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SHEPHARD’S APPROXIMATION THEOREM
FOR CONVEX BODIES AND THE MILMAN THEOREM

CHRISTIAN BERG

In [4] G. C. Shephard proved an interesting approximation theorem
concerning indecomposable convex polyhedra in the ¢-dimensional space
RZ (cf. p. 23 of the present paper).

The purpose of the present paper is to give a new proof of this theorem.
First we find a correspondence between the set of homothety classes
of convex bodies in R? and a compact convex set in the Banach space
C(2,) of continuous functions on the unit sphere {2, in R? such that the
indecomposable classes correspond to the extreme points of this compact
convex set. We next show that Shephard’s approximation theorem is
a consequence of Milman’s theorem, valid for a compact convex set
in a locally convex topological vector space [3, p. 9]. Our proof yields
that Shephard’s theorem is true not only for a indecomposable poly-
hedron but for any indecomposable convex body in Rd.

Chapter 15 in the monograph [2] deals with the notion of decom-
posable and indecomposable polyhedra and the approximation theorem
of G. C. Shephard.

Let €, denote the class of all convex bodies in R? consisting of more
than one point. If K,L e %, and A>0, we have

K+Le%¥, and 1Ke€%,.
We consider %, as a metric space under the Hausdorff-distance
DK,L) = inf{e>0| KcL+eE, LcK+:cE},

where B, is the unit ball in RZ For each K €%, let A(K) denote the
supporting function of K. We consider h(K) as an element of the Banach
space C(2,) of continuous real-valued functions defined on the unit
sphere ©Q, in R?, equipped with the uniform norm. It is well known
that the mapping A: K - h(K) of €, into ((£2,) is one-to-one and satis-
fies (cf. [1])

(1) MK+L) = W(K)+ML), MAK)=2A(K) for >0,
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(2) D(K,L) = |[MEK)—h(L)] .
For K € €, one defines the Steiner-point S(K) of X [2, p. 314] by

S(K h(K) (&) d
"= nqufaE V) deuld)

and the mean width B(K) of K [1, p.50] by

B(K) = f hEK)(E) doo(£) ,

llog] @l 4

where o, denotes the usual surface measure on £, with total mass |jw].
Note that S(K)e K and that B(K)>0. The mappings S:%, > R?
and B: %, R are both continuous and satisfy the linearity relations
analogous to (1). Moreover S commutes with rigid motions, whereas
B is invariant under rigid motions.

We shall consider the subset 4 of %, defined by

A={Ke%,| S(K)=o0, BK)=1},

where o denotes the origin of R?, and the corresponding set %(4) of
supporting functions. From the above remarks it is obvious that A4
is a closed subset of %, with the property that if K,L € 4 and A€[0,1],
then AK+(1—A)L e A.

THEOREM 1. The subset A of €, is compact, and h is a homeomorphism
of A onto MA), which is a compact convex set in C(£2,).

Proor. For any convex body K € 4 and any point a € K the segment
[0,a] belongs to K since o € K. Thus B([o,a])<B(K)=1. Since
2 [lg-1ll lledl
lloogll(g—1)
lle]| and hence A4 is bounded. The selection theorem of Blaschke yields
the compactness of 4, and the proof is completed by (1) and (2).

B([o,a]) =

A convex body K €%, is called decomposable if there exist convex
bodies L, M € €,, non-homothetic to K, such that K=L4 M. If this
is not the case, K is called ¢ndecomposable.

It is obvious that if K, L € %, are homothetic, then K is decomposable
if and only if L is decomposable. Further, for any K € €, there exists
a unique pair (4,a), where 1> 0, a € R?, such that A-1(K —a) € A, namely
A=B(K), a=8(K).
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The supporting function of A-1(K —a) is denoted #(K) and is called
the normalized supporting function of K. For K € €, and & € 2, we have

n(K)(§) = BK)(A(K)(§) — S(K)-§) .

The normalized supporting function 7(K) lies in the compact convex
set i(4), and for K,L € €, we have 5(K)=n(L) if and only if K and L
are homothetic. The mapping 5: %, > h(A4) is continuous.

THEOREM 2. Let K €€, Then K is indecomposable if and only if the
normalized supporting function n(K) is an exireme point of the compact
convex set h(A).

Proor. It suffices to prove the theorem for a K € A, that is, when
n(E)=h(K).

Suppose that K is decomposable. Then we have a decomposition
K=L+M with L, M € %,, and 7(K) is different from »(L) and n(M).
It follows that

nK) = BlL)n(L) + B(M)n(M) and 1= B(L)+ B(M),

which show that 7(K) is not an extreme point of #(4).
Conversely, if n(K) is not extreme in i(A), we can find L, M € A
different from K and A with 0<A<1 such that

n(K) = An(L) + (1-2)n(M) .
Since K, L, M € A, we have
MK) = Ah(L)+ (1 —A)WM) = AL+ (1-2)M),

and consequently
K =L+ (1-A)M,

which shows that K is decomposable.

In the following let "< %, be a class of convex bodies stable under
homothety, that is, if K e X", then AK+a e X for all A>0, ae R,
Call a convex body L € %, approximable by such a class if there exist
convex bodies K+ ...+ K,, where K;e X, arbitrarily near to L in
the Hausdorff-distance.

LeMMA 1. Let A =%, be a class of convex bodies stable under homothety,
and let L€ %, Then L is approximable by the class A" if and only if

n(L) € clconv y(X"),
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where cl conv n(A") denotes the closed convex huil of the subset {n(K) | K € A"}
of h(4).

Proor. Suppose that there exists a sequence K, e %, such that
K, - L in %,, and such that

in
=> K, where K' X .
We then have n(K,)—n(L) in h(4) (uniformly over 2,) and
EB )7 B(K%,) n(K*,) ,

which is a convex combination of 5(K?,), ¢=1,...,7,. This proves
n(L) € clconv n(X") .

Conversely, if this relation is satisfied there exist convex bodies

Kt e and numbers 2%,>0, ¢=1,...,7,, n=1,2,..., such that
in
zlln =1
i=1

and

zm Ki) > n(L) in h(4).

=1

Since A is stable under homothety, the bodies K%, can be chosen such
that K?, € A, that is, h(K%,)=n(K%,). Thus we get

h ( ’iz"lzi,,Kin) Tk (B(L)—l (L—S(L))) in B(4),
i=
which by theorem 1 implies that
3, B S0).
i-
Consequently L is approximable by the class .
If we let <%, be the class of all indecomposable convex bodies,

lemma 1 combined with the Krein-Milman theorem yields the following
result:

THEOREM 3. Every convex body L € €, can be approximated arbitrarily
well by sums of indecomposable convex bodies.
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As a consequence of lemma 1 combined with the Milman theorem,
we get:

THEOREM 4. Let A" =%, be a class of convex bodies stable under homothety.
If an indecomposable convex body L € €, is approximable by the class A",
then L ecl A .

Proor. By lemma 1 we have
(L) € el conv y(X),

and 7(L) must be an extreme point of cl conv %(X"), because it is ex-
treme in h(A4). Thus by the Milman theorem we get (L) e cl n(4"),
and the proof is easily completed by means of theorem 1.

It is straightforward to see that theorem 4 implies Shephard’s ap-
proximation theorem:

Let €={Ke%,|8(K)=0,diamK=1}, and let A o<E be a closed
subset. If Pe% is an indecomposable polyhedron, and if P can be
approzimated arbitrarily well by convex bodies K € € of the form K=

1 MK, where Kie Ay, 2,>0, then P e X,.

We point out that theorem 3 does not tell anything new. It is well
known that any convex body K € ¥,, can be approximated by a convex
polygon, and every convex polygon is a sum of segments and triangles,
which are known to be indecomposable. For ¢ =3 the indecomposable
convex bodies are even dense in %,, because every convex simplicial
polyhedron (that is, a polyhedron the (q— 1)-dimensional facets of which
are simplices) is indecomposable [4, lemma 23]. For ¢=3 theorem 4
therefore has the consequence that if 2" <%, is a class stable under
homothety, closed as a subset of %, and universally approximating,
that is, every convex body L €%, can be approximated by 2, then
H =%, (cf. [3, theorem 22]).

For ¢=2 the class A" <%, consisting of all segments and triangles is
closed in %,, stable under homothety and universally approximating.
By theorem 4 the class £ contains every indecomposable convex body
so that the indecomposable plane convex bodies are precisely the seg-
ments and the triangles.

For ¢=3 no exhaustive classification of the indecomposable convex
bodies seems to be known. As an example of an indecomposable convex
body in R3, which is not a polyhedron, one could mention a cone.
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