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MEASURE THEORY FOR C* ALGEBRAS III

GERT KJERGARD PEDERSEN

Introduction.

The idea that a functional on a C* algebra A should be an analogue
of an integral, that is, a Radon measure, a point of view which has
dominated [12] and [13], will also govern this paper. The functionals
in question need not be bounded, hence are not everywhere defined, and
this naturally gives rise to a study of non-closed order ideals or two-sided
ideals in the algebra. In [16] E. Stermer proved that the class of posi-
tive parts of closed two-sided ideals is a lattice in its natural partial
ordering. Since then we have presented a simple proof of this result [14],
and in section 1 we show how our method applies to a larger class of or-
der ideals called strongly invariant. In section 2 we show that the no-
tion of bounded variation known in measure theory admits a genera-
lization to the non-commutative case, in such a way that exactly the
C* integrals are singled out as the functionals with bounded variation.
We also give a characterization in terms of seminorms of the cumber-
some topology on K , introduced in [13]. Section 3 is devoted to tra-
ces and the functionals they majorize, and we prove by a generalization
of the Riesz decomposition theorem that the traces have a lattice struc-
ture.

The problem of decomposing a functional with respect to other func-
tionals, has proved to be considerably more complex than the corre-
sponding problem in the commutative case. In particular the investiga-
tions of H. Dye [8] have shown, that a Radon-Nikodym theorem is not
likely to hold, and especially that it fails for the class of C* algebras
which we usually regard as the more sympathetic — the type I class. Addi-
tionally the problem of decomposing a functional in terms of Radon meas-
ures on the pure states is likely to be unsolvable when the algebra is not
separable.

Concentrating on the type I class we notice that, if the C* algebra
consists of the compact operators By(H) on some Hilbert space H, then
any bounded functional has the form z — tr(bz), € By(H), for some
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operator b of trace class, and if the algebra is a Cy(X), X a locally com-
pact Hausdorff space, then any bounded functional has the form

2> [a(t) dut), = e OyX)
X

for some bounded Radon measure 4 on X. It is shown in section 5 that
for any C* algebra A of type I, the natural combination of these two
examples exhaust all bounded functionals on 4. For any bounded func-
tional f this gives a decomposition of f in terms of an operator b in the
enveloping von Neumann algebra 4’’, and a bounded Radon measure p
on 4. In section 4 we have exhibited a certain monotone class of opera-
tors in A", called the Baire operators, studied in detail by Kadison [10]
for other reasons, and we now show that if A is separable, then b may be
chosen as a Baire operator.

The terminology is the standard terminology from [6] with minor
modifications from [12] and [13]. For a C* algebra A we write

A" for the enveloping von Neumann algebra of 4,

A for the algebra obtained when an identity is adjoined to 4,
AZR for the self-adjoint elements in A, and

A, for the unit sphere in 4.

I take this opportunity to thank F. Combes who initiated the paper,
and E. T. Kehlet who guided my efforts at the final stage of the work.

1. Strongly invariant order ideals.

In [14, Corollary 2] we proved a Riesz decomposition property for C*
algebras. For the purpose of this paper we shall need the following
stronger version, which is also well known in function theory:

ProrositioN 1.1. If {x,} and {y,,} are sequences in A such that
3%, 2* = IYn*ym € 4,
then there exists a sequence {z,,,} in A with
zmz:mznm = &, %%y, znznmz:m = YmYm™ -
Proor. Set x=3x,x,* and observe that (as in the proof of [14,

Theorem 1]) the sequences with kth element ¥, (k-1+x)-tz, converge
for all » and m to elements z,,, € 4. We have

Il

153
*

31

zmz:mznm = limk xn*(k_l'i‘x)—lxxn n Yn
and similarly
annmz:m = ]jmk ym(k-l"'x)_lxym* = ymym* .
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By deleting some of the x, and the corresponding z,,, we immediately
get the following useful

Cororrary 1.2. If 3 z,x,*<>y,.*y,., there exist z,, € A such that
%
Zm"nmznm = xn*xn’ annmz:m S YmYnm™ -

An order ideal J of A+ is called strongly invariant if z*x e J implies
xa*ed for all zx e 4.

In [12, Section 1], following the terminology of [9], an order ideal J
of A+ was called invariant if x*Jx<J for every x € 4 or, equivalently,
if u*Ju=J for every unitary we A. Obviously strong invariance im-
plies invariance. If 4 is commutative, the terms are equal (and empty);
and if 4 is a von Neumann algebra, then since x*x is carried into xx*
by transformation with a partial isometry in the algebra the two terms
again are equal.

If J is an invariant order ideal with roots, that is, z €J implies
xt € J, then J is strongly invariant since

x*zxed = x(r*x)r*=(xax*)?ed = xa*ed .

Hence in particular K 4+ is strongly invariant by [14, Proposition 4].
However we have the following

PropositioN 1.3. There exists a C* algebra A and an inmvariant, but
not strongly invariant order ideal J of A+.

Proor. Let A be the set of sequences of 2 x 2 matrices over C, tending
to zero at infinity. Obviously, A4 is a C* algebra, and is an ideal among
all bounded sequences. Define

v = {()} = K”?l g)}, p = {(p.)} = {(g (1))},

and let J be the smallest invariant order ideal containing v*v. If vo* e J,
there would exist, by the minimality of J, a finite set {x;} <4 and « € R*

such that
vo* < S Forvr, + avto.

Since vp=0 and pv=v, we have with y,=x,pec 4
vo¥ = pov*p £ Ty Fotey, .
Hence, for any n in the sequence,
Van® = SYinVn*UnYin 5

and since the norm is order preserving on A4+,
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[val® = llonll® Z 1930l ® »

a contradiction since y;, - 0 as n — oco.
Since for any invariant order ideal J the set

I={xecd|x*xel}
is a two-sided ideal in 4, we have

CoroLLARY 1.4. There exists a two-sided ideal in A which is not self-
adjoint.

The preference of strongly invariant order ideals to invariant order
ideals stems from the observation that only the former may serve as
ideals of definition for traces on a C* algebra 4. However, as the fol-
lowing theorems show, these ideals also form a very well behaved class
of objects in themselves.

ProrositioN 1.5. If J, and J, are strongly invariant order ideals of A+,
then so is J,+J,.

Proor. Suppose za*<y,+y,, y;€J;. By corollary 1.2. there exist
2, and z, such that
x*¥x = 2%z, +2,%2y, 2;2,F S ¥,

Since J; and J, are strongly invariant, we conclude that x*xz € J,+J,.
If x =a*, this proves that J, +J, is an order ideal; and therefore the same
equations with general x prove that J, +J, is strongly invariant.

THEOREM 1.6. The class of strongly invariant order ideals of A+ is a
distributive lattice under sum and intersection.

Proor. It suffices to prove that
(Ji+J)ndg = Jindg+ Jyndy.
But if z; e J;, t=1,2, and z, +, € J5, then also z; € J;, hence
(J1i+J)nd; = Jind5+ Jondy,

and since the converse inclusion is evident, the theorem is proved.

2. Functionals with bounded variation.
A convex functional is a function g: A+ — [0, 0] satisfying

(1) o(ax) = xp(x) for «eR+,
(2) ol +y) = o(@)+e(y) .

It is called invariant if moreover
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(3) o(x*z) = p(xa*) forallzxed,
(4) o(x) = o(y) for v = y.

LemMA 2.1. An invariant convex functional o which is finite on A+ is
bounded.

Proor. Otherwise we could find =z, € 4,*, o(z,)>n2", hence z=
>2-*x,ed,t but o(x) 22 "p(x,) >n, a contradiction.

For any convex functional g on A+ define the variation of p at x € A+
by

o

é(@) = sup{o(y*y) |yy* <} .
LemmMA 2.2. g @5 an tnvariant convex functional.

Proor. Only conditions (2) and (3) need verification. If z*z and y*y
are given, there exists for any « € R+ smaller than g(x*z + y*y) an element
z€ 4 such that

« £ p(r*%2), =zz* < x*x+yry.
By corollary 1.2 there exist z; and ¥, such that
Z*z = w*w Yty et S aa¥, oyt s yyt.

Since o is convex, this gives

x = o(x*2) + o(y1*yy) = olwx™) + o(yy*) ,
hence
ox*z+y*y) < g(xz*) + o(yy*) .

With z =2* and y=y* this gives (2), and with y=0 it gives (3).

TaEOREM 2.3. There is a one-to-one correspondence between densely
defined, lower semi-continuous invariant convex functionals on A+, and
Sfinite invariant convexr functionals on K ,+.

Proor. If ¢ is a finite invariant convex functional on K ,+, then for
any z € 4+ define
&) = sup {o(¥) | y=w, ye K ,*}.
Obviously g is a convex extension of g, and since by corollary 1.2 for any
ye K +and x € 4 there exist z € 4 such that

ysa¥tx = y=z*z, z2* < xx¥,

we have g(x*x)=g(xx*), because K 4+ is strongly invariant.

Suppose x € A+ is a limit point of elements y with g(y)<1. For any
o € R+ smaller than g(x) there exists z € K+ such that x=<g(z), zs2.
By [14, Proposition 4] the order-related C* algebra B generated by z is
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contained in K 4, hence by lemma 2.1 o has a bound § on B;*. Now for
any ¢> 0 choose y € A+ with g(y) <1 such that

z S y+pte.
Then by corollary 1.2

z =2+ 2 2, uy* Sy, 2z* = ple.
Since z,*z, € Bt and [|z,*2,|| < f~'¢, we have
oz) = ely)+e = 1+¢,

hence g(x) <1, and g is lower semi-continuous.

If, conversely, o is a densely defined, lower semi-continuous invariant
convex functional on A+, then the elements for which p is finite clearly
form a strongly invariant order ideal of 4+ which is dense, hence includes
K ,+. The restriction of p to K ,* admits a lower semi-continuous exten-
sion, which is clearly unique, hence equals g.

In [13, Section 2] we introduced a vector space topology v on K,
and defined the C* integrals of A as the dual of (K 4, 7). With the aid of
invariant convex functionals, this topology can be described in a perhaps
more accessible form. We adopt the terminology of [13, Section 2] and
have

THEOREM 2.4. The topology T is the weakest locally convex topology on
K, for which all faithful finite invariant convex functionals on K 4+ are con-
tinuous.

Proor. If g is any finite invariant convex functional on K ,*, then by
lemma 2.1 the number

p = sup {o(x) | =€ B(p),*}

is finite for every p e Y and depends only on the unitary equivalence
class p. Hence the definition

o(p) = (Bv1)™
gives a 6 € 4, hence a r-neighbourhood E,;. For any x € E;+ we have
r X Ton®, Xo,=1, z,€B@,)n>

0(®) = X x,0(%n) = X xullwnllfn < 1,

and we have proved that ¢ is z-continuous.

Conversely, suppose F; given. Since 7 is stronger than the norm
topology, we may as well assume E,<=A;. Now since E, is absorbing,
the definition

whence
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o) = inf {u | a~lwec E,*}, wxe K *+,

gives a function on X ,* which is convex since F,t is hereditary-convex.
Since o1z € E;+ implies ]| < «, we have |[z]|<pe(«x), hence p is faithful.
We know that E,*+ is invariant under unitary transformations, hence o
is unitarily invariant. We strongly suspect that o is also invariant,
but for our purpose it will suffice to show, that the variation g defined by
lemma 2.2 is finite on K ,+. For this it is enough to show that g is finite
at every element x € K ;+ such that there exists pe Y and ye K +
with £ £p =<y, since by the remarks preceding Proposition 4 of [14] K ,
is generated by linear combinations of such elements.

Now for any « € Rt smaller than g(x) there exists by the definition of p
a z € K, with

o < o(z*z), z2* S .

Since zz*=<p, we have z*z=z*pz, and from |2//<1 it follows that 2z
is the sum of 4 unitary operators u;. Hence

Z*z = F(Zu)* p(Cu;) £ S uFpu, = I uFyu,.

Since p is unitarily invariant, we conclude p(z*z) < 40(y), hence

0(x) = 4e(y) < .
For any x € K 4+

o)<l = o(x)<1 = we L,*t.

Hence the locally convex topology on K , generated by the faithful
invariant convex functionals on K 4+ is stronger than , hence equals 7.

For any linear functional f on K , the absolute value of f is a convex
functional on K 4+, hence the variation ¢ of f defined by lemma 2.2 is
an invariant convex functional. The functional f is called of bounded
variation if g is finite on K+.

Clearly this is a possible non-commutative generalization of the con-
ventional use of the term. However it appears to be far more restrictive;
for instance it is no longer true that a positive functional is automatically
of bounded variation. Nevertheless it seems to be the proper generaliza-
tion as shown by

TaEOREM 2.5. The functionals on K , with bounded variation are the C*
integrals.

Proor. If f is a functional with bounded variation g, then since
|f(z)| £ o(x) for any x € K 4+ and since by theorem 2.4 ¢ is z-continuous,
we conclude that also f is 7-continuous, that is, is a C* integral. Con-
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versely, if f is a C* integral, then there exists a r-neighbourhood £, such
that « € B; implies [f(x)| =1. But again by theorem 2.4 there exists an
invariant convex functional ¢ on K ,* such that p(x) <1 implies z € E,+.
It follows that the variation of f, which is clearly the smallest invariant
convex functional majorizing f on K 4+, is majorized by p, hence is finite
on K ,+.

3. Functionals majorized by a trace.

The Riesz decomposition property can be used to give a direct proof
of the theorem of Thoma [17, p. 116] that the bounded invariant func-
tionals on a C* algebra form a vector lattice. However the method gives
just as easy the following generalizations of the result.

TrEOREM 3.1. The invariant self-adjoint C* integrals form a wvector
lattice.

Proor. It suffices to show that if f; and f, are invariant self-adjoint
C* integrals, then the definition, for any x € K ,+

f(x) = inf{f,(y1) +fo¥2) | Y1+y2=2},
gives an invariant self-adjoint C* integral, which then clearly equals
Jirfa.
It is immediately verified that f(ax)=of(x) for « e R+, and that
J@x) +f(xe) = f (2 + ). If 2 *x;, 2*2, € K 4+, then for any >0 there
exist y, € K+, 1=1,2, such that

v

e + fla ¥ +2.%%5) 2 fi(yd) +fa(%2)
Y1+Ys = o F o +x*w, .

By proposition 1.1 there exist z;; € 4, i=1,2, j=1,2, such that
Yi = 2320+ 2520 4t = 21jzfj+zzjz;j )
and since f; are invariant we have
& + fla e+ 2% %) 2 (f1(eu2h) Halza ) + (fi(212205) +/e(22225)) s

hence
flo oy +a%2y) 2 f(oy2,%) + flxa2,) ,

which proves that f is linear on positive elements and invariant. Hence
it is an invariant C* integral, clearly self-adjoint.

THEOREM 3.2. The traces on A+ form a complete lattice cone.
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Proor. If f; and f, are traces on A+ with ideals of definition J; and
J,, then the proof of theorem 3.1 applies for any z € J, +J, and shows
that f,Af, is a trace with J; +J, as ideal of definition.

ProrosiTION 3.3. If 0, and p, are invariant convex functionals on A+,
then p,Apy exists as an invariant convex functional.

Proor. Again if J; and J, are the ideals of definition for p, and p,,
the proof of theorem 3.1 applies for any x € J; +J, and gives an invariant
convex functional with ideal of definition J,; +J,.

It follows from theorem 3.2 that for any state of 4 there is a minimal
trace majorizing the state on A+. In order to find conditions on the alge-
bra which will assure that this trace is not trivial, we introduce the set
J 4 consisting of those x € A+ for which there exists a constant g, such
that for any finite set {x,},

DM DX
ProrosiTION 3.4. J 4 @5 a strongly invariant order ideal of A+.

Proor. Clearly x e Rt and 0<sy=<xeJ, imply ayeJ, . If

22,2, S Y Y Y Y Yy = J 4
then by corollary 1.2 there exist z,; such that
T Ty = 221t 2matnn Dnitp; S Yili* -
By definition of J, we have [3z%2,:<8;, hence |[Zx,*x,| < p,+p, so

that y,*y;+y,*y, € J 4, and the theorem follows.

TaEOREM 3.5. For any state of A the minimal majorizing trace is lower
semi-continuous and finite on J 4.

Proor. Let f be a state of 4, and for any x € A+ define

@) = sup {Zf(W,*Yn) | ZYn¥n*Sa}.

We have f(x)<g@(x)<Soo; and since z€J, implies [[Xy,*y,/<p,, we
have in this case g(x)<pf,<oo. Clearly « € R+ implies @(xx)=axgp(z) for
any x, and ¢(z,)+@(%,) S ¢(x; +2,). However for any « e B+ smaller
than @(x,*x, +x,*x,) there exists a finite set {y,} such that
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& = zf(yn*yn)’ Zynyn* = xl*x1+x2*x2 ’
hence by corollary 1.2

* __ % * *
Y  Yn = nlzn1+zn22n27 sz'zn«; = xix'*
It follows that

P(* 2y + 2,7 2,) = p(2,2%) + @(2p2,*)

which together with the above established conditions implies that ¢ is
a trace on A+

In order to prove that ¢ is lower semi-continuous let x € 4+ be a
limit point of elements y € 4+ with ¢(y) < 1. For any « € R+ smaller than
@(x) there exists a set {x,,2,,...,} such that

x = Zf(@*x), Zxw* <.
For any ¢>0 choose y € 4%, ¢(y)=1, x<y+¢, and by corollary 1.2
r*x, = y*y 2z, Yyt Sy, Szt S e
We have |z,]2< ¢, hence

o = 3f@*x;) < Zf(y*y) +me < 1+me.

Since ¢ and « are arbitrary, g(z) <1, and the theorem follows.
Clearly the ¢ constructed above is the minimal trace majorizing f.

Lemma 3.6. If A is a C* algebra of type 1, then

J, = {xed+| supy tra(x) <oo}.

Proor. If zc A+ has bounded trace on 4 and Sw,x,* <z, then by
[6, Lemme 3.3.6]

2@, *@,|| = supy [m(Zax,*x,)|| = supg tra(Ze,*z,) = supy tra(z),

hence z € J 4.

Conversely, if x € 4+ does not have bounded trace, then either there
exists 7w € A with tra(x) = oo, or we can find a distinct sequence {nn}CZf
such that tra,(x) > 2" Since A is of type I, n(4) contains the compact
operators; hence the minimal trace majorizing any pure state whose
associated representation belongs to = € A is tra(+). Hence if tra(z) = oo,
we conclude from theorem 3.5 that x ¢ J ,. Considering the other case,
let {f, } be a sequence of pure states such that for any » the representation
associated with f, is contained in x,. If f=32-"f,, then since the
sequence {rz,} consists of pairwise inequivalent irreducible representa-
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tions, we conclude from [6, Théoréme 2.8.3] that the minimal trace
majorizing f is given by ¢(y)=32-" tra,(y) for y € A+. By assumption
we have g(x)= oo, hence = ¢ J , by theorem 3.5.

ProrosiTiON 3.7. Any state of a C* algebra with continuous trace is
magjorized by an invariant C* integral.

Proor. By lemma 3.6 the set J 4 is dense in A+, hence contains K ,+,
and theorem 3.5 applies.

ConNJECTURE: The above statement holds for C* integrals as well.

For any positive element « in a von Neumann algebra B let c-suppx
denote the smallest element in the center of B majorizing . If 2 is a
projection, then c-suppz is also a projection, hence coincides with the
central support of x.

Let @ be a faithful, invariant positive C* integral which represents
A on H. If A denotes the weak closure of 4, then ¢ has a unique faithful,
weakly lower semi-continuous extension (again denoted ¢) from K ,+
to A+. The positive C* integrals majorized by ¢ are denoted M+, and
we have

TueorEM 3.8. 1) The map ®: A+ -~ M+ given by
D(a)(x) = p(ax)

for ae A+, x € K 4, is an order-preserving, affine homeomorphism of A+
in the weak topology onto M ;* in the weak* topology.

2) The operators a € A+ with p(a)=1 map onto the states of M *.

3) The operators a € A;+ with c-suppa=1 map onto the C* integrals for
which ¢ is the minimal majorant.

Proor. Since for all x € K ,*+
D(a)(@) = all(x) = (),

@ is an order-preserving affine map of 4,+ into M +*. If ®(a)=0, then
@(au,;) =0, hence au, =0 for an approximative unit {u,} <K ,+ converging
strongly up to 1; hence a=0 and @ is one-to-one. By [12, Theorem 2.5]
the extended positive functionals (weights in the terminology of [1])
on A+ form a weak* compact set. Hence the weak* closed, convex set
of those majorized by @, which actually consists of C* integrals, is also
weak* compact, and so @ is a map between compact sets. Forallz e K ,+
the functional g(-z) is bounded and majorized by |jz|@, hence by [12,
Theorem 2.4] it is a vector functional in the representation space H,

Math. Scand. 256 — 6
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hence it is weakly continuous on A. It follows that if a net {a;}< 4,*
converges weakly to a, then a € A;* and for all x € K ,

lim&(a;)(x) = limg(a;z) = plaz) = P(a)(z),

which proves that @ is continuous and thus a homeomorphism.

Regarding @(A4,+) as a subset of the set of self-adjoint C* integrals, the
polar set of @(A4,*) consists of those x € K £ for which g(ax)= —1. If
z=x,—x_, we immediately have

pllele) = —pl) 2 —1.
And conversely, for any z € K ¥ such that p(z_)<1
plaz) 2 —glax_) z —|alle(z_) 2 —1.

Hence we have determined the polar set. Since fe M * and @(z_)=<1
imply
f@ z —fl@) 2 —gl@) 2 -1,

M * is contained in the bi-polar of ®(A,*). However the latter set is
already convex and compact, hence ®(4,*)=M *+ and (1) is proved.

If &(a) is a state, then since alw,at converges strongly up to a for an
approximative unit {u,} <K ,*,

p(a) = limg(atu;a?) = limP(a)(w;) = [P(a)]| .

Conversely, if p(a)=1, the same equality proves that ®(a) is a state,
hence (2).

If @(a) is a trace, then for any x € K , we have a polar decomposition
za—ax =u|ra—ax|, and therefore

p(lxa—azx|) = p(u*za—u*ax) = P(a)(w*r—ru*) = 0.

Hence xa=ax and a belongs to the center of 4. It follows that for any
a € A,+, the smallest trace majorizing @(a) is @(c-suppa), which proves

(3)-

4. Baire operators.

For any *algebra A of operators on a Hilbert space H, let # ,E denote
the smallest monotone o-class of operators in B(H) containing A%, that is,
the smallest class containing A% such that, for any bounded monotone
sequence in the class, the weak limit is also in the class. From [10] we
borrow the following facts: #Z,F is a uniformly closed Jordan algebra
(a JC-algebra) in the weak closure 4 of 4, and for any o-finite projection
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pe A and any self-adjoint z € 4 there exists y € %% such that pzrp=
PYyp.

If 4 is a (concrete) C* algebra of operators on a Hilbert space H, we
shall refer to the elements of % % as the (bounded, self-adjoint) Baire
operators of 4 (on H). If A is an abstract C* algebra, %% will
denote the set of Baire operators of A in its universal representation.
In order to obtain complete consistency with the commutative case we
probably ought to use the atomic representation of 4 rather than the
universal, but for our applications the given definition is more convenient.

A C* homomorphism of a C* algebra 4 into a C* algebra B is a self-
adjoint linear map which preserves the Jordan product x oy = }(zy + yz)
on AE. The map is necessarily positive and norm-decreasing, and since
it is a homomorphism on commuting elements, it preserves spectral
theory. (For further information see f.ex. [15].)

LemmA 4.1, Let  be a C* homomorphism between C* algebras A and B,
and let J be a JC-algebra in AE. If x,eJ, 1=0,1,2, with

xo é xzy n(xo) g n(xl) § n(x2) b

then there exisis x € J such that

IIA

Ty S x =1y 7w(x) = 7(2q) .
Proor. We may obviously assume z,=0. Define
Y =xy— [y—2y| = 5.

Since J is uniformly closed, we have y,€J and y_e€J, and since & is
homomorphic on commuting elements, we have

a(y,) = a(y) = alx,), 7(y-) =0.
We now repeat the proof of [14, Proposition 5], and define
& = lim 25} (@ +y )} (0 4@y +y )Ty (0 2ty )@y ) gt

Since
aba = 2((aob)oa—boa?),

we get xeJ, 0Sx=x,, and
n(x) = lim 7(x,)(n1+ 7(x,)) () (n~t + w(xy)) () = n(2y) -

ProposITION 4.2. Let A and B be concrete C* algebras with weak_closuref
A and B, respectively. If m is a normal C* homomorphism of A into B
taking A onto B, then n(% 4B)=RBy".
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Proor. Obviously 7(# %) = Z5E. On the other hand B <n(Z# ,F), hence
it suffices to show that #(Z %) is a monotone class. Suppose

{xn} < B4, 7(2,,) /S ye B.

We may assume y <1, and since n preserves spectral theory and % ,® is
uniformly closed, we may assume x,<1 for all n. Now define p=
Viz,] e # B with z, < p for all n.
Put z;=x,. By lemma 4.1 we can find z, € #Z,F such that
21 22, 2P, wlzy) = 7(wy) .

By repetition of this procedure we get a sequence {z,} <% ,® which is
monotone (increasing) and bounded above by p and hence converges to
an element z € # . Since x is normal, we have

n(x) = limn(z,) = lim=(x,) = ¥ .
ProposiTION 4.3. If @ is a faithful, positive invariant C* integral which
represents A, then, for any positive x in the weak closure A of A,
@(x) < co  implies xeZ, E.
Proor. There exists a sequence {u,}< K ,+ such that
0zu, =1, g@)-nt = g@u,) < @@).

Define p=V[u,] € #,E. To show that p is o-finite we use that for any
set {p;} of mutually orthogonal projections from A

Spi=p = Suptpgt =, => Ze(u, pyut) <oo.

Hence, for each n, ¢(u,p;)=0 for all : but a countable number. Hence
¢(u,p;) =0 for all n and for all ¢ but a countable number. But since ¢ is
faithful on A+, this gives for all n

psl—-[u,]<=psl1-p=p;=0
for all 7 but a countable number.

By the results from [10] quoted above there exists y € # ,F such that
pxp=pyp. Since & ,E is a Jordan algebra pyp € Z F and

p(1-p)) < plx—atu,z!) < v,
hence pzp==x and the proposition follows.

THEOREM 4.4. For any positive invariant C* integral ¢ and any positive
bounded functional f=< ¢ there exists an element b€ X+ unique up to
g-equivalence such that for all x € A

f(x) = g(bx) .
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Proor. By theorem 3.8 there exists a unique element a € (4),"
such that f(x)=¢(ax) for all z€ A. By proposition 4.3 a is a Baire
operator relatlve to 7, (4) and since by [6, Proposition 12.1.5] 7, extends
to a normal representation of 4", by proposition 4.2 we can find b € # ,*
such that 7 (b)=a. If ¢ denotes also the normal extension of ¢ from
A+ to A"+, then with abuse of notation we have ¢@(bx)=gp(az)=f(x)
for all e 4. If b’ is another element of A"+ satisfying the conditions
of the theorem, then by the uniqueness assertion in theorem 3.8 we
have 7, (b") =m,(b), hence

(b —b') = p(m,((b-b"])) = 0.

It follows that b is determined up to g-equivalence and the theorem is
proved.

LeEmMA 4.5. For any x € B, there exists a separable C* subalgebra B< A
such that x € BpE.

Proor. The class of operators satisfying the lemma contains A% and
is clearly monotone, hence contains % ,%. Notice that % ;¥ is taken in the
universal representation of A.

PROPOSITION 4.6. For any x € B & and any (real) bounded Baire function
f on A there exists y € B 4R such that for any w e A

n(y) = [f(=7) nl(z) -

Proor. Suppose x € A+ and f (real) bounded and continuous on A.
Since the continuous functions on 4 and PrimA4 are the same, there
exists by the result in [4] (see also a proof in [7]) an element y € 4 such
that for any me 4

y—f(n)x € kern ,
that is, a(y) =f () 7(z).

If {f,} is a bounded monotone sequence of functions satisfying the
condition relative to  and converging pointwise to the bounded function
f, then there exists a sequence {y, } =% % such that for all 7 € A

w) = fa@a@), gl = Il 2] -

It follows that {y,} is a bounded monotone sequence, hence it converges
weakly to an element y € #,%. We have

a(y) = limn(y,) = lIimf,(@)n(@) = f(7)n(z) .

This shows that the class of functions satisfying the condition relative to



86 GERT KJZRGARD PEDERSEN

some fixed x € A+ is a monotone class containing the bounded continu-
ous functions, hence it contains the bounded Baire functions.

From this we see that the class of operators satisfying the condition
for any positive bounded Baire function f contains AE. If {z,} is a
bounded monotone sequence of self-adjoint operators satisfying the con-
dition relative to f, and converging weakly to the operator x, then there
exists a sequence {y,} <% 4 such that for all ;¢ 4

W(Yn) = fl@)a(®@,),  lyall = 171 2] -

It follows that {y,} is a bounded monotone sequence, hence converges
weakly to an element y € 4 ,£. We have

aly) = lima(y,) = limf(x)a(x,) = f(7)n(z) .

This shows that the class of operators satisfying the condition for any
positive and hence, by decomposition, for any real bounded Baire func-
tion, is a monotone class containing AE. Hence it contains # ¥, and the
proposition follows.

5. Functionals on an algebra of type I.

ProrositioN 5.1. If 4 is a C* algebra with continuous trace, then for
any x€ B4E and ye K 4, the function m — tra(zy) s a bounded Baire
function on 4.

Proor. Since any = e A extends to a normal representation of the
enveloping von Neumann algebra, the function is well defined and boun-
ded since

[trax(xy)| < o] sup 4 tra(ly]) .

Assuming y = 0 it is immediate that the class of operators satisfying the
proposition is monotone, and since any z € K ,® has a trace function in
KE(A4) by [12, Theorem 1.5], the class contains K %, hence contains # ,E.

ProrposiTioN 5.2. If A is a C* algebra with continuous trace, then for
any x € B 4+ and any n € N, the function w — natrza(x) is a Baire function
on A.

Proor. By lemma 4.5 there exists a separable C* subalgebra B< A4
such that x e ZLzE. Then a countable approximate identity {u,}<
K gz+< K ,+ for B converges strongly up to a projection p, where (1 —p)B
=0. Hence also (1 —p)z=0. It follows by proposition 4.5 that the Baire
functions & — trz(ru,) increase to the extended function = — trn(x),
and the proposition follows.
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For any C* algebra 4 define
J, = {g e K *| supjtra(z)<1}.

J, is hereditary-convex and strongly invariant, and for C* algebras with
continuous trace, it generates K ,+ and the corresponding trace functions
are all of K;*(4) by [5, Lemme 23] combined with [12, Theorem 1.5].

ProrositioN 5.3. If 4 1s a separable C* algebra with continuous trace,
then for any x € B & the function &t — ||a(x)|| is @ bounded Baire function
on 4.

Proor. A change of z to |z| does not affect the function, hence we
may assume x20. For any 7, 4 and any ¢ > 0 there exists y e K ,*
such that my(y) is a one-dimensional projection with |ry(x)|| < troy(xy) + e.

Define f e C(A) by
f) = (tra(y)vi)t.
Then there exists ze A+ such that m(z)=f(n)a(y) for all e 4. Tt
follows that z € J, and ||wy(x)|| < trawg(xz) +&. Hence for any = e A we have
()| = sup,, tra(az) .

Now let {z,}<=J, be a countable set which is dense in J;. Since by
lower semi-continuity of the trace

Zm — 2 = liminftra(az,,) = tra(az)
for any = € A, proposition 5.1 applies and the proof is complete.

In view of lemma 4.5 it is natural to ask whether there is a trick
which removes the separability condition. At present the best we can
do in this direction is the following

ProrosiTIiON 5.4. If A 4s a O* algebra with continuous trace, then for
any x € B the function n — ||n(x)| is universally measurable on A.

Proor. Let x be a positive Radon measure on 4. We define an

invariant C'* integral ¢ on K, by

#la) = [tea(a)dutx)
A

If @ denotes also the extension of ¢ to a normal trace on A+ then a
monotone class argument using proposition 5.1 shows that for u € K 4+
we have

p(utbut) = ft.rn(u%bu*)d,u(yz)
Aa
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for all b € # L. In particular if b € #,*, we can, as in proposition 5.2,
choose {u,}< K ,+ such that biu,b? 7b, hence, by normality of ¢ and
a-normality of the integral,

= ftrn(b) du(m) .

Since K , is dense in the L,-space of ¢, which is nothing else but
the pre-dual of 7, (4"), we can for any ¢>0 and any x € A"+ for which
¢(x) < oo find y € K 4+ such that ¢(jlx—y|)<e. In particular, if x € # ,+,
we have

Plle—yl) = jtrnux—yndp(n) <

Since y € K ,*, the function & — |[z(y)|| belongs to K(A) and since we
have the inequalities

Hiz@)l[ = =@l | = -yl £ tra(jz—yl),

we conclude that the function s — ||z(x)|| is integrable.

For any e #,+ we can find {u,}ec K+ such that z*u,zt=2x, 7.
We have ¢(zx,) <o and hence the function = — |ln(x,)|| is integrable.
But since ||z(z,)|||jz(x)|| for any = € A, we conclude that the function
7t — |ln(x)|| is measurable and the proposition follows.

Lemma 5.5. If A is a C* algebra with continuous trace then for any
xeB,+ and any positive Radon measure u on A

[t duta) = sup [ raez) due .
4 v a

Proor. If € K+, then for any ¢>0 there exists for each ned
a z€eJ, such that
[l (x)]] < tra(ez) + €.

Since A has continuous trace, this inequality holds in a neighbourhood
O of n. As x € K, the function n — |=(x)|] vanishes outside a compact
set C< 4.

Choose a finite covering {0, } of C and let {f,} be a partition of the
unit on C with respect to this covering. Corresponding to each O, we
have a z, € J; and we define

z2=3Xfnz,€K4"
We have
tra(z) £ X fu(n) =
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for all # € 4, hence z € J,. Moreover

tra(@z) > 3 fu @)@ —e) = @)l —e
for all meC.

Since this shows that we can approximate the norm function uniformly
from below by trace functions, the lemma is proved for z € K ;. When
x e, +, we proceed by approximation in L; by elements from K ,+
exactly as in the previous proposition.

THEOREM 5.6. If A is a C* algebra with continuous trace, and if f is a
positive bounded functional on A, then there exists a unique bounded
measure [ on A and an operator b € & 4+ unique up to u-equivalence, such
that for all xe A

f@) = [ tra(ea) duta)
A

leell = Nf1, 1 2 (Bl = [n(D)]| a.e. [4].

Proor. Let ¢ be the minimal invariant C* integral majorizing f de-
fined in proposition 3.7. By theorem 3.8 there is a unique element
a € m(4),*, where 7, denotes the representation associated with ¢, such
that f(x)=g¢(az) for all x € 4. Since c-suppa=1, we have in particular
lla]l=1, and since ¢(a)=||f|| < oo, we infer from proposition 4.3 that a is
a Baire operator relative to m(4). Since any representation of 4 ex-
tends to a normal representation of the enveloping von Neumann alge-
bra, we can by proposition 4.2 find an element b, € Z,F such that
7,(b;) =a. Since #,F is a uniformly closed Jordan algebra, we may
assume b, =0, ||b,]|=1.

Now by [5, Théoréme 1] there is a unique Radon measure g, on a4
such that for any x e K ,

#(@) = [ tra@) dus(n) -
A

Since any function in K,+(A4) is the trace function of an element from .J,,
we have ||u,||=sup;, ¢(x). However J, is hereditary-convex and strongly
invariant, hence by the construction of ¢ (see the proof of theorem 3.5)
we have

llwall = sup,, p(x) = sup,, f(x) = -

A normalization gives u=|ju|["!||fll#. and b=|u,||lf|"2b,, where now

llell=If1l and [|b]| = 1. .
By proposition 5.1 we may for any « € K ;+ define a functional g, on

% 4% by
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9.09) = [ traay) dut)
A

For y € A% we have ¢(zy)=||b||g.(v), and since this equality is preserved
under monotone limits, it holds for any y € # ,E. In particular

F@) = (6 p(b2) = ,0) = [ tra(oe) duta) .
4

We notice that, by proposition 5.1, the trace function of b is measur-
able, and since f is bounded, the function is u-integrable with

ftrn(b) du(z) = |If]l .
a

By lemma 5.5 we have

[ 1o i
4

sup f tr(bz) du(w)

I

S}lpf(Z) = llewall = [BI] llpll,

hence |[z(b)||=b|| a.e. [u]-

To prove uniqueness of the decomposition let f be a functional defined
by a positive bounded Radon measure » on A with Ill=|If]| and an
operator d € # 4+ such that |[z(d)||=|d| a.e. [v]. By the result above
there exists a decomposition u,b of f such that the invariant C* integral
defined by |b]ju is the minimal trace majorizing f. Since f is clearly
majorized by the trace defined by |/d|l» and since the correspondence
between invariant C* integrals on 4 and Radon measures on A is one-
to-one, we conclude that |b|ju = |d|v. However by lemma 5.5

ol Il = supf(z) = sup | trar(dz)d(a)
J1 J1 3

[ In@ldst) = a1
A

Hence [blju=|id|lv, and since lu] = [p{|=|/fll, we have u=».
If ¢ is the trace defined by u, then f=g¢(b-)=¢(d-) hence by theorem
4.4

[ (i —ap dutz) = p(ip—dp = 0,
A

that is, n(b)==(d) a.e. [u] and the theorem follows.
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THEOREM 5.7. If A is a separable C* algebra of type 1, then the results
of theorem 5.6 hold for any positive bounded functional on A.

Proor. By [6, Théoréme 4.5.5] A has an ascending chain of ideals
I, such that each I, is the closure of the union of the preceding I, if
« is a limit ordinal, and 4,=1_/I, _, has continuous trace otherw1se
Since 4 is separable, the cham is at most countable. To each I, cor-
responds a central projection p,e€ A’ such that I,=p,4"nA and p,
is upper strong limit of elements from I,. Since each I, is separable,
we have p, € %, It follows that we have I F=p % ,2nAE and hence
to within isomorphism

B, = PuBA"
which implies
,@ﬁa = (P Pa1)B 4"

Now let f be a positive bounded functional on 4. If f denotes also
the canonical extension to A’ then we can define functionals f, on A4
by f.(@)=f((p,—Ps—1)%). Each f, may, in a canonical way, be regarded
as a functional on A,. Hence by theorem 5.6 there exist u, on A, and
b, € %}, which decompose f.. Since A, is homeomorphic with I \fa_l,
we may regard ., as a Radon measure on A4, and by the above mentioned
isomorphism we may regard b, as an element of (p,—p,_;)% 4*. Define

0 = [IfIIF* Zlball llmldl = 1
lu’ = 6—1 zllba“:ua >
b = 6 znba“‘—lbu *

Then u is a Radon measure on A with |jg|=|lf| and be B+ with
[le(b)]| =0 a.e. [u]. Moreover for any x € Z 4+

jtrn (bz) du(w) = 3 f tra(b,x) du, () = Sf(x) = f(x).

Ay

If »,d is another decomposition of f, let », be the restriction of » to
A, and put d,=(p,—p,_;)d. Then for any ze A

= f tra(d,x) dv,(n) .
Aa
Hence, by the uniqueness assertion in theorem 5.6, we have |d,[\v,=

bl and |v,|l7(d,) =|lulm(b,) a.e. [u,]. By the construction of d, we
have |»(d,)||=]/d|| a.e. [»,], and summing up we get

ldlly = lldllZv, = Zlbllps = 0 -
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Since ||| =|ull=|If|l, this gives |d||=6 and »=pu. Then v, =06"1b |u,.
Hence 7(d)=n(b) a.e. [u,] for every «, which gives n(d)=n(b) a.e. [u],
and the proof is complete.

To see that a decomposition f~ (u,b) with b € # % is not necessarily
possible when A4 is not separable, consider the following simple example:
Let 4 be the C'* algebra consisting of the compact operators on a non-
separable Hilbert space H with an identity adjoined. The enveloping von
Neumann algebra of A can be faithfully represented on H®C, defining
z+uxed on (£,8)e HOC by (xt+af&,af). Clearly #,E consists of
operators of the form x + « where x is an operator on H with countable
dimensional range, whereas A’’ contains every operator in B(H)®C.
The two points 7, and 7, of A correspond to the projections p, and p,
on C and H, respectively, and we have p,+p;=1 but p, ¢ F E. If
go and g, are the functionals on 4 defined by

Gol@x+a) = &, gi(@+a) = ((@+a)¢]€),

where £ is a unit vector in H, then the measure in the decomposition of
[=9o+¢, is the sum of two point measures on =, and 7, respectively.
If we had a decomposition with be %, then b=+ b,, where b, € B(H)
and b, had countable dimensional range. Then for any x+x € 4

fle+a) = tr(po(B+b1)(x+2)) + tr(p, (B+b,)(x+2)) .

The last term of the sum forces =0 since f is finite, but then the first
term is zero, a contradiction since u is not concentrated on z,.

It is highly tempting in this situation to draw the parallel to (commu-
tative) measure theory, where we meet similar situations, functions which
are measurable but not Baire functions when the spaces are too large.
Copying the commutative procedure we may therefore define the Borel
operators (relative to a C* algebra A) as the elements of the smallest
(sequential) monotone class of operators containing every difference be-
tween limits of increasing bounded nets of operators from AZ%. This class
will be a JC-algebra. Since we eventually hope to carry out a decomposi-
tion theory for C* integrals, and since a C* integral can be realized as a
not necessarily countable sum of bounded functionals, we may be for-
ced to use the concept of Borel operators.
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