MATH. SCAND. 24 (1969), 217—220

THE BACKWARD AND FORWARD SUMMATION
OF INFINITE SERIES OF ISOLS

FRED J. SANSONE

Infinite series of isols were introduced and studied in [2]. In that
paper, only series of non-negative integers were considered. In this
note we wish to show that in a certain sense, to be made precise below,
a large class of infinite series of non-negative integers can be summed
both backwards and forwards.

We employ the following notation and terminology. By a number,
we mean a non-negative integer. The set of all numbers is denoted
by e. If n is a number, »(n) denotes the initial segment of ¢ determined
by n. The function j(x,y) is the usual recursive pairing function mapping
¢ one to one onto &. For « a set of numbers and » any number, j(z,«)
denotes {j(x,y) | y € x} and Reqa denotes the recursive equivalence
type of «. Lastly, ~ denotes the relation of recursive equivalence and
if f is a recursive function, f, denotes its extension to the isols.

One of the basic results of [5] is the fact that for 7' an infinite, regres-
sive isol,

(1) Spi 14243+ ... = 3 T+ (T-1)+(T-2)+....

This result might be considered an extension of the statement that
the forward and backward summations of the first n integers are equal.
Without stretching one’s imagination too far, it could be said that the
right hand side of (1) represents the backward summation of the positive
integers with respect to the infinite, regressive isol T-even though all
the terms on the left hand side of (1) are finite and all those on the right
hand side are infinite. In the hope of obtaining other results similar to (1),
we proceed to consider a ‘‘natural”’ definition of the summation of
a large class of infinite series of infinite isols.

DeFiNtTION 1. Let f be any function ¢ into e. The e-difference of f,
denoted by e,, is given by
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e/0) = f(0) and efn+1) = f(n+1)—f(n).

DeriniTiON 2. Let f be an increasing, recursive function and 7' an
infinite, regressive isol with {, any regressive function ranging over
a set in 7.

(2) Sofa(T—(n+1) := Req Uyj [tk’ Unj(tk+n’v(ef(n)))] .
In (2) and elsewhere U, is denoted U,.

Note that since f is increasing and recursive, it is indeed the case
by [1, Proposition 2, Corollary 4] that the terms of such a series are
regressive.

THEOREM 1. For every increasing, recursive function f,

SrfaT—(n+1))

is a function from Agp—e into Agp.

Proor. Let f be increasing, recursive and let 7' be an infinite, regres-
sive isol. Let ¢ and t* be any two regressive functions ranging over sets
in 7. In order to show that the sum is a function on Az—e¢, we must
prove that

(3) Ukj[tk’ Unj<tk+na 1'(‘5)‘(774)»] = Ukj[t*k’ Unj(t*k+n’ ”(ef(n)))] .

Let the left hand side and right hand side of (3) be denoted by « and g
respectively. By [2, Proposition 3], there is a partial recursive, one to
one function p such that for each =, p(f,)=t*,. Let ¢ be defined by

q(z) = j[pk(z), j(pKl(2), U(z))] ,

where k and [ are the functions such that j(k(n), [(n))=n. Since k and [
are recursive, it follows that ¢ is a partial recursive function. It is
clearly the case that ¢ is one to one and moreover ¢ maps « onto f.
Hence «>p.

We postpone showing that the sum is regressive as this will be obtained
as an immediate corollary of our main result.

We claimed above that our definition of the sum was a “natural”
one. This is the case for the following reason. It is well known [1]
that if f is increasing, recursive, then for each &

Fa(T—(k+1)) = Zp_pex{n) .
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Moreover, by the definition of a series of non-negative integers given
in [2],
(4) Zr-kes(n) = Req Uy (tirn, (er(n) -

Hence, for each k, the sets appearing on the right of (4) are “natural”
representatives of the terms of the series 3,f (7 — (k+1)).

THEOREM 2. Let f be an increasing, recursive function and T an infinite,
regressive isol. Then

(5) 2rfa(T—(n+1)) = Zpf(n).
Proor. It suffices to prove that

(6) Usd [te> Und (rrns Yedm))] = Upi(tms v(fn)) »

where k, n,m run through the non-negative integers. Let the sets
on the left and right of (6) be denoted by 6 and y respectively. In order
to show that 6 and y are recursively equivalent, we describe a uniform,
effective procedure which pairs the members of 6 with those of y. To
facilitate this, we rewrite ¢ as follows:

6= Uk Un.? [tk ’ J(tk tn> 7}(ef(n)))]
= U Uioi[te: i (tn> v(esm —)))] -

Consider the following infinite array containing the members of 4.
In each row of this array, the values of m and % are constant and the
rows are ordered according to the lexicographical ordering of the pairs
(k,m). Moreover, the elements in each row are arranged according to
the size of the second component.

I(tei(t,0)), ..., j(to’j(to’ef(o) - 1))
J(teri(t1,0)), s J(ted(te1)=1))
J(t13(81,0)), ) j(tbj(tl’ es(0) — 1))
J(tor (3, 0)), o J(ted(tse2)—1))
J(t1J (6, 0)), ’ j(tl’j(t27 ef(1)— 1))

It is assumed that any row for which e/{m —k)=0 has been deleted
from the array. Note that the number of elements in the row for which
m=m, and k=k, is equal to e/(m, —k,) and hence the totality of elements
having a fixed value of m, say m=m, is given by

ef(my;—0)+e(my— 1)+ ... +emy—my) = flmy) -
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To each such group of elements of §, we let correspond, in order, the
elements

j(tml’ 0)’j(tm17 1)7 LR j(tnal?f(ml) - 1) of Y-

Since f is recursive and ¢ is regressive, it is clear that this correspondence
is effective. Hence 6~ y.

COROLLARY. For every increasing, recursive function f and every infinite,
regressive 1sol T,

2pfaT—(n+1) € Ag.

Proor. In [1] is proved that 3,f(n)e Ap. Hence the Corollary
follows from (5) in Theorem 2.

With this corollary, we have completed the proof of Theorem 1.

REFERENCES

1. J. Barback, Recursive functions and regressive isols, Math. Scand. 15 (1964), 29-42.

2. J. C. E. Dekker, Infinite series of isols, Proc. Symposia Pure Math. 5, Recursive function
theory, Amer. Math. Soc., Providence, R. 1., 1962, 77-96.

3. J. C. E. Dekker, The mintmum of two regressive isols, Math. Z. 83 (1964), 345-366.

4. J. C. E. Dekker and J. Myhill, Recursive equivalence types, Univ. of Calif. Publ. Math.
(N.8.) 3 (1960), 67-213.

5. F. J. Sansone, The summation of certain series of infinite regressive isols, Proc Amer.
Math. Soc. 16 (1965), 1135-1140.

6. F. J. Sansone, A mapping of regressive isols, Illinois J. Math. 9 (1965), 726-735.

ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA, U.S.A.



