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FINITELY ADDITIVE MEASURES ON THE
NON-NEGATIVE INTEGERS

A. OLUBUMMO

1. Introduction.

1.1. Let S be an arbitrary semi-group and let B(S) denote the Banach
space of all bounded, complex-valued functions on S with the uniform
norm. The conjugate space B*(S) of B(S) is a convolution algebra in
the sense of Definition 2.1. On page 275 of [2], Hewitt and Ross list
B*(S) as one of the less tractable convolution algebras even in the case
where S is the group N of integers.

Hewitt and Zuckerman [3] have obtained interesting results on a
particular subalgebra 1;(S) of B*(S). The subalgebra [,(S) is defined
as follows. For z € S, let B, denote the linear functional on B(S) whose
value at f is f(x); thus E,(f)=f(x). We denote by [,(S) the set of all
A € B*(8) having the form 4 =3 . cx(x)E,, where « is a complex-valued
function on 8 for which 3, ¢|x(x)] <oco. In this sum, it is understood
that the set {xeS:«(x)+0} is countable, being written, say, as
{3, %5, . . ., 2y, ..} and that 332, |x(n)| is finite. Hewitt and Zuckerman
have described all the homomorphisms of ,(S) onto the complex
numbers:

1.2. THEOREM. Let S be an arbitrary semigroup and let v be a multi-
plicative linear functional on 1,(S) different from zero. Then T is a bounded
linear functional and there exists a semicharacter y of S such that for all
A=3,  qox(x)E, € l,(8), we have

(1.2.1) 7(A) = Zpeg *(@) x(2) -

Conversely, every semicharacter y of S defines a bounded multiplicative
linear functional by (1.2.1) and two distinct semicharacters define two
distinct multiplicative linear functionals.

For commutative S, the subalgebra 7,(8) is commutative and Theorem
1.2 gives all the regular maximal ideals of ,(S).
In the present paper, we let N, denote the semigroup, under addition,
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of all non-negative integers and consider the problem of finding all the
maximal two-sided ideals of the algebra B*(N,). We show in Theorem
3.1 that B*(N,) admits a decomposition: B*(N,)=1I0,(N,)®P, where
P denotes the set of all the measures on N, which vanish on all finite
subsets of N,. Furthermore, P is a two-sided ideal of B*(V,). Using
this result we are able to identify some of the maximal two-sided ideals
of B*(N,). Precisely, we show (Theorem 4.2) that if J is a maximal
ideal of I,(N,), then JOP is a maximal two-sided ideal of B*(N,). If
x is a semicharacter of N, then the mapping L — [y(n)dA(n) (see Sec-
tion 3.1) is a homomorphism of B*(N,) onto the complex numbers,
and the kernel of the homomorphism is a maximal two-sided ideal of
B*(Ny). We have so far been unable to identify other maximal two-
sided ideals of B*(N,). In Section 5, we show that P consists of all the
purely finitely additive measures on N, (see Definition 5.4), while
1,(IN,) consists of all the countably additive measures on N,.

I like to express my gratitude to Professor Edwin Hewitt who inspired
and encouraged this investigation.

2. Preliminaries.

2.1. DEFINITION. Let S be a semi-group and let & be a linear space
of real- or complex-valued functions on S. Suppose that, for every
zel, ,fe % whenever fe %, where ,f is the function on § defined
by ,f()=f(xy). For a linear functional M on &, let Mf be the function
on S such that Mf(x)=M(,f) for all x€S. Suppose further that M is
such that Mfe # whenever fe #. Then if L is any linear functional
on #, the functional LM whose value at f is L(Jf) is called the con-
volution of L and M.

If & is as above and % is a linear space (real or complex according
as & is a real or complex linear space) of linear functionals on & such
that LxM exists and is in .& for all L, M € £, then .Z is called a convo-
lution algebra with = as multiplication, and addition and scalar multi-
plication defined in the usual way. (See [2, page 262].)

2.2 Let B(N,) denote the set of all bounded, complex-valued func-
tions on the non-negative integers N,. Under the uniform norm, B(N,)
is a Banach space. The set of all bounded linear functionals M on B(N,)
under the norm [[M|=sup{|M(f)|:fe BNy, fll£1} will be denoted
by B*(N,).

2.3. Let I, denote the set of all complex-valued sequences x such that

% ol#(n)] <oo. We shall regard I/, as a semi-group under the multi-
plication defined by
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(@*y)(n) = Zf_ox(k) y(n—k).

If y, denotes the characteristic function of the point n € N, then
VYmin=VYm*Vn- Hence we may, and shall, regard the additive semi-
group N, as embedded in the semi-group /, by the mapping » — y,,.

We take |l||=3 ,|2(n)] as the norm of the sequence z, and let [;*
denote the set of all bounded linear functionals on ;. Whenever con-
venient, we shall identify I,* with B(N,) and use the same symbol f
both for the bounded linear functional on I; and the bounded function
on N, corresponding to it. Furthermore, since for the characteristic
function y,, of the point » € N,, the value of f(y,) is the same as f(n)
under this identification, we shall write f(n) for f(y,) whenever con-
venient.

2.4. We shall denote by /,(V,) the set of all elements of B*(N,) arising
from [, by the mapping z - ¥, where E_ is defined on [;* by

B(f) = [@) = 32 ow(m) f(n)  for all fel,*.

2.5. THEOREM. B*(N,) ts a convolution algebra with a unit element.
Furthermore, under the norm (M|, B*(N,) is a Banach algebra.

Proor. Taking [, as § and B(N,) as % in Definition 2.1, it is easy
to verify that B*(N,) is a convolution algebra. For ne N, let E,
denote the linear functional on B(N,) defined by K, (f)=f(y,) for
feB(N,). Then E, € B¥N,) for every ne N, and we have E, +L=
L+E, =L for every L e B¥(N,). Thus E, is a unit element in B*(N,).
Finally, for ne Ny, fe B(N,) and M e B¥(N,), we have |M, (f)|<
iM]l11f]l. Hence if L e B*(N,),

(L)) < WLIHIMY S and (LM < LY M|
This concludes the proof.

3. A decomposition theorem.

3.1. In this section we prove the decomposition theorem mentioned
in the introduction. It is well known (see, for example, [1, page 258])
that there is a one-to-one correspondence between B*(N,) and the set
of all bounded, finitely additive complex measures x4 on the ring of all
subsets of N,, this correspondence being given by

M(f) = [f) dutn), fe BN
Ny
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In view of this one-to-one correspondence, we shall regard B*(N,)
either as a set of linear functionals M or as a set of measures u.

3.2. THEOREM. Let P denote the set of all elemenis M of B*(N,) such
that their corresponding measures p vanish on all finite subsets of N,.
Then

B*(No) = ll(NO) ® P,

and P is a two-sided ideal of B*(N,).

Proor. First we show that ,(¥,)nP =(0). In fact,let M be a non-zero
element of [,(Ny)nP, where M =3p(n)E, . We shall let £, denote the
characteristic function of the point %, regarded as an element of B(N,).
Then, for ny e N, with f(n,)+0, we would have

0 = p(ng) = M(&ypy) = Zp(n) & (n) = Blny) ,

a contradiction. Hence [;(N,)nP=(0). Let M be an arbitrary element
of B*(N,), and define a function x« on N, by setting «(n)=u(n). Then

o _olx(n)] < oo. In fact, in the contrary case, there would exist a sequence
Ty, Mg, . . . 1y, Of NOn-negative integers such that 3* _ |x(n,,)| > || M. Then
for fy=3%_, SgNo(Nyy) Vi, » W Would have

M(fo) = g1 880 a(0y) (ny) = Sp_ylx(ny,)| > | M]]

and ||fo]|=1, which is impossible. We must therefore have 3. ;|x(n)| £
|1 M]|<oco. Hence 372 qa(n) &, €l(N,y). Then, if ¢, is the measure cor-
responding to K, ,

(1 — 352 g0(n) e,)(m) = O

for any me N, and u— J«(n)e, € P. This proves the first assertion
of the theorem.

To show that P is a left ideal, let M € P and L € B*(N,). Then if £
is a finite subset of N, and y is the characteristic function of E, we
have

(L) (7s) = Lyg) = [ (@yz)(n) din)
No

= [ | yE<n+m)d/z<m)] di(n) = 0,

Ng LNy

since the integral in the square brackets is zero. Hence P is a left ideal.
To prove that P is a right ideal, we first note that /,(IV,) is in the centre
of B*(N,). In fact, for x €l,, f € B(N,), we have
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(B f)y) = E(uf) = of (@) = flay) = of ) ,
for every y €l,. Hence K, f=,f. If L e B¥XN,), we have
(LxB,)(f) = L(B,f) = Lof) = (If)() = (BL)(f),

and
LxE, = E L.

Now let L be an arbitrary element of B*(N,) and let M € P. We write
L=L,+L,, where L, €l,(N,) and L,e P. Then
MxL = M+L, + MxL,
and since M»L,=L.*M, we have, for any finite subset £ of N,,
(M+L)(yg) = (LaxM)(yg) + (MxLy)(yg) = 0.
Thus P is a right ideal of B*(N,) and the proof is complete.

4. Maximal two-sided ideals in B*(N,).
We now identify some of the maximal two-sided ideals of B*(N,).
We start with a lemma,.

4.1. LemMA. Let J be a left (right) ideal of B*(N,) containing P and
let Jy=Jnl(Ny). Then J=J,®P.

Proor. It is clear that J,(p P <J. Suppose that LeJ; then L=L,+ L,
where L,el,(N,) and Ly,e P<J. Hence L—L,eJ or L;eJ. Thus
L, € J,, which shows that L=L,+ L, e J,®P.

4.2. THEOREM. For every maximal ideal J of I,(N,), JDP is a maximal
two-sided ideal of B*(N).

Proor. First we show that JOP is a two-sided ideal of B*(N,). It
is easy to see that J®P is a subspace of B*(V,). Let L be an arbitrary
element of B*(N,) and let M+ M, JPP, where M,eJ and M, € P.
Then if

L=L+L,, Ljely(N,), LyeP,
we have

L(My+ M) = (Ly+ Ly) = (My+ M)
= Lys M+ (L#My+ LoxM, + Ly« M,) € JOP,

since P is a two-sided ideal of B*(N,). Hence JPP is a left ideal of
B*(N,). The proof that J@P is a right ideal is similar.
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Suppose now that M is a two-sided ideal of B*(N,) such that JQP <=M
and set M; =Mn;(V,). Then M, is an ideal of [,(N,) and by Lemma 4.1,
M=M,@P. Furthermore, J=M;. If J=M;, then M=JPP and M
does not properly contain JPP, a contradiction. Hence JEM, and,
since M; is an ideal of [,(&¥,) and J is maximal, M,=0(V,). Thus
M=B*N,) and JOP is a maximal two-sided ideal of B*(N,). This
concludes the proof of the theorem.

It is interesting to obtain the result in Theorem 4.2 by considering
homomorphisms of B*(N,) onto the complex numbers.

For L € B*(N,), we shall as before write L =L, + L, where L, € [;(N,)
and L, e P, and the corresponding measure will be written A=1,+4,.

4.3. TaEOoREM. Let y be a semicharacter of N,. Then the mapping

L > L) = [ gw) dnm)
No

1s a homomorphism of B*(N,) onto the complex numbers. The kernel of
this homomorphism is a maximal two-sided tdeal of B*(N,) of the form
JDP where J is a maximal ideal of 1,(N,).

Proor. It is clear that the mapping is linear; we shall show that it
is multiplicative. If i,u € B*(N,), we have

A = (Ag+2Ag) % (y + 1)
= Ayrpuy + Agkphy + Ayrpig + Apxity -

Since P is a two-sided ideal of B*(N,), Ay#u;~+2A;%ps+ Aoxu, € P and
hence (Axp);=4,*u;. We then have

LMy = [ ) dia(m) [ 2(6) (s
No No
= [ [an+) anm dus)
No Ny
= [ am) dzrpm)
No

= fx(m) d(Axu)y(m) = (LxM)y(y) .
No

Hence the mapping is a homomorphism. To prove the last assertion
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of the theorem, let J, be the maximal ideal of 7,(NV,) determined by x
as in Theorem 1.2 and let

K= [L € BX(N,) : f 4(n)dAy(n) =o] .
No

Then a routine argument shows that K =J,DP.

4.4. THEOREM. Let 5 be a semicharacter of N,. Then the mapping

L > L) = | x(n) di(n)
Nop

ts a homomorphism of B*(N,) onto the complex numbers.
The proof of this theorem is immediate and is therefore omitted.

ExampLE. If in Theorem 4.4, we take y, to be the semicharacter
defined by x,(0)=1, yo(n)=0 if n+0, then the kernel of the homomor-
phism L — L(y,) is of the form J,@ P, where J, is a maximal ideal of
Li(Ng). In fact, let

K, = [/1 e BX(N,) : f Zo(n)d/l(n)———OJ :
Ny

If Ac K, and A=4,+4,, then

[wmarm) = [zmanm + [zmanm = o.
No Ny Ny

Now since 4, € P, we have [y, y4(n)d,(n) =0, and therefore [y, yo(n)dA,(n)
=0. This implies that 4, is in the maximal ideal J, of [,(N,) determined
by yo. Hence forevery A=4,+4,in K, 4, €J,and so K,<J D P. Now let
AeJ@P and write A=24,+2,, 4, €J,, A€ P. Then [y yo(n)diy(n)=0
and since [y, xo(n)dy(n) =0, we have [y yo(n)dA(n)=0 and A€ K,.

5. Purely finitely additive measures.

5.1. DerFiniTION. Let X be an arbitrary set and I a o-algebra of
subsets of X. Let @ denote the set of all real-valued finitely additive
measures on . For pe P, we write p =20 if p(H)=0 for all E eIN.
For ¢,y € @, we write p<y if y—p=0.

The following two results are due to Yosida and Hewitt [4].

5.2. THEOREM. Under the partial ordering defined in 5.1, the set @ is
a lattice. For arbitrary ¢ and y € D, the measure pAy is defined by the
relation
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(pay)(B) = infp g peq(¢(T) +¥(EnT"))
for all E eM. The measure pvy s defined by the relation

vy = —((—@)A(=7p)).

5.3. THEOREM. Let ¢ be an arbitrary element of ®. Writing pvO0 as
@, and (—@)v0 as p_, we have the relations

p=9@.—¢- and @, Ap_=0.

5.4. DEFINITION. Let ¢ be a measure in @ such that 0<¢. If every
countably additive measure y such that 0 <y =< ¢ is identically zero, then
@ is said to be purely finitely additive. If ¢ € ® and both ¢, and ¢_
are purely finitely additive, then ¢ is said to be purely finitely additive.

5.5. Let X and I be as in 5.1 and let ¥ denote the set of all complex-
valued finitely additive measures on M. If pe ¥, and p=vy,+ip,,
where y,,p, € @, we shall say that y is purely finitely additive if both
w, and y, are purely finitely additive.

5.6. LEMMA. If peP is a real-valued measure and p=p,—u_, then
u,€P,u_ebP.

This follows at once from 5.2.

5.7. THEOREM. 4 measure u € B*(N,) is in P if and only if p is a purely
Jinitely additive measure on N, .

Proor. Let y e P and let x> 0. If ¢ is a countably additive measure
such that 0= @ = pu, then ¢(#)=0 for every finite subset £ of N, and,
by countable additivity, ¢(£)=0 for every subset £ of N,. Hence u
is purely finitely additive. If w e P and u is real valued, we have
u=pu,—u_, where y,20,u_=0. By Lemma 5.6 and what has just
been proved, p, and u_ are both purely finitely additive and hence u
is purely finitely additive, by 5.4. Finally, for arbitrary u € P, we write
U= p,+ip,, where yu, and u, are real-valued; then by 5.5, u is purely
finitely additive.

Suppose now that u e B*(N,) is purely finitely additive. If x=0,
then ([4, Theorem 1.16]), uAa@ =0 for all non-negative countably additive
measures . Then, if n,e N,,

(AP (o) = min (u(ng), p(n,)) = 0

for all non-negative countably additive measures ¢. If ¢, is taken to
be the unit mass concentrated at n,, we have

Math. Scand. 24 — 13
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min (u(ny), @ny(no)) = min(u(n,), 1) = 0

and u(ny)=0. Hence u € P. If u is real and purely finitely additive, with
u=p,—u_, then again u € P. Finally, if 4 is an arbitrary purely finitely
additive measure in B*(N,) and p=p, +iu,, py, s real-valued, then
n € P. This concludes the proof of the theorem.

From Theorem 1.24 of Yosida and Hewitt [4] it follows that every
measure u € B*(N;) can be uniquely written as the sum of a countably
additive measure u, and a purely finitely additive measure u,. We
therefore have the following:

5.8. COROLLARY. l,(V,) is the set of all countably additive measures on N .
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