorem 22. Hence InP={0}, and P has co-
dimension at least n+1.

30. PropoSITION. If P is an &-space of codimension n in C or Cy, then
card[X \ Z(P°)] = n.

Proor. Let I be the ideal of functions vanishing on Z(P°). Then
P°cl. If card[X \ Z(P°)]<n, then dim(I) <n by Lemma 15. In that
case, we could not have P+ P°-=C as required by Proposition 6.

31. TaEOREM. Let P be a subspace of codimension n in C| such that the
set A=U{X\Z(f): fe P°} is finite and such that each ¢ € P aitains its
supremum on the unit sphere of C;. A mecessary and sufficient condition
that P be a %U-space s that X \ Z(f) contain at most n elements, for each
fePe.

Proor. The necessity is established by Proposition 29. For the suffi-
ciency, assume all the hypotheses, yet P is not a #-space. By Proposi-
tion 19, there exist fe P° and pe P\ {0} such that Z(f)<=Z(p) and
Ifll=1. Let I denote the ideal of all functions ¢ € C; for which Z(p)<
Z(g). The number r=n+1—card[X \ Z(p)] is positive because

card[X \ Z(p)] £ card[X\NZ(f)] = n.

Assertion (1): dim(PtnIt)=r. Since 0%p e Pnl, we have dim(Pnl)
2 1. Also dim()=card[X \ Z(p)]=n+1—r. Hence

dim (Pt n I = dim(P+I)* = codim (P +1)
= codim (P) —dim (/) +dim (P n I)
z2n—Mm+l-r)+1l=r.

This proves Assertion (1).

Select @, € P* such that |jp,||=1=g,(f). For each isolated point x in
X, define zZ as was done in the remarks preceding Lemma 26. Observe
that if x ¢ Z(P), then z ¢ Z(f) and ¢,(Z) =sgnf(x).

Assertion (2): To each ¢ € P* there corresponds an x € 4 such that
Z e C, and |p(Z)| =|lp|. Indeed, if p € P, then by hypothesis there exists
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an element g € C; such that |jg||=1 and ¢(g)=|lgll. By Proposition 3,
g € P°. By hypothesis, card[X \ Z(g)]<n. Thus ¢ is of the form g=
3% with ;€ X\Z(g)<4. Then 1=|g|=3;lc; and |ll=|p(g)| <
S:led lp@;)| £ llgll. It follows that |@(Z;)| = |l¢ll. This proves Assertion (2).

Now we define inductively (for 7=1,2,...,7) functionals ¢, e PtnI*,
reals ¢;, and points z; € 4 in such a way that

(i) @s(@;)=0if 1<j << (this being vacuous when i=1);

(i) {@y-..,p;} is linearly independent;

(iii) [lpo+eipr+ ... +e;pll=1=[(po+erpy+ ... +¢;0)Z)l;

(iv) @4(®;) +0.
To this end, suppose that ¢;, ¢;, and x; have been defined, subject to
(i) ... @v) for all § less than ¢. If 2 <7, then by Assertion (1), there exists
pePnI*t such that {g;,...,p;;, 9}, is independent. Put ¢,=y—
Z;;ll a;p;, where a; are determined in such a way that @,(Z;)=0 for
k<i. This is possible because the system of equations 3;a;¢;(7;)=
y(Z;), which determines a;, is triangular with nonzero coefficients ¢;(Z;)
on the diagonal. This construction produces ;€ P*nI* such that
@(Z;)=0 for j <i. Also {g;,...,q;} is independent. For convenience put
B=gy+c ¢+ ... +06;_19;_,. Define c;=sup{c: ||[B+cy,|<1}. Note that
¢; 20 because of property (iii).

Assertion (3): There exists an x, € A such that |(B+c,p;)(Z;)|=1 and
@,(%;) 0. If this is false, then

max {|(B+cp;)(@)|:x € 4 and @,(x)+0} < 1
because A4 is a finite set. Hence there exists ¢ >¢; such that
(*) max {|(B+1tp;)(Z)|: v € A and ¢;(Z)£0} < 1.
By Assertion (2), there exists an « € A for which |(B+1tp,)(Z)| = ||B+ip;l.
If ¢,(7)=0, then ||B+ig)|=|B@)|<|Bl=1. If ¢,&)+0, then by (x),
IB+tp;]|<1. In either case, the existence of such a ¢ contradicts the
definition of ¢;. This proves Assertion (3). The induction is now fully
established.

At the end of the process we have a functional p =g+ ¢,¢,+ ... +¢,9,
such that |jg||=1, ¢ € P, and |¢(Z)| =1 for all x in the set

D = [XNZ(P)]U {&y,. . .,2,} .

Define g =3 {Z sgng(Z): « € D}. Then ¢(g) =3 {|¢p(Z)|: x € D}=|jg|l. Hence
g € P° by Proposition 3. But

card[X \ Z(g)] = card(D) = n+1—r+r > n,

a contradiction.
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32. ProposITION. T'he hypothesis that each @ € Pt attain its supremum
on the unit sphere of Cy cannot be omitted from Theorem 31.

Proor. Let X=[0,1]Ju{2}u{3}, with Lebesgue measure on [0,1] and
unit mass on each isolated point. Let hy, ,, and kg be respectively the
characteristic functions of [0,1], {2}, and {3}. Put g¢,(x)=xh () and
gs(x) =hy+ hy. Define @ (f)=[fg;. Then ¢, annihilates the subspace P =
{f: :(f)=ps(f)=0} but ¢, does not achieve its supremum on the unit
sphere. If fe P°, then for some «; we must have [|f|=[f(0;9;+ *295)
and |o;9;+ xagoll=1. This implies that f(x)=0 for x€[0,1]. Hence
XNZ(f)={2,3}. The function g, has many best approximations in P,
for example, 0 and h,—h,;. Indeed, one can verify that [|g,|=2=
J1g2—ho+ hs| = [ g,

Phelps [11, p. 249] has given an example which establishes the follow-
ing proposition.

33. PropoSITION. The hypothesis that U{X \Z(f): fe P°} be finite
cannot be omitted from Theorem 31.

34. TarorEM. The following properties of X are equivalent:

(1) C,[X] contains an EU-subspace of codimension n.
(2) X contains at least n isolated points.

Proor. Assume (2), and let ¥ be a set of n isolated points in X.
The subspace P={feC,: Y<Z(f)} has codimension n because P®
9:1@D . . .Dg,, = O, for an appropriate set {g;,. . .,g,} of which no nontrivial
linear combination belongs to P. Indeed, we can take g; to be the char-
acteristic function of the ith point in Y. It is easy to see that P is an
&%-subspace. In fact, the best approximation in P of an arbitrary
fe€C, is fh, where I is the characteristic function of X \ Y.

Conversely, suppose that P is an &%-subspace of codimension n. By
induction we select f,. . .,f, in C;\ P such that

Ifill = 1 = dist(f, POAHD .. . Dfi-a) -

This is possible because POf,® . ..Df;_, is an &-space, by Proposition 5.
Clearly ||f;||=dist(f;, P), and by Proposition 29 it follows that X \ Z(f;)
contains at most n elements. Hence these elements are isolated points.
If U?  [X\Z(f,)] contains only k elements, with &k <n, then the set of
functions {f,,. . .,f,} is linearly independent, since each f; can be identified
with the k-tuple of its nonzero values. But, by the construction,

{fi,- . ..f,} is independent.
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35. THEOREM. For an &-space P of codimension n in O the following
properties are equivalent:

(1) P is a U-space with a continuous metric projection.
(2) card[X\Z(f)]=n for each fe P°, and Z(P°) has a finite comple-
ment.

Proor. Since P is an &-space of finite codimension, each ¢ in P*
achieves its supremum on the unit sphere of C;, by a result of Phelps
[12, p. 649].

Now assume (2). Then P is a %-space by Theorem 31. The continuity
of the metric projection will follow from Proposition 7 if P° is boundedly
compact. By (2) every fe P° may be identified with an element of the
finite-dimensional space C;[X \ Z(P°)]. Hence P° ig¢ boundedly compact.

Now assume (1). Then card[X \ Z(f)] < n for f € P° by Proposition 29.
If X\ Z(P°) is infinite, then it contains a sequence of distinct isolated
points, x;,%,,.... By Lemma 27, z, € P°. Also ||Z;—Z;|=2 when i+j.
Hence P° is not boundedly compact, and by Theorem 8 the metric projec-
tion is discontinuous.

36. THEOREM. In the Banach space l, there exists an EU-space of co-
dimension 2 whose metric projection is discontinuous under the (strong,
weak*)-pair of topologies, and hence a fortiori discontinuous under the
(strong,strong)- and the (strong,weak)-pairs of topologies.

Proor. Define the bounded sequences

13377 2n—-1 27—-1 )
—(14;1:8957"': on ) on PRI

02 -2 3 -3 n —n )
_(,Z’T’S, 85'~‘y2n’ 2,")"' ’

and let P={fel;: 3,f;9;=3.;fh;=0}. Clearly P is a closed subspace of
codimension 2 in ;. In the rest of the proof, the following facts are
needed :

Assertion (1). An element f belongs to P° if and only if there exists
an element g= g+ Sk such that |¢l,=1 and X;q,f;=|fll;. This is im-
mediate from Proposition 4.

Assertion (2). For scalars « and g the set crit(«g + k) is given by the
following table, the proof of which is straightforward. (Here » is a posi-
tive integer.)
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x and B crit (g + Bh)
=20 {13}
x =0 {2,3}
n—1<«aff <mn {2n}
n—1< —xff <mn {2n+1}
xlf =mn {2n, 2n+ 2}
«/f = —n {2n+1, 2n+ 3}

It is easy to see that in order to prove the &-property of P it is enough
to prove that the vectors (0,1,0,0,...) and b’ =(1,0,0,0,. . .) possess best
approximations in P, for all b. Using the two preceding assertions, one
can prove that if b< —%, then a best approximation to &' is
(1, —%,—%,0,0,...). If b= then a best approximation to b’ is
(1,12,0,-180,0,...). If

4in 4(n—1)

— - 2bz , n=3,
2(1—2—38n = = 2(1—2n-1)—3(n—1) =

then a best approximation of b’ is p=(1,5,0,...,0,99,_5,0,P5,,-1,0,0,. ..),
with
27-2[pH (2 — 27+ — 3n) — 4n]

1
Pon-3 = s Pop-1 = 7“2 [2"71D — (27— 2)pgy_3] -

2n(2—n)—2
Finally, if
4(n—1) an
7 >hpz— . pz4,
2n—2-3(n—1) ~ T 2nt1_2-_3pn

then a best approximation of b’ is p=(1,5,0,...,0,02,_4,0, 05, _9,0,0,...)
with

27-2[p(27+1 — 2 — 3n) — 4n]
Pan-a = (2 —n)— 2

1
s Pon—2 = — ;L [2771b + (21 — 2)Pgyy—4] -

In order to prove that P is a #-space, assume the contrary. By Theo-
rem 23, some nonzero element p in P vanishes on the set §, for some
gLP. Thus X\ Z(p)<crit(q). By one of the previous assertions, it
follows that X \ Z(p) contains at most 2 points. Since 3,9,p;=0, X \ Z(p)
contains at least 2 points. Hence if X\ Z(p)={¢,j} then g;p;+¢;p;=0,
and similarly for . This implies that g;h; —g;h;=0 which is impossible.
Thus P is a %-space.

Now consider the points, for n >4,

an
Pon+l 23y

fn = (1 o,o,o,...).
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Then f* converge to (1,0,0,..), which belongs to P°. However, Tf" is
of the form (1,0,0,...,0,b,0,...) with a=f," and b= 27+1/(2"+1 — 2 — 3n),
occupying the 2n—2 coordinate position. Thus 7'f* does not converge
pointwise to zero.

37. PROPOSITION. For an &%U-space P of codimension n in C; the
Sfollowing properties are equivalent:

(1) P° is a linear space.
(2) card(X \A4)=n, where A=N{Z(f): fe P°}.

Proor. Suppose that (2) is false. By Proposition 30, card (X \ 4) > n.
Select x,,...,x, in X\ 4. By Proposition 29, each z; is an isolated
point of X. By Lemma 27, Z, e P° for each 7. Hence P° contains a
linearly independent set of n+ 1 elements. If P° is a subspace, this con-
tradicts the equation P@ P°=C, (Proposition 6).

Now suppose that (2) is true. Let I denote the ideal of functions which
vanish on 4. We shall prove (1) by establishing that P°=1. The inclu-
sion P°<1 is obvious. By induction we select f;,...,f, such that

1 = |Ifill = dist(f;, PO/Li® ... Dfi—1) -

Then f; € P°. 1t is easy to see that no non-trivial linear combination of
Ji»+ - .,fn can belong to P. Thus, in particular, {f,,...,f,} is independent.
Since f;e P°<1I, and since dim(/)=n by Lemma 15, it follows that
{fi,. . ..fx} is a basis for I. We have thus proved that PnI={0}. Now
let f be an arbitrary element of I and let p be its best approximation in P.
Then f—peP°<I. Hence pelInP. It follows that p=0 and that
fe P°. This proves that I< P°.

The following seem to be among the principal questions that remain
to be answered in this subject:

(1) What can be said about the existence or the structure of &%-
subspaces in C; or C which have infinite dimension and infinite codimen-
sion ?

(2) What are the exact conditions on an &%-subspace in C or C; in
order that its metric projection be continuous?

(3) What are the exact conditions on X in order that C; should con-
tain an &%-subspace of dimension %, for each n?

(4) If the space C is given an arbitrary norm, can the %-spaces be
characterized by the zero sets of their elements, as has been done here
in Theorems 10 and 22?
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