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ON THE MONOTONE SEQUENTIAL CLOSURE
OF A C*-ALGEBRA

ESBEN T. KEHLET

1. Introduction.

In this paper axioms are given for ‘‘Baire*-algebras”, a type of
C*-algebras previously studied by R. V. Kadison [7] and G. K. Pedersen
[12], [13], and for ‘‘J Baire*-algebras”, the Jordan algebras analo-
gously defined. The axioms are modelled after those of [6] in such
a way that Baire*-algebras appear as o¢-analogues of von Neumann
algebras. For countably generated Baire*-algebras we give elements
of a structure theory, for example, a comparison lemma and a charac-
terization of modularity, using methods of E. B. Davies [2], D. M.
Topping [16], I. Kaplansky [8], [9], [10], and G. K. Pedersen [13].

Baire*-algebras generalize the X*-algebras of E. B. Davies [1], how-
ever, it is not known whether every Baire*-algebra is a X*-algebra,
cf. [13].

For general information about von Neumann algebras, C*-algebras
and JC-algebras we refer to [3], [4], [15] and [16].

The author is indebted to E. B. Davies and G. K. Pedersen for the
pleasure of reading preprints of {2], [12] and [13], and to G. K. Pedersen
for numerous illuminating conversations.

2. Baire*-algebras.

DeriNtTION 2.1. A Jordan representation of a JC-algebra A is called
o-normal if, for every monotone increasing sequence of elements from
A with a least upper bound in A, the image of the least upper bound
is the least upper bound of the images.

Analogously we define g-normality of linear functionals on C*-algebras
and JC-algebras.

DrriNtTION 2.2. A C*-algebra (resp. JC-algebra) A is called a Baire*-
algebra (resp. J Baire*-algebra) if every normbounded monotone in-
creasing sequence in 4 has a least upper bound in 4, and 4 has a sep-
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arating family of o-normal states. A concrete Baire*-algebra (resp.
J Baire*-algebra) is a self-adjoint algebra of (resp. a Jordan algebra
of self-adjoint) operators on a Hilbert space containing the limit of
any of its weakly convergent monotone sequences.

From the work of R.V.Kadison [7] it follows that the smallest
set J7' of self-adjoint operators containing a given Jordan algebra J
of self-adjoint operators and containing the limit of any of its weakly
convergent monotone sequences, is a JC-algebra and hence a JBaire*-
algebra. If J is the self-adjoint part 4* of a self-adjoint operator alge-
bra A, then, as shown in [13], (4%)" is the self-adjoint part of a C*-
algebra, and hence a Baire*-algebra, A7 (the notation of [7] is altered
slightly) the set of the Baire operators associated with 4. Especially,
a concrete J Baire*-algebra (resp. Baire*-algebra) is a J Baire*-algebra
(resp. Baire*-algebra). Also from [6] and [7] it follows that on a separ-
able Hilbert space we get weakly closed algebras.

Lemma 2.3. Let A be a JC-algebra, in which every mormbounded in-
creasing sequence has a least wpper bound. For every separable subset B
of A there exists a projection u € A such that ub=>bu=>= for every b € B.

Proor. We may suppose that B is a JC-subalgebra. Let (u,) be an
increasing sequence from B, with O0<gu, and |u,||<1, such that (u,)
is an approximate identity for B. Let u be the least upper bound of
(#,,). For x e B we have

(1 — o) 2* X (o — p) — (p — 2)* (2 — )

uniformly, and for m=<n
0= (u—pa)@*x(p—p,) = 12|l (4 = ) -
Since the positive cone is uniformly closed,
(wp—x)* (wp—2x) = [P ]|ull (4 — p)

for every m, and au=x=pux. Further

0= p—py = plp—pn) = llpll(e—p,)
for all n, so u?2—pu=0.

In the same way it can be proved that every C*-algebra in which
every normbounded monotone increasing net has a least upper bound
has a unit.

THEOREM 2.4. Every J Baire*-algebra has a faithful Jordan represen-
tation as a concrete J Baire*-algebra.
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Proor (cf.[6]). For any x€ 4 and any increasing sequence (a,)
from 4 with least upper bound ¢ we can choose a JC-subalgebra B
of 4 with unit « containing =z, (a,), a, and the least upper bound b of
(za,z). If x has an inverse y in B, then (a,) = (yxa,xy) has a least upper
bound a satisfying

a £ yby < yraxy = a,

80 zax =b. In any case there exists K € N such that z + ku has an inverse
in B for any k> K. Then for any o-normal state f

kf(z(a,—a)+ (a,—a)x)
= f((x+ku)(a, —a)(@+ku)) + f(x(a—a,)r)+k2f(a—a,) — f(zax—b)

for any k> K, so f(xax—b)=0 and xax =b.

Let C be a C*-algebra containing 4 and generated by A. Any state
f of 4 can be extended to a state of the subspace 4 =4 +R1 of C, then
to A+iA4, and by the Hahn-Banach theorem to a functional f on C.
Since ||f||=f(1), f is a state of . If fis o-normal on 4 and (a,) is an
increasing sequence from 4 with least upper bound a, then for any
u,v € C of the form

U =TTy .. Ty, U =Y1Yg.- . Yps
with z;,%s,. . ., %, Y1, Yss- - -, Ym €A, we have

fu*a;u) — f(u*aw)
and
If(w*(a—a;)v)]? £ f(u*(@—a;)u)f(v*(@—a)v) > 0.

It follows that the restriction to A of the representation associated
with f is o-normal. The direct sum of the representations associated
with states of O extending a separating family of o-normal states of 4
is o-normal and faithful on 4, and hence maps A onto a concrete
J Baire*-algebra.

In the same way we can prove

THEOREM 2.5. Every Baire*-algebra has a faithful representation as a
concrete Baire*-algebra.

For an abstract O*-algebra A we define % ,, the enveloping Baire*-
algebra or the Baire operators associated with 4, as A}" computed in
the universal representation of A, cf. [12]. In the terminology of [1],
B, <A, and #,4 may as well be computed in the reduced atomic repre-
sentation. If 4 is G.C.R., then # =4, see [13]; especially, if 4 =Cy(T),
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where 7' is a locally compact Hausdorff space, then &, is the set of
bounded Baire functions on 7'.

Any representation # of A has a unique extension to a ¢-normal
representation of % ,, viz. the restriction to %, of the extension to a
normal representation of 4"’. This extension maps onto 7(A4)7*; in fact,
more generally any o-normal (Jordan-) representation of a (J) Baire*-
algebra maps onto a (J) Baire*-algebra, see the proof of proposition 4.2
in [12], cf. also [2].

All the work in [14] on applications of X*-algebras in quantum me-
chanics applies just as well to Baire*-algebras.

DeriniTiON 2.6. The universal g-normal representation of a Baire*-
algebra A is the direct sum of all the representations associated with
the non-zero positive g-normal linear functionals on A.

THEOREM 2.7. The set of linear combinations of o-normal states of a
Baire*-algebra A is a uniformly closed subspace P of A'.

For z and y in A" and f € P the functional a — f(xay), a € 4, is in P.

P’ is a von Neumann algebra isomorphic to the weak closure of A in
its universal o-normal representation.

The canonical map ¢ of A into P’ is a-normal and fasthful, and to any
o-normal representation ¢ of A there exists a unique normal representation

y of P’ satisfying pot=g.

Proor. If f is a o-normal state, z,y € A", and (a,) is an increasing
sequence from A4 with least upper bound a, then

fla*a,a) = (ny(a,) 7 ()& | 7p(2)E5) — fla*az).

By polarization, a — f(zay) is in P.

Then every fe P is o-normal, and a — f(zay) is in P for z,ye 4".
The intersection of the kernels in 4" of the functionals in P is a weakly
closed two-sided ideal, so P’ is a von Neumann algebra. Since the
predual of a von Neumann algebra is generated by its positive elements,
P=P. Defining ¢ by

Ya)(f) = fla), a€cd, feP,

¢ is clearly o-normal and faithful. Let ¢ be a o-normal representation
of 4, and let ¢ denote the normal extension to 4’'. If f(x)=0 for all
fe P, then (¢(x)¢ | n)=0 for all {,ne H,, so ¢ can be transferred to a
normal representation y of P’, unique by the uniqueness of ¢. If ¢
is the universal o-normal representation, v is faithful and hence an
isomorphism, since if x € P’ and y(x)=0, then f(x*z)=0 for all fe P.
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A Jordanized version of theorem 2.7 can be established on the basis
of [5].

CoroLLARY 2.8. If A is the enveloping Baire*-algebra of a C*-algebra C,
then P is isomorphic to C' and P’ is isomorphic to C"'.

3. Projections in a .J Baire*-algebra.

In this section 4 is a J Baire*-algebra on a Hilbert space H.

For x € A the range projection of x is in 4; the set of projections
in A is a o-complete lattice.

As in [16] we say that two projections e and fin 4 can be exchanged
(by a partial symmetry) if there exists s € 4 with ses=f and s?=evf.
For any projection g € 4 greater than evf, this is the case if and only if
there exists t € 4 with =g and fe=ft. Further ¢ and f are in position
p’ if and only if

eA(evf—f) = (evf—e)af=0.

We call e and f perspective in 4 if there exists a projection
g € A such that both e and g, and f and ¢ are in position p’; and e and f
are called S-equivalent (resp. projective) if there exist projections
e=egyeq,...,6,=f such that e, ; and e, can be exchanged (resp. are
perspective) for 1=1,...,n.

ProrosiTiON 3.1 (cf. [16, corollary 111). S-equivalence is the same as
projectivity.

Proor (cf. [16, theorems 6 and 7]). If e and f are in position p’ and s
is the difference between the range projections of the positive and the
negative parts of e+f—evf, then ¢ and f are exchanged by s+evf—s2
If ¢ and f are exchanged by s, with s?=evf, and

g = Mevf+s+erf—sienf)),
then both e and ¢, and f and ¢ are in position p’.

LemMma 3.2 (cf. [16, theorem 9 and proposition 11]). Let (e,) and (f,)
be two sequences of projections such that e, and f, can be exchanged for
each n, and e, vf, and e,Vf, are orthogonal for n+m. Then Ye, and Xf,
can be exchanged.

Proor. If e, and f, are exchanged by s, with s,2=e,vf,, then
s, +e,Vf,) are pairwise orthogonal projections and e, and Xf, are
exchanged by

Zé’n =2 Z%(sn"’envfn) - zenvfn .
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Note that if e and f are orthogonal and perspective projections in A4,
they can be exchanged ([16, proposition 10]). Also, that for any projec-
tions e and f in 4 the range projections of ¢f and fe are in position p’
and hence can be exchanged ([16, corollary 7 and lemma 12]).

The following result is implicit in [13].

LeMma 3.3. Let (e;) be a sequence of pairwise orthogonal projections in
A with sum e. Let x be an operator on H such that e;xe;+e;xe; € A for
all ©,j. Then exec A.

Proor. Put z=32-%, Then z has range projection e, and zxz € A
since 4 is uniformly closed, so exee 4 by a lemma of Kadison (cf.
[12, lemma 5]).

LemmA 3.4. If A contains an infinite sequence (e;) of pairwise orthogonal
non-zero projections with e, and e, , perspective for all i, then A contains
a J Baire*-subalgebra isomorphic to the Jordan algebra of self-adjoint
operators on a separable infinite-dimensional real Hilbert space.

Proor. We may assume Ye;=1. By [16, lemma 21] there exists a
sequence of partial symmetries s;; =s;; with s2=e,ve, and

811181 = €5, S11 = €1 -

Define v;;=e;8;, v1;,=v4* and v;=v,vy;, so v;=e;. Let B be the
C*-algebra generated by A; then (v;) is a set of matrix units in B,
and v;;+v;; € 4 for all 4,j. Define

C={xeB| Vijil;eC: eme;=Ayvy};

then by [9, lemma 15] C is a weakly closed subalgebra of B isomorphic
to the algebra of operators on a separable infinite-dimensional complex
Hilbert space. Define

D={xeC| x=x*Vij: A;is real};

D is a weakly closed Jordan subalgebra of B isomorphic to the Jordan
algebra of self-adjoint operators on a separable infinite-dimensional real
Hilbert space. For xeD

= Ay
SO
e,;:l:ej+ejxei = lij(vij'i"vji) € A )

and ze A by lemma 3.3.
A is called invertible (cf. [15]) if for any a,,a,,...,a,€ 4,
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@@y .. Gy + Ay ...00, €EA.

Lemma 3.5. If A is invertible, orthogonal projective projections can be
exchanged.

Proor. Assume e and f projective and orthogonal. Choose projections
e=eg,ey,...,6,=f and partial symmetries s; exchanging e; ; and e;;
we may assume

82

T = CpVeq V... Ve, = (.

Put u=es;s,...s,; then u*u=f, vu*=e, u*eu=f, and u+u* is a par-
tial symmetry in 4 exchanging e and f.

We call A modular if the lattice of projections in A4 is modular, that is,
if e<g implies ev(fag)=(evf) ag for any three projections e,f,g € A.
We call a projection e € A modular if ede is modular.

TaEOREM 3.6 (cf. [16, proposition 14]). The following properties 1)-3)
of a J Baire*-algebra A are equivalent:
1) A is modular.
2) If (e;) is an infinite sequence of pairwise perspective and orthogonal
projections in A, then every e; is 0.
3) For any pair e,f of perspective projections in A, f<e implies f=e.

If A is invertible, these properties are equivalent to:
4) If (e;) is a sequence of pairwise projective and orthogonal projections
in A, then every e; 1s 0.
5) For any pair e,f of projective projections in A, f<e implies f=e.

Proor. 3) =>1) since the two sides of the modularity identity are
comparable and perspective.

4) =5): If f<e, f=+e, and f and e are projective, we can find partial
symmetries $;,8,,...,8, and #=s88,...s, such that w*eu=f. Then
(u*n(e—f)un) provides a counterexample to 4). In the same way
2) = 3).

5) = 3) is trivial, and so is 2) = 4) by lemma 3.5 when A4 is invertible.

1) = 2) follows from lemma 3.4.

4. Countably generated .J Baire*-algebras.

DEriniTION 4.1. A J Baire*-subalgebra of a J Baire*-algebra 4 is a
Jordan subalgebra B containing the least upper bound (computed in 4)
of each of its normbounded monotone increasing sequences; such a B
is a J Baire*-algebra. A J Baire*-algebra A is called countably gener-

Math, Scand. 25 — 5
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ated if 4 has a countable subset B such that 4 is the smallest J Baire*-
subalgebra of 4 containing B.

In the rest of this section, 4 denotes a countably generated J Baire*-
algebra.

LeEMMmA 4.2. 4 has a unit. Every projection in A has a central support.
Proor. See [13] or [2].

LemMa 4.3. Let Z be the center of A. Two projections e and f have
orthogonal central supports if and only if

eAf = 0,
and if and only if
eaf+fae = 0 for all ac 4.

The center of eAe is eZe.
Proor. See [16, lemma 2.4 and theorem 14].

TaeorEM 4.4 (cf. [16, theorem 10 and corollaries 18 and 19] and
[2, theorem 2.6]). If e and f are projections in the countably generated
J Baire*-algebra A, there exists projections eq,e,,f1,fo € A and a symmetry
se 4 with

e=e+e, [=fitfe, ses=f,

and e, and f, have orthogonal central supports.
For any central projection h with e;<h=<1—f, we have

shes £ hf,

s(1=h)fs £ (1=h)e,
s(1—h)(1—e)s £ (1-h)(1-f).

Proor. 4 is generated by a sequence (U,) of symmetries. In view
of lemma 3.2, if ¢f=0, the proof of theorem 2.6 in [2] applies. For the
general case, see [16, corollary 18].

TaEOREM 4.4 (cf. [11, ITIT, theorem 2.2]). In a modular invertible count-
ably generated J Baire*-algebra A projective projections can be exchanged,
and perspectivity ts transitive.

Proor. Let e and f be projective projections in 4. Choose projections
€4, €5, f1, fo such that
e=ete, [f=[fit+fe,

e, and f; can be exchanged, and e, and f, have orthogonal central sup-
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ports ¢ and k. Then ge and gf=gf; and ge, are projective. By theorem
3.6, ge=ge,, s0
e = ge = geg = ey,

and e=e,; similarly f=f,.

Now the following three propositions can be proved exactly as in
[16, pp. 26-28].

ProrosiTION 4.5. If ¢ and f are modular projections in A, then evf is
modular.

ProrosiTioN 4.6. If ¢ and f are perspective projeciions in A and e is
modular, then f < e implies f=e.

ProrosrTioN 4.7. If A is invertible, then projective modular projections
can be exchanged.

Also, for A invertible the Schroder—Bernstein theorem holds for
modular projections.

5. Projections in a Baire*-algebra.
In this section 4 denotes a Baire*-algebra acting on a Hilbert space H.
As in a X*-algebra (cf. [2]) we call two projections e and f equivalent,
e~f, if there exists v € 4 with

vk = e, wov*=f.

This relation ~ is additive. We call e and f U-equivalent if there exist
a projection g2evf and v € A with

u*y = yu* =g, wreu = f.

If this is the case, then for any projection h € A greater than g there
exists v (=u+h—g) with v*v=vv*=h and v*ev=f, and the relation
is transitive. Projective projections are U-equivalent, and U-equivalent
projections are equivalent. Orthogonal equivalent projections can be
exchanged: if v*v=e, vo*=f, and e L f, then v+ v* is a partial symmetry
exchanging e and f.

The next theorem and proof is due to G. K. Pedersen (oral communi-

cation).

TaEOREM 5.1. Let x=ulx| be the canonical polar decomposition of
z€A. Then |x| and u belong to A.
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Proor. Since |x|=(x*z)}, |x| € A. Also, the range projections u*u
and wu* of |z| and |z*| are in 4. Further,

(z+ 2))(n 1 fa]) 2 (w4 [2)* — wak +utu*+uru

monotonely, so u+u*e A. Applying this argument to iz we find
tu—tu*e€ A, so ue d.

CorOLLARY 5.2. The equivalence relation is countably additive.

Proor. Let (v;) be a sequence of partial isometries in 4 with v;*v,=
d;5¢; and vv*=0;;f;. Then 32-%»;e€ A4 and has support and range
projections Ye; and X f;. By theorem 5.1 these are equivalent.

Inspecting the polar decomposition of 3 2-%v, we find in fact Jv; € 4.
More generally, by using the identity

x+a* = (1+u)le|(1+uw*) — |z¥] - 2],

G. K. Pedersen proved: If (z;) is a sequence from 4 with Y|z, and
Y |z;*| weakly convergent, then 3z, is weakly convergent with sum in 4.

By the methods used in sections 3 and 4 we get:

TrEOREM 5.3. The following properties of a Baire*-algebra A are
equivalent :

1) A is modular.

2) If (e;) 18 an infinite sequence of patrwise orthogonal equivalent projec-
ttons in A, then every e; is 0.

3) A does not contain a Baire*-subalgebra isomorphic to the algebra
of bounded operators on an infinite-dimensional Hilbert space.

4) A is finite, that is, every isometry in A is unitary.

THEOREM 5.4. In a finite, countably generated Baire*-algebra equivalent
projections can be exchanged. Hence equivalence, U-equivalence, projectivity,
and perspectivity coincide.

ProPOSITION 5.5. In a countably generated Baire*-algebra the supremum
of two finite projections s finite, and equivalent finite projections can be
exchanged.

In the rest of the paper 4 is supposed to be countably generated.
For reference we note the following easy consequence of the com-
parison lemma.

LeMMA 5.6. Let e, f and g be projections in A. If e<f and f<g and
e =g, then there exists a projection he A with eSh<g and f~h.
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LemMa 5.7 (cf. [8, lemma 6.4]). Let (e;) be a decreasing sequence with
mfimum e of finite projections in A. If a projection fe A satisfies f<e,
for all 4, then f<e.

Proor. Inductively we can choose a decreasing sequence (f;) with
infimum ¢g=f and e;~f; for all 5. Then f,—g~e,—e, so by finiteness
g~e.

ProrosiTiON 5.8 (cf. [8, theorem 6.5]). Let (e;) be a decreasing sequence
with infimum e of finite projections tn A. For any projection fe A the
infimum of (e;vf) is evf.

Proor. If & denotes the infimum —evf, then

h =evf—evf~e,—(evf)re, < e;—e,
so h=0.
In the same way we prove: if (¢;) is an increasing sequence with finite
supremum e of projections in 4 and f is any projection in A4, then the
supremum of (e;Af) is eAf. Summing up we have:

The lattice of projections in a finite, countably generated Baire*-algebra
satisfies the countable analogues of the axioms for a continuous geometry.

REFERENCES

1. E. B. Davies, On the Borel structure of C*-algebras, Comm. Math. Phys. 8 (1968),
147-163.

2. E. B. Davies, The structure of 2*-algebras. To appear.

3. J. Dixmier, Les algébres d’opérateurs dans Uespace Hilbertien, Gauthier—Villars, Paris,
1957.

4. J. Dixmier, Les C*-algébres et leurs représentations, Gauthier-Villars, Paris, 1964.

5. E. Effros and E. Stermer, Jordan algebras of selfadjoint operators, Trans. Amer.
Math. Soc. 127 (1967), 313-316.

6. R. V. Kadison, Operator algebras with a faithful weakly-closed representation, Ann. of
Math. 64 (1956), 175-181.

7. R. V. Kadison, Unitary invariants for representations of operator algebras, Ann.of
Math. 66 (1957), 304-379.

8. I. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.

9. I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.

10. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry,
Ann. of Math. 61 (1955), 524-541.

11. J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960.

12. G. Kjergard Pedersen, Measure theory for C*-algebras ILI, Math. Scand. 25 (1969),
71-93.

13. G. Kjeergard Pedersen, On weak and monotone g-closures of C*-algebras, Comm. Math.
Phys. 11 (1969), 221-226.



70 ESBEN T. KEHLET

14. R. J. Plymen, C*-algebras and Mackey’s axioms, Comm. Math. Phys. 8 (1968), 132
146.

15. E. Stermer, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc. 120 (1965),
438-447.

16. D. M. Topping, Jordan algebras of self-adjoint operators (Mem. Amer. Math. Soc. 53),
Providence, R.I., 1965.

UNIVERSITY OF COPENHAGEN, DENMARK



