SHEPHARD'S APPROXIMATION THEOREM FOR CONVEX BODIES AND THE MILMAN THEOREM

CHRISTIAN BERG

In [4] G. C. Shephard proved an interesting approximation theorem concerning indecomposable convex polyhedra in the q-dimensional space \mathbb{R}^q (cf. p. 23 of the present paper).

The purpose of the present paper is to give a new proof of this theorem. First we find a correspondence between the set of homothety classes of convex bodies in \mathbb{R}^q and a compact convex set in the Banach space $C(\Omega_q)$ of continuous functions on the unit sphere Ω_q in \mathbb{R}^q such that the indecomposable classes correspond to the extreme points of this compact convex set. We next show that Shephard's approximation theorem is a consequence of Milman's theorem, valid for a compact convex set in a locally convex topological vector space [3, p. 9]. Our proof yields that Shephard's theorem is true not only for a indecomposable polyhedron but for any indecomposable convex body in \mathbb{R}^q .

Chapter 15 in the monograph [2] deals with the notion of decomposable and indecomposable polyhedra and the approximation theorem of G. C. Shephard.

Let \mathscr{C}_q denote the class of all convex bodies in R^q consisting of more than one point. If $K, L \in \mathscr{C}_q$ and $\lambda > 0$, we have

$$K+L\in\mathscr{C}_q$$
 and $\lambda K\in\mathscr{C}_q$.

We consider \mathscr{C}_q as a metric space under the Hausdorff-distance

$$D(K,L) = \inf\{\varepsilon > 0 \mid K \subseteq L + \varepsilon E_g, L \subseteq K + \varepsilon E_g\},\,$$

where E_q is the unit ball in \mathbb{R}^q . For each $K \in \mathscr{C}_q$ let h(K) denote the supporting function of K. We consider h(K) as an element of the Banach space $C(\Omega_q)$ of continuous real-valued functions defined on the unit sphere Ω_q in \mathbb{R}^q , equipped with the uniform norm. It is well known that the mapping $h: K \to h(K)$ of \mathscr{C}_q into $C(\Omega_q)$ is one-to-one and satisfies (cf. [1])

(1)
$$h(K+L) = h(K) + h(L), \quad h(\lambda K) = \lambda h(K) \quad \text{for } \lambda > 0,$$

Received November 13, 1968.

(2)
$$D(K,L) = ||h(K) - h(L)||.$$

For $K \in \mathcal{C}_q$ one defines the Steiner-point S(K) of K [2, p. 314] by

$$S(K) = \frac{q}{\|\omega_q\|} \int_{\Omega_p} \xi \ h(K)(\xi) \ d\omega_q(\xi)$$

and the mean width B(K) of K [1, p. 50] by

$$B(K) = rac{2}{||\omega_q||} \int_{\Omega_q} h(K)(\xi) \ d\omega_q(\xi)$$
,

where ω_q denotes the usual surface measure on Ω_q with total mass $||\omega_q||$. Note that $S(K) \in K$ and that B(K) > 0. The mappings $S : \mathscr{C}_q \to \mathbb{R}^q$ and $B : \mathscr{C}_q \to \mathbb{R}$ are both continuous and satisfy the linearity relations analogous to (1). Moreover S commutes with rigid motions, whereas B is invariant under rigid motions.

We shall consider the subset A of \mathscr{C}_{q} defined by

$$A = \{K \in \mathcal{C}_q \mid S(K) = 0, B(K) = 1\},$$

where o denotes the origin of \mathbb{R}^q , and the corresponding set h(A) of supporting functions. From the above remarks it is obvious that A is a closed subset of \mathscr{C}_q with the property that if $K, L \in A$ and $\lambda \in [0, 1]$, then $\lambda K + (1 - \lambda)L \in A$.

THEOREM 1. The subset A of \mathcal{C}_q is compact, and h is a homeomorphism of A onto h(A), which is a compact convex set in $C(\Omega_q)$.

PROOF. For any convex body $K \in A$ and any point $a \in K$ the segment [o,a] belongs to K since $o \in K$. Thus $B([o,a]) \leq B(K) = 1$. Since

$$B([o,a]) = \frac{2 ||\omega_{q-1}|| ||a||}{||\omega_{q}|| (q-1)},$$

||a|| and hence A is bounded. The selection theorem of Blaschke yields the compactness of A, and the proof is completed by (1) and (2).

A convex body $K \in \mathcal{C}_q$ is called *decomposable* if there exist convex bodies $L, M \in \mathcal{C}_q$, non-homothetic to K, such that K = L + M. If this is not the case, K is called *indecomposable*.

It is obvious that if $K, L \in \mathscr{C}_q$ are homothetic, then K is decomposable if and only if L is decomposable. Further, for any $K \in \mathscr{C}_q$ there exists a unique pair (λ, a) , where $\lambda > 0$, $a \in \mathbb{R}^q$, such that $\lambda^{-1}(K - a) \in A$, namely $\lambda = B(K)$, a = S(K).

The supporting function of $\lambda^{-1}(K-a)$ is denoted $\eta(K)$ and is called the normalized supporting function of K. For $K \in \mathscr{C}_q$ and $\xi \in \Omega_q$ we have

$$\eta(K)(\xi) \,=\, B(K)^{-1}\big(h(K)(\xi) - S(K)\cdot\xi\big)\;.$$

The normalized supporting function $\eta(K)$ lies in the compact convex set h(A), and for $K, L \in \mathcal{C}_q$ we have $\eta(K) = \eta(L)$ if and only if K and L are homothetic. The mapping $\eta: \mathcal{C}_q \to h(A)$ is continuous.

THEOREM 2. Let $K \in \mathcal{C}_q$. Then K is indecomposable if and only if the normalized supporting function $\eta(K)$ is an extreme point of the compact convex set h(A).

PROOF. It suffices to prove the theorem for a $K \in A$, that is, when $\eta(K) = h(K)$.

Suppose that K is decomposable. Then we have a decomposition K = L + M with L, $M \in \mathcal{C}_q$, and $\eta(K)$ is different from $\eta(L)$ and $\eta(M)$. It follows that

$$\eta(K) = B(L)\eta(L) + B(M)\eta(M) \quad \text{and} \quad 1 = B(L) + B(M),$$

which show that $\eta(K)$ is not an extreme point of h(A).

Conversely, if $\eta(K)$ is not extreme in h(A), we can find $L, M \in A$ different from K and λ with $0 < \lambda < 1$ such that

$$\eta(K) = \lambda \eta(L) + (1 - \lambda) \eta(M) .$$

Since $K, L, M \in A$, we have

$$h(K) = \lambda h(L) + (1 - \lambda)h(M) = h(\lambda L + (1 - \lambda)M),$$

and consequently

$$K = \lambda L + (1 - \lambda)M,$$

which shows that K is decomposable.

In the following let $\mathscr{K} \subseteq \mathscr{C}_q$ be a class of convex bodies stable under homothety, that is, if $K \in \mathscr{K}$, then $\lambda K + a \in \mathscr{K}$ for all $\lambda > 0$, $a \in \mathbb{R}^q$. Call a convex body $L \in \mathscr{C}_q$ approximable by such a class if there exist convex bodies $K_1 + \ldots + K_n$, where $K_i \in \mathscr{K}$, arbitrarily near to L in the Hausdorff-distance.

Lemma 1. Let $\mathcal{K} \subseteq \mathcal{C}_q$ be a class of convex bodies stable under homothety, and let $L \in \mathcal{C}_q$. Then L is approximable by the class \mathcal{K} if and only if

$$\eta(L) \in \operatorname{cl} \operatorname{conv} \eta(\mathscr{K}),$$

where $\operatorname{cl} \operatorname{conv} \eta(\mathcal{K})$ denotes the closed convex hull of the subset $\{\eta(K) \mid K \in \mathcal{K}\}$ of h(A).

PROOF. Suppose that there exists a sequence $K_n\in\mathscr{C}_q$ such that $K_n\to L$ in \mathscr{C}_q , and such that

$$K_n = \sum_{i=1}^{i_n} K_n^i$$
, where $K_n^i \in \mathcal{K}$.

We then have $\eta(K_n) \to \eta(L)$ in h(A) (uniformly over Ω_a) and

$$\eta(K_n) = \sum_{i=1}^{i_n} B(K_n)^{-1} B(K_n^i) \eta(K_n^i) ,$$

which is a convex combination of $\eta(K^{i}_{n})$, $i=1,\ldots,i_{n}$. This proves

$$\eta(L) \in \operatorname{cl\ conv} \eta(\mathcal{K})$$
.

Conversely, if this relation is satisfied, there exist convex bodies $K_n^i \in \mathcal{K}$ and numbers $\lambda_n^i > 0$, $i = 1, \ldots, i_n$, $n = 1, 2, \ldots$, such that

$$\sum_{i=1}^{i_n} \lambda^i_n = 1$$

and

$$\sum_{i=1}^{i_n} \lambda^i_n \; \eta(K^i_n) \; o \; \eta(L) \quad ext{ in } \; h(A) \; .$$

Since \mathcal{K} is stable under homothety, the bodies K^i_n can be chosen such that $K^i_n \in A$, that is, $h(K^i_n) = \eta(K^i_n)$. Thus we get

$$h\left(\sum_{i=1}^{i_n} \lambda^i_n K^i_n\right) \rightarrow h\left(B(L)^{-1} \left(L - S(L)\right)\right) \quad \text{in } h(A)$$
,

which by theorem 1 implies that

$$\sum_{i=1}^{i_n} \lambda^i_n K^i_n \rightarrow B(L)^{-1} (L - S(L)) .$$

Consequently L is approximable by the class \mathscr{K} .

If we let $\mathscr{K} \subseteq \mathscr{C}_q$ be the class of all indecomposable convex bodies, lemma 1 combined with the Krein–Milman theorem yields the following result:

Theorem 3. Every convex body $L \in \mathcal{C}_q$ can be approximated arbitrarily well by sums of indecomposable convex bodies.

As a consequence of lemma 1 combined with the Milman theorem, we get:

Theorem 4. Let $\mathscr{K} \subseteq \mathscr{C}_q$ be a class of convex bodies stable under homothety. If an indecomposable convex body $L \in \mathscr{C}_q$ is approximable by the class \mathscr{K} , then $L \in \operatorname{cl} \mathscr{K}$.

Proof. By lemma 1 we have

$$\eta(L) \in \operatorname{el \, conv} \, \eta(\mathscr{K})$$
,

and $\eta(L)$ must be an extreme point of cloonv $\eta(\mathcal{K})$, because it is extreme in h(A). Thus by the Milman theorem we get $\eta(L) \in \text{cl } \eta(\mathcal{K})$, and the proof is easily completed by means of theorem 1.

It is straightforward to see that theorem 4 implies Shephard's approximation theorem:

Let $\mathscr{C} = \{K \in \mathscr{C}_q \mid S(K) = 0, \dim K = 1\}$, and let $\mathscr{K}_0 \subseteq \mathscr{C}$ be a closed subset. If $P \in \mathscr{C}$ is an indecomposable polyhedron, and if P can be approximated arbitrarily well by convex bodies $K \in \mathscr{C}$ of the form $K = \sum_{i=1}^n \lambda_i K_i$, where $K_i \in \mathscr{K}_0$, $\lambda_i > 0$, then $P \in \mathscr{K}_0$.

We point out that theorem 3 does not tell anything new. It is well known that any convex body $K \in \mathscr{C}_2$, can be approximated by a convex polygon, and every convex polygon is a sum of segments and triangles, which are known to be indecomposable. For $q \geq 3$ the indecomposable convex bodies are even dense in \mathscr{C}_q , because every convex simplicial polyhedron (that is, a polyhedron the (q-1)-dimensional facets of which are simplices) is indecomposable [4, lemma 23]. For $q \geq 3$ theorem 4 therefore has the consequence that if $\mathscr{K} \subseteq \mathscr{C}_q$ is a class stable under homothety, closed as a subset of \mathscr{C}_q and universally approximating, that is, every convex body $L \in \mathscr{C}_q$ can be approximated by \mathscr{K} , then $\mathscr{K} = \mathscr{C}_q$ (cf. [3, theorem 22]).

For q=2 the class $\mathscr{K} \subseteq \mathscr{C}_2$ consisting of all segments and triangles is closed in \mathscr{C}_2 , stable under homothety and universally approximating. By theorem 4 the class \mathscr{K} contains every indecomposable convex body so that the indecomposable plane convex bodies are precisely the segments and the triangles.

For $q \ge 3$ no exhaustive classification of the indecomposable convex bodies seems to be known. As an example of an indecomposable convex body in \mathbb{R}^3 , which is not a polyhedron, one could mention a cone.

REFERENCES

- T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934, Reprint Chelsea, New York, 1948.
- 2. B. Grünbaum, Convex polytopes, J. Wiley, New York, 1967.
- R. R. Phelps, Lectures on Chaquet's theorem (Van Nostrand Mathematical Studies 7), New York, 1966.
- G. C. Shephard, Approximation problems for convex polyhedra, Mathematika 11 (1964), 9-18.

UNIVERSITY OF COPENHAGEN, DENMARK