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A CRITERION FOR WEAK CONVERGENCE
OF MEASURES WITH AN APPLICATION
TO CONVERGENCE OF MEASURES ON DJ[0,1]

FLEMMING TOPSGE

Introduction.

The usual way to establish weak convergence of a sequence of prob-
ability measures on C[0,1] is to prove that all the finite dimensional
distributions converge weakly to the “‘right’ limits and that the sequence
is tight; then a theorem, which is quite casy to establish, tells us that
we have weak convergence. If we turn our attention to the Skorohod
space D[0,1] we find that the analogous theorem is much harder to
obtain. Recently, P. Billingsley has obtained a suitable result published
in [1, p. 124]. My aim has been to find a general theorem, valid in any
Polish space, which implies the desired result in D[0,1].

All measures below are supposed to be defined on the Borel o-field.

A reasonable problem inspired by the concrete question about D[0,1]
is the following: Let X be a Polish space (that is, separable and metrizable
in such a way that it becomes complete), and let o be a field of Borel sets
generating the entire Borel o-field #(X). If P, (P,),»; are probability
measures on X such that (P,) is tight and such that P, A —~ PA for all
sets A in 7, is it then true, or under what additional assumptions is it
true, that P, converges weakly to P?

Equivalently, we could ask if, under the just mentioned hypotheses
on X and .7, the facts that P, - @ for some probability measure @
and P,4 — P4 for all 4 in o/, imply P=¢. Here, as below, the sign —
is used to indicate weak convergence of probability measures as well as
ordinary convergence of real numbers.

Since P, - @ and P, A — PA imply

QA liminf P, A < PA £ limsupP, 4 < Q4

a problem related to the problem above arises: Let again X be Polish
and s/ a field generating B(X). If P and Q are two probability measures
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such that QA< PA<QA holds for all A in £, is it then true, or under
what additional assumptions is it true, that P=Q?

Without additional assumptions the answers to both problems are
negative. Indeed, O. Bjornsson observed that there is a counterexample
in which P and @ are as simple as possible, namely point masses.

1. A convergence criterion.

A class & of subsets of the topological space X is said to separate
points T’y if, for every pair of distinet points z and y in X there exists
a set A in o such that xe 4 and y ¢ 4.

TaEOREM 1. Let o/ be a lattice of subsets of the Polish space X and
suppose that o separates points T,.

(i) If P and Q are probability measures on X such that QA < PA for all
A e, then P Q.

(ii) If P, (Pp)pzy are probability measures on X such that (Pp)nzq
is tight and such that limsup P,A < PA for all 4 €, then P, - P.

Part (ii) is the hoped for convergence criterion.

Proor. (i) If K, and K, are disjoint compact subsets of X, we can
find 4 € &/ such that KICA and AnK,=0. It follows that
QK,<1-PK,. Employing the tightness of P and , one deduces
from this that P=@Q.

(i) Let (P,,)r>1 be a convergent subsequence of (P,),;, say P,, — Q.
Then

ng

QA < liminf P, 4 < limsup P4 < PA

k>0 n—>00

for all 4 e /. By (i), @=P follows.

Part (i) in the theorem can of course be considered as a special case
of part (ii). It is easy to see, by means of a simple counterexample,
that we can not drop the assumption that .o/ be a lattice. We have
been unable to decide whether one can relax this assumption assuming
only that .7 is closed under finite intersections. The condition in Theorem
1 that &7 separates points 7', is necessary, as is easily seen.

It is not difficult to extend the convergence criterion from measures
on Polish spaces to tight measures (Radon measures) on arbitrary
Hausdorff spaces; also, one may consider a lattice of functions in stead
of a lattice of sets. It is our intention to publish elsewhere some results
on weak convergence of tight measures on arbitrary Hausdorff spaces.
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If &/ in the convergence criterion is a subclass of #(X), then &7
generates Z(X); to see this, note that .o/ contains a countable subclass
separating points and apply Theorem 3.3 of [3]. This argument was
pointed out to us by E.T. Kehlet.

2. An application to measures on the Skorohod space D[0,1].

D[0,1] consists of those real-valued functions on [0,1] which are
continuous from the right for 0<¢<1 and have limits from the left
for 0<¢<1. The distance d(x,y) between two functions in D[0,1] is
the infimum of those ¢ 0 for which there exists an increasing homeo-
morphism A from [0, 1] onto itself such that ||[A—i||<e and |x—yo || <e;
here ¢ denotes the identity map and ||-|| the uniform norm. The metric
space D[0,1] is known to be Polish. For a finite (ordered) subset =
{t;,.. ..t} of [0,1] we denote by =, the projection from D[0,1] onto R¥.
The projections are all measurable. For a probability measure P on
D[0,1] we denote by T'p the set of ¢ €[0,1] such that =z, is continuous
a.e. P. There are at most countably many points in [0,1]\7"p; these
points are called fixed points of discontinuity for P.

The purpose of this section is to prove the following result:

THEOREM 2. Let (P,),=; be a tight sequence of probability measures on
D[0,1] and let T be a dense subset of [0,1] containing the point 1. Suppose
that for each finite subset t of T there s a probability measure P, on the
proper Buclidean space such that P,m,~' converges weakly to P,. Then the
sequence (P,),, converges weakly. Furthermore, the limit measure P can
be identified by the formula

1) Pryt = Py,
which holds for any finite subset t of [0,1].

The formula Pr,1=P,, means, first of all, that the limit from the
right, in the sense of weak convergence, exists at £ and, secondly, that
this limit is the finite dimensional distribution of P at . In more detail,
what we claim is the following: Let t={t,,...,;} be any finite subset
of [0,1]; let, for each »=1,2,. ..,

tv = {tvl" . "tvk}

be a finite subset of 7' with ¢,>¢; for each i=1,...,k (unless {;=1 in
which case we demand f,=1); suppose further that

t; V¢, asv-—>oo foreach i=1,...,k
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(shortly: ¢, 4 £). Then we claim that the measures P, converge weakly
in R® to Pry~t as v — oo,

In Theorem 2, the limit measure is not supposed to be known in
advance; thus the result can be used to construct various measures.

A special case of Theorem 2 (with known limit measure and special 7')
has been established by Billingsley (Theorem 15.1 of [1]). Our method
is completely different from Billingsley’s.

To prove that (P,) converges weakly in Theorem 2 we need some
simple lemmas.

Lremma 1. For any finite subset t={t,,...,t;} of [0,1] and any subset B
of R* we have

e}
o —_—

mWE) < a7 YE) and  ayYE) 2w NE)

In other words, all projections are open mappings.

Proor. Assume that zem,'(E). Then (xz(t,),...,x(t;)) lies in E.
Thus, to any 6>0 we can find real numbers ry,...,r, with |r,] <d for
all 4, and such that (x(t,)+ry,...,2(f)+r,) lies in E. Clearly then,
there exists a function y in D with y(t;)=x(;) +r; for all 7, and such
that the uniform distance from x to y is less than 6. Then the Skorohod
distance from 2 to y is also less than 6. Since y € #,~Y(¥) and ¢ is arbi-
trary the first inclusion follows. The second inclusion is a consequence
of the first.

LevmmA 2. Let s be a point in [0,1] and E a subset of R. Denote by A
the cylinder set nY(E)={x € D:x(s)e E}. If 0<s<]1, then we have
A={xeD: z(s—)ek or x(s)ek},
A= {xeD: x(s—)eﬁ and x(s)elfc}}.
If s is either 0 or 1, then
A={xeD: z(s)ek},
A= {xeD: x(s)elg'}.
Proovr. The case s=0 or 1 is easily treated. Now assume that s € (0,1).

If x € A then there exists a sequence (x,,) of functions in 4 and a sequence
(4,) of increasing homeomorphisms of [0,1] onto [0,1] such that

A,—3l >0 and |xr,—xol,]—>0.
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Put s, =1,(s). We may assume that either s, <s holds for all n or else
s, = s holds for all n. If the first alternative takes place, then x(s,) - (s —)
and one finds that x,(s) - z(s—) so that a(s—) e E. The second alter-
native leeds to z(s) € E.

To prove the reverse inclusion, assume first that z(s) € E; it follows
from Lemma 2 that € A. Now assume that x(s—) e E. By moving
the function a little to the right and then adding a small constant func-
tion, one arrives at a function in 4. Intuitively, it is thus clear that

xe A. Tt is left to the reader to make this argument rigorous.

Lemma 3. Let T be o dense subset of [0, 1] containing the point 1. Denote
by of the class of cylinder sets based on time-points in T, that is, s7 is the
class of all sets wy~L(H), where t ranges over all finite subsets of T' and E
ranges over all Borel subsets of the proper Euclidean spaces. Then <7 is
a field separating points T'y.

Proor. Clearly, &7 is a field. We shall prove that &/ separates points
T,. Let x and y be distinct functions in D. This means that, for some
s in [0,1], x(s) is distinet from y(s). We shall assume that xz(s) <w(s)
holds.

If s=1, then the set 4 =zm,~Y((—o0,m)), where m is the midpoint of
[2(1),y(1)] lies in .7 and by Lemma 2 we also find that x € 4 and y ¢ 4.

If s<1, we argue as follows. First choose three real numbers m;, m
and m, such that x(s) <m; <m <my<y(s). Then, by the right continuity,
we can find a positive § with s+0 <1 such that z(t) <m, and y(t) Zm,
hold for any ¢ in (s,s+48). Since 7' is dense in [0, 1], we can find a ¢ from
T in (s,s+0). Now put 4=m,((—oo,m)). 4 liesin o/ and by Lemma 1
we also find that x€ 4 and y ¢ A. Thus o/ separates points 7';.

PROOF OF THE WEAK CONVERGENCE IN THEOREM 2. We begin by
remarking that the family of measures (P;) where ¢ ranges over all
finite subsets of 7' is consistent. Now, let @, be any limit measure for
(P,), say P, —@Q,. Consider a finite subset t={t;,...,t,} of 7' and a
k-dimensional Borel set . Then

Q,(7y1E) < liminf P, (7, K) < liminf P, (7, 1E)
< limsup P, Y(E) < PyE),

that is, we have

[}
—

(2) Qg E) < Pt(E) .
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If @, is another limit measure for (P,) then we find in an analogous
manner

(3) PyE) = Qum'E) .

Consider the class &7 of those subsets 4 of D[0,1] for which there exist
a finite subset £={t;,...,;} of 7" and a k-dimensional Borel set £ such
that 4=m,1F and P,0E)=0. Here 0F is the boundary in R* of E.
In checking which sets 4 belong to & it does not matter which represen-
tation we use for 4. Clearly, < is a field. The proof of Lemma_3 shows
that 7 separates points 7,. By (2) and (3), the inequality Q,(4) < @y(4)
holds for any set 4 in «/. By Theorem 1, @, and @, are identical.

We shall now prove (1). In case the limit measure P has only finitely
many fixed points of discontinuity, this formula obviously holds. In
the general case we use a rather elaborate argumentation and we begin
with a lemma.

LemMa 4. Let « be a function in D[0,1] and t a point in [0,1] such that
lx(t) —x(t—)| <e. Then there exists a positive & and a positive b such that
any element in the open sphere S(z,0) with center x and radius & oscillates
by less than ¢ in the interval [t—h, t+#].

This result is obvious.

Proor oF (1) or THEOREM 2. To ease the notation, we shall assume
that the finite subset ¢ that we consider in fact only contains one point ¢;.
We may also assume that fy<1. What we have given is a sequence
(s;) of points in 7' with s, >t, for all k£ and s, | ¢, as k > co. We want
to prove that P, — Pm,~'. Fix, for some time, two positive numbers
¢ and 7. Since there are at most finitely many points ¢ for which

Ple: [xt)—2(t—)| 2} =2 9

holds, we can find an integer k, such that

PA, > 1—n forall kzk,,
where we have put

Ay = {w: |o(s)— (s, —)l <&}
Choose a compact set K, with K, <A, and PK,>1-—7. To any function
z in K, we choose two positive numbers d, and A, such that the oscilla-
tion of any function from S(z,d,) over the interval [s; —h,, s +h,] is

less than e. Finitely many of the spheres, say S(zy,d,,),. .., S(z,,0;,),
cover K,. Put
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G = S@,0,)V ... US8(x,06,) and ky = min{h,,...,h,}.

Then G, is open, G, contains K, and any function in G, oscillates by
less than ¢ in the interval [s, — &, s, +%,]. Now choose a point £, in the
interval [s;—hy, s;+h;] such that t,>¢,, |t,—s,|<1/k and such that
t,eTp. Let B be any Borel subset of R. Then, for k= k, the following
inclusion holds:

{x:2(s;) e B} < {x: a(ty) e B} UG,

Here E° denotes the e-neighbourhood of X, that is, the set of points
within distance less than ¢ from E, and ¢ indicates complementation.
Considering a k=%, and using the weak convergence P,m, ! — P, 1
(which follows since t, € T'p), we now find that

P (E) < liminf Pz, ~Y(E) < limsup Pz, ~Y(E%) + limsupP,(G,?)

n—> Nn—>o0 n—>00

< Pr,WE) + P(Gy) < Pm, NE) + 7.

Since t;, | t,, the projections x, converge everywhere to z; as k — co,
hence
Pry~t - Pmy 71 as k—oo.

From the above inequality we thus find

o — [—

lim sup P (E) < lim sup Pr,~Y(E°) + n < P, H(E°) + ¢

k—>o0 k—>o00
S PryN(B%) + 7.

IIA

Since this holds for all positive ¢ and 7, we finally find that
lim sup PSk(IOL’) < PmyY(E).
This being so for any E, we conclude by Theorem 1 that P, — P,

Acknowledgement.

I have had helpful discussions with K. R. Parthasarathy who sug-
gested to me the two problems stated in the introduction; he was led
to these problems by observing an error in the book by Gihman and
Skorohod (p. 578 in [2]), where these authors seem to rely on a result
like Theorem 2 without observing the difficulties involved.
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