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HYPERPLANES AND LINES ASSOCIATED WITH
FAMILIES OF COMPACT SETS IN LOCALLY
CONVEX SPACES

MICHAEL EDELSTEIN

1. Introduction.

Let o7 be a finite family of two or more nonempty disjoint compact
sets in a linear topological space X. Suppose B=U{4: 4 € o/} is an
infinite set which is not contained in any straight line of X. A theorem
established in [2] for X any real normed space and, previously, in [1]
for X =FE™ states that then a closed hyperplane exists which intersects
exactly two members of /. (Additional references and some motiva-
tion for the interest in the above result are also to be found in [1] and [2].)
It is the main purpose of the present note to extend the above theorem
to the case when X is an arbitrary real Hausdorff locally convex space.
The proof of our main result (Theorem 4) is based on certain facts
pertaining to the intersections of single members of &/ by hyperplanes
or lines. These facts, which seem to be of independent interest, are
discussed in Section 3.

2. Preliminaries.

2.1 Noration. For 8 an arbitrary set in a linear topological space
coS, X\ 8 and 8’ denote the closed convex hull, the complement and
the set of all accumulation points of S respectively.

2.2 LemMA. Let C be a compact convexr set in a real locally convex
Hausdorff linear topological space B, W<H a compact set with W' <C
and L a straight line such that Ln(WuC)=0. Then a closed hyperplane
7 exists such that Lex and an(Wul)=0.

Proor. By a standard separation theorem [3, p.119] there exists
a hyperplane n, strongly separating L and C. Let m, be a hyperplane
parallel to 7, through an arbitrary point of L. Then, as can be easily
seen, L <m, and Onmy,=0. Clearly Wnum, is finite (or empty). If empty,
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as is always the case when dim £ < 2, then =z, itself is as desired. If not,
let o be a closed linear variety of codimension 2 such that L<cocum,
and cnW=9g. Let xeC, yen,\ o and suppose J, is the hyperplane
spanned by ¢ and the point tx+ (1 —#)y, 0<t<1. It is easily seen that
the family {E,*: 0<t<1} of all open halfspaces E,* determined by 4,
and containing x is an open cover of C. This implies the existence of
a t with 0<i<1 such that E;*>C for all ¢ with 0<t<f. Our assump-
tions on W, the fact that on W =0 and the definition of the E,* now
clearly imply that only finitely many of these intersect W. Hence,
for some ¢, w=1, is as desired.

2.3 LEMMA. Let 4 be a compact set in a complete locally convex Haus-
dorff linear topological space. Then the set of all extreme points of coA
is contained in A.

Proor. The set cod is compact [5, p. 60]; hence, by a theorem of
Milman [4, p. 335] the set of all extreme points of co4 is contained in 4,
as asserted.

3. Hyperplanes and lines intersecting one set only.

3.1 THEOREM 1. Let &7 be a finite nonempty family of disjoint non-
empty compact subsets of a real locally convex Hausdorff linear topological
space X. Then there exists a closed hyperplane « tn X which is a support
hyperplane of B=U{A4: A € o/} and is disjoint from all members of of
but one.

Proor. Since all members of &/ are complete it suffices to find a
hyperplane & in the completion X of X with the analogous properties
(in other words, no restriction of generality would result from assuming
X to be complete); for then x=xnX would be as desired. In X then,
let ¢ be an extreme point of coB. By the previous lemma e € B. Hence
e belongs to exactly one member of o, say 4,. Let B;=B\4,. Then
e & coB;, for e € coB, implies, as before, e € B, against the disjointness
of members of o7. Let f be a continuous linear functional with f(e) > f(z)
for all 2zecoB; and suppose m=max{f(x): € 4,}. Then clearly,

f1(m)={y: f(y)=m} may serve as &.

3.2 THEOREM 2. Let &7 be a finite nonempty family of disjoint non-
empty compact sets in a real locally convex Hausdorff space X. Let
x e X\ coB where B=U{A4: 4 € o/} and suppose Bu{x} is not contained
in any straight line of X. Then a nonempty set E consisting of at most
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four points of B and a neighbourhood U <X\ coB of x exist such that
for each we U\ {x} there is an e € E with the property that the straight
line L through u and e does not contain x and, if e € A, € &/, Lnco(B\ 4,)
=d.

Proor. Let x, be a closed hyperplane strictly separating x and coB
and «, a hyperplane parallel to «,, intersecting the cone (' spanned
by « and coB and such that z and B lie on the same side of it. As in
the proof of Theorem 1 no restriction of generality results from assuming
X to be complete, and this we wish to do. Thus co B is compact and so
is Z=x,nC. (For this and other facts pertaining to extreme points,
cones and extreme rays used in this proof see e.g. [4, pp. 333-345].)

Being the closed convex hull of its extreme points, Z must have at least
two such points 2,2, not on the same line through x. The rays

R, ={y:y=wo+t(z;—x), t 20}, =12,

are then both extreme rays. Hence each one of them contains at least
one, and at most two, extreme points of coB. We will show that the
set consisting of these points may serve as B. Let L, be the straight
line containing R;, ¢=1,2. To prove the theorem it suffices to show
that to each L, there is a neighbourhood U; of x such that if v € U;\L;
then there is an e € FnR; such that the straight line L through « and e
is disjoint from co(B\ 4,); for then U=U,;nU, would clearly satisfy
the conclusion of the theorem. For the construction of U, (¢ will be
taken fixed in the sequel) we distinguish between the cases when FnE;
consists of one or two points. Without loss of generality we may, in
the first case, assume that the origin 0 is the single extreme point on E;.
Then 0 belongs to a unique member 4, of &/ and co(B\4,)nR;=0.
Let wy=3}(x+7,), where {z,}=R;nx, and w,=2z; let 1 be a closed
hyperplane separating co(B\ 4,) and L, and A~ the open halfspace
determined by A which contains L;. Let V be a convex neighbourhood
of 0 such that V<A~ and (w;+ V)nx;=0 for j=0,1. It is readily
seen that

U,={y: y=tv,vew,+V,t20}n{y: y=tv,vew, +V,t<0}

is as desired.

In a similar manner one applies the above argument to the some-
what more general case when R;ncoB is a subset of a single member
of o/.

Suppose then 7 and s are two distinct members of K on R; with r
belonging to the open interval (z,s) and let re 4, €./, se A;e o



28 MICHAEL EDELSTEIN

(where A4, and A, are not necessarily distinct members of 7). Let
K,=co(B\4,) and K,=co(B\ 4,); let L, be the closed ray emanating
from r and containing x, L, the closed ray emanating from s, contained
in R, and not containing x. We clearly have L.nK,=L,nK =0.
Hence closed hyperplanes A, and 1, exist strictly separating L, from
K, and L, from K respectively. If 1.~ is the open halfspace determined
by 2, which is disjoint from K, then, clearly, z € A,~. Since, by assump-
tion, L;nco B is not contained in A4, clearly A, separates s and z. Hence,
if A,* is the open halfspace determined by A, which contains K, then
xz € A;t. Thus 4,-nA,tNey~, where «,~ is the open halfspace determined
by «, which contains z, is a neighbourhood W of x. Let u be any point
in W\ L; and consider the straight lines wr,us joining w with r and s
respectively. We claim that either the first is disjoint from K, or the
second is disjoint from K. Suppose this is not so. Then, since v € 4,-,
r is between % and urnK, on the straight line ur; on the other hand,
since u € A,+, usn K, is contained in the open interval (u,s). Thus in
the (two-dimensional) plane spanned by L, and » points of coB are
to be found on both sides of L; which is clearly incompatible with the
fact that R,<=L, is an extreme ray. This contradiction shows that W
may serve as U, completing the proof of the theorem.

3.3 As an immediate consequence of Theorem 2 and known separation
theorems (or, alternatively, by 2.2) we have the following.

TrEOREM 1'. Let X and 27 be as in Theorem 2. Then the set of all points
in X \ coB through which there is no closed hyperplane intersecting exactly
one member of &/ is discrete (or empty).

3.4 THEOREM 3. Let X,/,B and x be as in Theorem 2, and let M be
a subset of X with x € M'. Then there exist a set A e, a point ec A
and an infinite set A of straight lines L passing through points of M satis-

Sying

(1) Lnd+0,
@) LnGo(BNA) =0,
(3) N{L:LeA} = {.

Proor. Let U and E be as in the conclusion of Theorem 2 and sup-
pose 4, is the collection of all straight lines L, with x ¢ L, joining points
of MnU with e € E and satisfying (1) and (2) (for A=4, where ec 4,).
Should 4, be finite for each e € & then, clearly, a neighbourhood V< U
of z could be found such that no straight line in U{4,: ¢ € B} would
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pass through any of the points of MnV. By Theorem 2 this is im-
possible.

4. The main result.

THEOREM 4. Let 7 be a finite family of two or more nonempty disjoint
compact sets in a real locally convex Hausdorff linear topological space X.
Suppose B=U{A: A € o/} is an infinite set which is not contained in any
straight line of X. Then there exist a hyperplane m and two members
A, Ay of o so that

(4) and; £9, i=12,

(5) nnd =0, Aes/\{A,4,)},
and

(6) mnco(B'\(4,u4d,)=0.

Proor. As before, we may assume X to be complete. Let &/'=
{4': Ae o/, A'+0}. By Theorem 1 there exists a closed hyperplane «
which supports B’ and intersects only one member of o/’ say 4,". Let
aeand, and put B;=U{4: Ae o/, A+ A,}. The theorem is easily
seen to be true in the special case when B," is a subset (possibly empty)
of a straight line through a. Let «+ be the closed halfspace determined
by « which contains B, and let

yt={Anat: Aecl, A £ A}, Anat + J}.
We note that the members of 7, are all closed, hence compact. Since
'Bl+ = Blﬂ 0‘+ = U {.A.+: A+GM1+}

is a compact subset of a+ we have a ¢ coB,* by Lemma 2.3. Hence,
by Theorem 3 there is an infinite collection A of straight lines L through
points of 4, intersecting a single member 4, of &7+ such that

N{L:LeA}={e} <A+ and Lnco(B+\A4,) =6.

Since B;\ B;* is finite only finitely many members of A can intersect
this last set so that a L € A exists which satisfies (4), (5) and (6) with
A,=A4, and = replaced by L. The conclusion of the theorem now follows
from 2.2 upon setting C'=co(B'\ (4,U4,)) and W=DB\ (4,Ud,).
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