ON THE MONOTONE SEQUENTIAL CLOSURE OF A C*-ALGEBRA

ESBEN T. KEHLET

1. Introduction.

In this paper axioms are given for "Baire*-algebras", a type of C^* -algebras previously studied by R. V. Kadison [7] and G. K. Pedersen [12], [13], and for "J Baire*-algebras", the Jordan algebras analogously defined. The axioms are modelled after those of [6] in such a way that Baire*-algebras appear as σ -analogues of von Neumann algebras. For countably generated Baire*-algebras we give elements of a structure theory, for example, a comparison lemma and a characterization of modularity, using methods of E. B. Davies [2], D. M. Topping [16], I. Kaplansky [8], [9], [10], and G. K. Pedersen [13].

Baire*-algebras generalize the Σ *-algebras of E. B. Davies [1], however, it is not known whether every Baire*-algebra is a Σ *-algebra, cf. [13].

For general information about von Neumann algebras, C^* -algebras and JC-algebras we refer to [3], [4], [15] and [16].

The author is indebted to E. B. Davies and G. K. Pedersen for the pleasure of reading preprints of [2], [12] and [13], and to G. K. Pedersen for numerous illuminating conversations.

2. Baire*-algebras.

DEFINITION 2.1. A Jordan representation of a JC-algebra A is called σ -normal if, for every monotone increasing sequence of elements from A with a least upper bound in A, the image of the least upper bound is the least upper bound of the images.

Analogously we define σ -normality of linear functionals on C^* -algebras and JC-algebras.

Definition 2.2. A C^* -algebra (resp. JC-algebra) A is called a Baire*-algebra (resp. J Baire*-algebra) if every normbounded monotone increasing sequence in A has a least upper bound in A, and A has a sep-

Received September 16, 1968.

arating family of σ -normal states. A concrete Baire*-algebra (resp. J Baire*-algebra) is a self-adjoint algebra of (resp. a Jordan algebra of self-adjoint) operators on a Hilbert space containing the limit of any of its weakly convergent monotone sequences.

From the work of R. V. Kadison [7] it follows that the smallest set J_s^m of self-adjoint operators containing a given Jordan algebra J of self-adjoint operators and containing the limit of any of its weakly convergent monotone sequences, is a JC-algebra and hence a J-Baire*-algebra. If J is the self-adjoint part A^h of a self-adjoint operator algebra A, then, as shown in [13], $(A^h)_s^m$ is the self-adjoint part of a C^* -algebra, and hence a Baire*-algebra, A_s^m (the notation of [7] is altered slightly) the set of the Baire operators associated with A. Especially, a concrete J-Baire*-algebra (resp. Baire*-algebra) is a J-Baire*-algebra (resp. Baire*-algebra). Also from [6] and [7] it follows that on a separable Hilbert space we get weakly closed algebras.

LEMMA 2.3. Let A be a JC-algebra, in which every normbounded increasing sequence has a least upper bound. For every separable subset B of A there exists a projection $\mu \in A$ such that $\mu b = b\mu = b$ for every $b \in B$.

PROOF. We may suppose that B is a JC-subalgebra. Let (μ_n) be an increasing sequence from B, with $0 < \mu_n$ and $\|\mu_n\| \le 1$, such that (μ_n) is an approximate identity for B. Let μ be the least upper bound of (μ_n) . For $x \in B$ we have

$$(\mu - \mu_n)x^*x(\mu - \mu_n) \rightarrow (x\mu - x)^*(x\mu - x)$$

uniformly, and for $m \leq n$

$$0 \le (\mu - \mu_n) x^* x (\mu - \mu_n) \le ||x||^2 ||\mu|| (\mu - \mu_m).$$

Since the positive cone is uniformly closed,

$$(x\mu - x)^*(x\mu - x) \le ||x||^2 ||\mu|| (\mu - \mu_m)$$

for every m, and $x\mu = x = \mu x$. Further

$$0 \, \leqq \, \mu^2 - \mu_n \, = \, \mu \, (\mu - \mu_n) \, \leqq \, ||\mu|| \, (\mu - \mu_n)$$

for all n, so $\mu^2 - \mu = 0$.

In the same way it can be proved that every C^* -algebra in which every normbounded monotone increasing net has a least upper bound has a unit.

Theorem 2.4. Every J Baire*-algebra has a faithful Jordan representation as a concrete J Baire*-algebra.

PROOF (cf. [6]). For any $x \in A$ and any increasing sequence (a_n) from A with least upper bound a we can choose a JC-subalgebra B of A with unit u containing x, (a_n) , a, and the least upper bound b of (xa_nx) . If x has an inverse y in B, then $(a_n) = (yxa_nxy)$ has a least upper bound a satisfying

$$a \leq yby \leq yxaxy = a$$
,

so xax = b. In any case there exists $K \in \mathbb{N}$ such that x + ku has an inverse in B for any k > K. Then for any σ -normal state f

$$\begin{array}{l} kf\big(x(a_n-a)+(a_n-a)x\big)\\ &=f\big((x+ku)(a_n-a)(x+ku)\big)\,+\,f\big(x(a-a_n)x\big)+k^2f(a-a_n)\to f(xax-b) \end{array}$$

for any k > K, so f(xax - b) = 0 and xax = b.

Let C be a C^* -algebra containing A and generated by A. Any state f of A can be extended to a state of the subspace $\widetilde{A} = A + \mathsf{R1}$ of \widetilde{C} , then to $\widetilde{A} + i\widetilde{A}$, and by the Hahn–Banach theorem to a functional f on \widetilde{C} . Since ||f|| = f(1), f is a state of \widetilde{C} . If f is σ -normal on A and (a_i) is an increasing sequence from A with least upper bound a, then for any $u,v \in C$ of the form

$$u = x_1 x_2 \dots x_n, \qquad v = y_1 y_2 \dots y_m,$$

with $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m \in A$, we have

$$f(u^*a_iu) \rightarrow f(u^*au)$$

and

$$|f(u^*(a-a_i)v)|^2 \le f(u^*(a-a_i)u)f(v^*(a-a_i)v) \to 0$$
.

It follows that the restriction to A of the representation associated with f is σ -normal. The direct sum of the representations associated with states of C extending a separating family of σ -normal states of A is σ -normal and faithful on A, and hence maps A onto a concrete J Baire*-algebra.

In the same way we can prove

Theorem 2.5. Every Baire*-algebra has a faithful representation as a concrete Baire*-algebra.

For an abstract C^* -algebra A we define \mathcal{B}_A , the enveloping Baire*-algebra or the Baire operators associated with A, as A_s^m computed in the universal representation of A, cf. [12]. In the terminology of [1], $\mathcal{B}_A \subseteq \tilde{A}$, and \mathcal{B}_A may as well be computed in the reduced atomic representation. If A is G.C.R., then $\mathcal{B}_A = \tilde{A}$, see [13]; especially, if $A = C_0(T)$,

where T is a locally compact Hausdorff space, then \mathcal{B}_A is the set of bounded Baire functions on T.

Any representation π of A has a unique extension to a σ -normal representation of \mathcal{B}_A , viz. the restriction to \mathcal{B}_A of the extension to a normal representation of A''. This extension maps onto $\pi(A)_s^m$; in fact, more generally any σ -normal (Jordan-) representation of a (J) Baire*-algebra maps onto a (J) Baire*-algebra, see the proof of proposition 4.2 in [12], cf. also [2].

All the work in [14] on applications of Σ^* -algebras in quantum mechanics applies just as well to Baire*-algebras.

Definition 2.6. The universal σ -normal representation of a Baire*-algebra A is the direct sum of all the representations associated with the non-zero positive σ -normal linear functionals on A.

Theorem 2.7. The set of linear combinations of σ -normal states of a Baire*-algebra A is a uniformly closed subspace P of A'.

For x and y in A'' and $f \in P$ the functional $a \to f(xay)$, $a \in A$, is in P. P' is a von Neumann algebra isomorphic to the weak closure of A in its universal σ -normal representation.

The canonical map ι of A into P' is σ -normal and faithful, and to any σ -normal representation φ of A there exists a unique normal representation ψ of P' satisfying $\psi \circ \iota = \varphi$.

PROOF. If f is a σ -normal state, $x,y \in A''$, and (a_n) is an increasing sequence from A with least upper bound a, then

$$f(x^*a_nx) = (\pi_f(a_n)\pi_f(x)\xi_f \mid \pi_f(x)\xi_f) \to f(x^*ax).$$

By polarization, $a \rightarrow f(xay)$ is in P.

Then every $f \in \overline{P}$ is σ -normal, and $a \to f(xay)$ is in \overline{P} for $x, y \in A''$. The intersection of the kernels in A'' of the functionals in \overline{P} is a weakly closed two-sided ideal, so \overline{P}' is a von Neumann algebra. Since the predual of a von Neumann algebra is generated by its positive elements, $\overline{P} = P$. Defining ι by

$$\iota(a)(f)\,=f(a),\qquad a\in A,\ f\in P\ ,$$

 ι is clearly σ -normal and faithful. Let φ be a σ -normal representation of A, and let $\tilde{\varphi}$ denote the normal extension to A''. If f(x) = 0 for all $f \in P$, then $(\tilde{\varphi}(x) \zeta \mid \eta) = 0$ for all $\zeta, \eta \in H_{\varphi}$, so $\tilde{\varphi}$ can be transferred to a normal representation ψ of P', unique by the uniqueness of $\tilde{\varphi}$. If φ is the universal σ -normal representation, ψ is faithful and hence an isomorphism, since if $x \in P'$ and $\psi(x) = 0$, then $f(x^*x) = 0$ for all $f \in P$.

A Jordanized version of theorem 2.7 can be established on the basis of [5].

Corollary 2.8. If A is the enveloping Baire*-algebra of a C^* -algebra C, then P is isomorphic to C' and P' is isomorphic to C''.

3. Projections in a J Baire*-algebra.

In this section A is a J Baire*-algebra on a Hilbert space H.

For $x \in A$ the range projection of x is in A; the set of projections in A is a σ -complete lattice.

As in [16] we say that two projections e and f in A can be exchanged (by a partial symmetry) if there exists $s \in A$ with ses = f and $s^2 = e \vee f$. For any projection $g \in A$ greater than $e \vee f$, this is the case if and only if there exists $t \in A$ with $t^2 = g$ and te = ft. Further e and f are in position p' if and only if

$$e \wedge (e \vee f - f) = (e \vee f - e) \wedge f = 0$$
.

We call e and f perspective in A if there exists a projection $g \in A$ such that both e and g, and f and g are in position p'; and e and f are called S-equivalent (resp. projective) if there exist projections $e = e_0, e_1, \ldots, e_n = f$ such that e_{i-1} and e_i can be exchanged (resp. are perspective) for $i = 1, \ldots, n$.

Proposition 3.1 (cf. [16, corollary 11]). S-equivalence is the same as projectivity.

PROOF (cf. [16, theorems 6 and 7]). If e and f are in position p' and s is the difference between the range projections of the positive and the negative parts of e+f-evf, then e and f are exchanged by $s+evf-s^2$. If e and f are exchanged by s, with $s^2=evf$, and

$$g = \frac{1}{2}(e \vee f + s + e \wedge f - s(e \wedge f)),$$

then both e and g, and f and g are in position p'.

LEMMA 3.2 (cf. [16, theorem 9 and proposition 11]). Let (e_n) and (f_n) be two sequences of projections such that e_n and f_n can be exchanged for each n, and $e_n \vee f_n$ and $e_m \vee f_m$ are orthogonal for $n \neq m$. Then $\sum e_n$ and $\sum f_n$ can be exchanged.

PROOF. If e_n and f_n are exchanged by s_n with $s_n^2 = e_n \vee f_n$, then $\frac{1}{2}(s_n + e_n \vee f_n)$ are pairwise orthogonal projections and $\sum e_n$ and $\sum f_n$ are exchanged by

$$\sum s_n = 2 \sum_{\frac{1}{2}} (s_n + e_n \vee f_n) - \sum e_n \vee f_n .$$

Note that if e and f are orthogonal and perspective projections in A, they can be exchanged ([16, proposition 10]). Also, that for any projections e and f in A the range projections of ef and fe are in position p' and hence can be exchanged ([16, corollary 7 and lemma 12]).

The following result is implicit in [13].

LEMMA 3.3. Let (e_i) be a sequence of pairwise orthogonal projections in A with sum e. Let x be an operator on H such that $e_i x e_j + e_j x e_i \in A$ for all i,j. Then $exe \in A$.

PROOF. Put $z = \sum 2^{-i}e_i$. Then z has range projection e, and $zxz \in A$ since A is uniformly closed, so $exe \in A$ by a lemma of Kadison (cf. [12, lemma 5]).

Lemma 3.4. If A contains an infinite sequence (e_i) of pairwise orthogonal non-zero projections with e_i and e_{i+1} perspective for all i, then A contains a J Baire*-subalgebra isomorphic to the Jordan algebra of self-adjoint operators on a separable infinite-dimensional real Hilbert space.

PROOF. We may assume $\sum e_i = 1$. By [16, lemma 21] there exists a sequence of partial symmetries $s_{i1} = s_{1i}$ with $s_{i1}^2 = e_1 \vee e_i$ and

$$s_{i1}e_1s_{1i}=e_i, \quad s_{11}=e_1.$$

Define $v_{i1}=e_is_{i1}$, $v_{1i}=v_{i1}^*$ and $v_{ij}=v_{i1}v_{1j}$, so $v_{ii}=e_i$. Let B be the C^* -algebra generated by A; then (v_{ij}) is a set of matrix units in B, and $v_{ij}+v_{ji}\in A$ for all i,j. Define

$$C = \{x \in \overline{B} \mid \forall i, j \exists \lambda_{ii} \in C : e_i x e_i = \lambda_{ii} v_{ii} \};$$

then by [9, lemma 15] C is a weakly closed subalgebra of \bar{B} isomorphic to the algebra of operators on a separable infinite-dimensional complex Hilbert space. Define

$$D = \{x \in C \mid x = x^*, \forall i, j : \lambda_{ij} \text{ is real}\};$$

D is a weakly closed Jordan subalgebra of B isomorphic to the Jordan algebra of self-adjoint operators on a separable infinite-dimensional real Hilbert space. For $x \in D$

$$\lambda_{ii} = \overline{\lambda_{ij}} = \lambda_{ij}$$

so

$$e_i x e_j + e_j x e_i = \lambda_{ij} (v_{ij} + v_{ji}) \in A$$
,

and $x \in A$ by lemma 3.3.

A is called invertible (cf. [15]) if for any $a_1, a_2, \ldots, a_n \in A$,

$$a_1 a_2 \ldots a_n + a_n \ldots a_2 a_1 \in A$$
.

Lemma 3.5. If A is invertible, orthogonal projective projections can be exchanged.

PROOF. Assume e and f projective and orthogonal. Choose projections $e = e_0, e_1, \ldots, e_n = f$ and partial symmetries s_i exchanging e_{i-1} and e_i ; we may assume

$$s_i^2 = e_0 \mathbf{v} e_1 \mathbf{v} \dots \mathbf{v} e_n = g$$
 .

Put $u = es_1s_2...s_n$; then $u^*u = f$, $uu^* = e$, $u^*eu = f$, and $u + u^*$ is a partial symmetry in A exchanging e and f.

We call A modular if the lattice of projections in A is modular, that is, if $e \leq g$ implies $e \vee (f \wedge g) = (e \vee f) \wedge g$ for any three projections $e, f, g \in A$. We call a projection $e \in A$ modular if eAe is modular.

THEOREM 3.6 (cf. [16, proposition 14]). The following properties 1)-3) of a J Baire*-algebra A are equivalent:

- 1) A is modular.
- 2) If (e_i) is an infinite sequence of pairwise perspective and orthogonal projections in A, then every e_i is 0.
- 3) For any pair e,f of perspective projections in A, $f \leq e$ implies f = e.

If A is invertible, these properties are equivalent to:

- 4) If (e_i) is a sequence of pairwise projective and orthogonal projections in A, then every e_i is 0.
- 5) For any pair e,f of projective projections in A, $f \leq e$ implies f = e.

Proof. 3) \Rightarrow 1) since the two sides of the modularity identity are comparable and perspective.

- 4) \Rightarrow 5): If $f < e, f \neq e$, and f and e are projective, we can find partial symmetries s_1, s_2, \ldots, s_n and $u = s_1 s_2 \ldots s_n$ such that u * e u = f. Then $(u * n (e f) u^n)$ provides a counterexample to 4). In the same way $(u * n (e f) u^n)$ provides a counterexample to 4).
 - 5) \Rightarrow 3) is trivial, and so is 2) \Rightarrow 4) by lemma 3.5 when A is invertible.
 - 1) \Rightarrow 2) follows from lemma 3.4.

4. Countably generated J Baire*-algebras.

DEFINITION 4.1. A J Baire*-subalgebra of a J Baire*-algebra A is a Jordan subalgebra B containing the least upper bound (computed in A) of each of its normbounded monotone increasing sequences; such a B is a J Baire*-algebra. A J Baire*-algebra A is called countably gener-

ated if A has a countable subset B such that A is the smallest J Baire*-subalgebra of A containing B.

In the rest of this section, A denotes a countably generated J Baire*-algebra.

Lemma 4.2. A has a unit. Every projection in A has a central support.

PROOF. See [13] or [2].

Lemma 4.3. Let Z be the center of A. Two projections e and f have orthogonal central supports if and only if

$$eAf = 0$$
,

and if and only if

$$eaf + fae = 0$$
 for all $a \in A$.

The center of eAe is eZe.

PROOF. See [16, lemma 2.4 and theorem 14].

THEOREM 4.4 (cf. [16, theorem 10 and corollaries 18 and 19] and [2, theorem 2.6]). If e and f are projections in the countably generated J Baire*-algebra A, there exists projections $e_1, e_2, f_1, f_2 \in A$ and a symmetry $s \in A$ with

$$e = e_1 + e_2, \quad f = f_1 + f_2, \quad se_1 s = f_1,$$

and e_2 and f_2 have orthogonal central supports.

For any central projection h with $e_2 \le h \le 1 - f_2$ we have

$$\begin{array}{c} shes \, \leq \, hf \; , \\ s(1-h)fs \, \leq \, (1-h)e \; , \\ s(1-h)(1-e)s \, \leq \, (1-h)(1-f) \; . \end{array}$$

PROOF. A is generated by a sequence (U_n) of symmetries. In view of lemma 3.2, if ef = 0, the proof of theorem 2.6 in [2] applies. For the general case, see [16, corollary 18].

THEOREM 4.4 (cf. [11, III, theorem 2.2]). In a modular invertible countably generated J Baire*-algebra A projective projections can be exchanged, and perspectivity is transitive.

PROOF. Let e and f be projective projections in A. Choose projections e_1, e_2, f_1, f_2 such that

$$e = e_1 + e_2, \quad f = f_1 + f_2,$$

 e_1 and f_1 can be exchanged, and e_2 and f_2 have orthogonal central sup-

ports g and h. Then ge and $gf = gf_1$ and ge_1 are projective. By theorem 3.6, $ge = ge_1$, so

$$e_1 \ge ge \ge ge_2 = e_2 ,$$

and $e = e_1$; similarly $f = f_1$.

Now the following three propositions can be proved exactly as in [16, pp. 26–28].

Proposition 4.5. If e and f are modular projections in A, then evf is modular.

Proposition 4.6. If e and f are perspective projections in A and e is modular, then $f \le e$ implies f = e.

Proposition 4.7. If A is invertible, then projective modular projections can be exchanged.

Also, for A invertible the Schröder-Bernstein theorem holds for modular projections.

5. Projections in a Baire*-algebra.

In this section A denotes a Baire*-algebra acting on a Hilbert space H. As in a Σ *-algebra (cf. [2]) we call two projections e and f equivalent, $e \sim f$, if there exists $v \in A$ with

$$v^*v = e, \quad vv^* = f.$$

This relation \sim is additive. We call e and f U-equivalent if there exist a projection $g \ge e \mathsf{v} f$ and $u \in A$ with

$$u^*u = uu^* = g, \quad u^*eu = f.$$

If this is the case, then for any projection $h \in A$ greater than g there exists v (=u+h-g) with v*v=vv*=h and v*ev=f, and the relation is transitive. Projective projections are U-equivalent, and U-equivalent projections are equivalent. Orthogonal equivalent projections can be exchanged: if v*v=e, vv*=f, and $e \perp f$, then v+v* is a partial symmetry exchanging e and f.

The next theorem and proof is due to G. K. Pedersen (oral communication).

THEOREM 5.1. Let x=u|x| be the canonical polar decomposition of $x \in A$. Then |x| and u belong to A.

PROOF. Since $|x| = (x^*x)^{\frac{1}{2}}$, $|x| \in A$. Also, the range projections u^*u and uu^* of |x| and $|x^*|$ are in A. Further,

$$(x+|x|)(n^{-1}+|x|)^{-2}(x+|x|)^* \rightarrow uu^*+u+u^*+u^*u$$

monotonely, so $u+u^* \in A$. Applying this argument to ix we find $iu-iu^* \in A$, so $u \in A$.

Corollary 5.2. The equivalence relation is countably additive.

PROOF. Let (v_i) be a sequence of partial isometries in A with $v_i^*v_i = \delta_{ij}e_i$ and $v_iv_j^* = \delta_{ij}f_i$. Then $\sum 2^{-i}v_i \in A$ and has support and range projections $\sum e_i$ and $\sum f_i$. By theorem 5.1 these are equivalent.

Inspecting the polar decomposition of $\sum 2^{-i}v_i$ we find in fact $\sum v_i \in A$. More generally, by using the identity

$$x + x^* = (1+u)|x|(1+u^*) - |x^*| - |x|$$

G. K. Pedersen proved: If (x_i) is a sequence from A with $\sum |x_i|$ and $\sum |x_i^*|$ weakly convergent, then $\sum x_i$ is weakly convergent with sum in A.

By the methods used in sections 3 and 4 we get:

Theorem 5.3. The following properties of a Baire*-algebra A are equivalent:

- 1) A is modular.
- 2) If (e_i) is an infinite sequence of pairwise orthogonal equivalent projections in A, then every e_i is 0.
- 3) A does not contain a Baire*-subalgebra isomorphic to the algebra of bounded operators on an infinite-dimensional Hilbert space.
- 4) A is finite, that is, every isometry in A is unitary.

THEOREM 5.4. In a finite, countably generated Baire*-algebra equivalent projections can be exchanged. Hence equivalence, U-equivalence, projectivity, and perspectivity coincide.

Proposition 5.5. In a countably generated Baire*-algebra the supremum of two finite projections is finite, and equivalent finite projections can be exchanged.

In the rest of the paper A is supposed to be countably generated.

For reference we note the following easy consequence of the comparison lemma.

LEMMA 5.6. Let e, f and g be projections in A. If $e \prec f$ and $f \prec g$ and $e \leq g$, then there exists a projection $h \in A$ with $e \leq h \leq g$ and $f \sim h$.

Lemma 5.7 (cf. [8, lemma 6.4]). Let (e_i) be a decreasing sequence with infimum e of finite projections in A. If a projection $f \in A$ satisfies $f \prec e_i$ for all i, then $f \prec e$.

PROOF. Inductively we can choose a decreasing sequence (f_i) with infimum $g \ge f$ and $e_i \sim f_i$ for all i. Then $f_1 - g \sim e_1 - e$, so by finiteness $g \sim e$.

PROPOSITION 5.8 (cf. [8, theorem 6.5]). Let (e_i) be a decreasing sequence with infimum e of finite projections in A. For any projection $f \in A$ the infimum of $(e_i \lor f)$ is $e \lor f$.

PROOF. If h denotes the infimum -evf, then

$$h \leq e_i vf - evf \sim e_i - (evf) \wedge e_i \leq e_i - e$$

so h=0.

In the same way we prove: if (e_i) is an increasing sequence with finite supremum e of projections in A and f is any projection in A, then the supremum of $(e_i \wedge f)$ is $e \wedge f$. Summing up we have:

The lattice of projections in a finite, countably generated Baire*-algebra satisfies the countable analogues of the axioms for a continuous geometry.

REFERENCES

- E. B. Davies, On the Borel structure of C*-algebras, Comm. Math. Phys. 8 (1968), 147-163.
- 2. E. B. Davies, The structure of Σ^* -algebras. To appear.
- J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- 4. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- E. Effros and E. Størmer, Jordan algebras of selfadjoint operators, Trans. Amer. Math. Soc. 127 (1967), 313-316.
- R. V. Kadison, Operator algebras with a faithful weakly-closed representation, Ann. of Math. 64 (1956), 175–181.
- R. V. Kadison, Unitary invariants for representations of operator algebras, Ann.of Math. 66 (1957), 304-379.
- 8. I. Kaplansky, Projections in Banach algebras, Ann. of Math. 53 (1951), 235-249.
- 9. I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.
- I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. 61 (1955), 524-541.
- 11. J. von Neumann, Continuous geometry, Princeton University Press, Princeton, 1960.
- G. Kjærgård Pedersen, Measure theory for C*-algebras III, Math. Scand. 25 (1969), 71-93.
- G. Kjærgård Pedersen, On weak and monotone σ-closures of C*-algebras, Comm. Math. Phys. 11 (1969), 221–226.

- R. J. Plymen, C*-algebras and Mackey's axioms, Comm. Math. Phys. 8 (1968), 132– 146.
- 15. E. Størmer, On the Jordan structure of C^* -algebras, Trans. Amer. Math. Soc. 120 (1965), 438–447.
- D. M. Topping, Jordan algebras of self-adjoint operators (Mem. Amer. Math. Soc. 53), Providence, R.I., 1965.

UNIVERSITY OF COPENHAGEN, DENMARK