A CRITERION FOR WEAK CONVERGENCE OF MEASURES WITH AN APPLICATION TO CONVERGENCE OF MEASURES ON D[0, 1]

FLEMMING TOPSØE

Introduction.

The usual way to establish weak convergence of a sequence of probability measures on C[0,1] is to prove that all the finite dimensional distributions converge weakly to the "right" limits and that the sequence is tight; then a theorem, which is quite easy to establish, tells us that we have weak convergence. If we turn our attention to the Skorohod space D[0,1] we find that the analogous theorem is much harder to obtain. Recently, P. Billingsley has obtained a suitable result published in [1, p. 124]. My aim has been to find a general theorem, valid in any Polish space, which implies the desired result in D[0,1].

All measures below are supposed to be defined on the Borel σ -field. A reasonable problem inspired by the concrete question about D[0,1] is the following: Let X be a Polish space (that is, separable and metrizable in such a way that it becomes complete), and let $\mathscr A$ be a field of Borel sets generating the entire Borel σ -field $\mathscr B(X)$. If $P, (P_n)_{n\geq 1}$ are probability measures on X such that (P_n) is tight and such that $P_n A \to PA$ for all sets A in $\mathscr A$, is it then true, or under what additional assumptions is it true, that P_n converges weakly to P?

Equivalently, we could ask if, under the just mentioned hypotheses on X and \mathscr{A} , the facts that $P_n \to Q$ for some probability measure Q and $P_n A \to P A$ for all A in \mathscr{A} , imply P = Q. Here, as below, the sign \to is used to indicate weak convergence of probability measures as well as ordinary convergence of real numbers.

Since $P_n \to Q$ and $P_n A \to PA$ imply

$$\stackrel{\circ}{QA} \leq \liminf P_n \stackrel{\circ}{A} \leq PA \leq \limsup P_n \overline{A} \leq Q\overline{A}$$
,

a problem related to the problem above arises: Let again X be Polish and A a field generating $\mathcal{B}(X)$. If P and Q are two probability measures

Received November 13, 1967; in revised form January 28, 1969.

such that $QA \leq PA \leq Q\overline{A}$ holds for all A in \mathcal{A} , is it then true, or under what additional assumptions is it true, that P = Q?

Without additional assumptions the answers to both problems are negative. Indeed, O. Björnsson observed that there is a counterexample in which P and Q are as simple as possible, namely point masses.

1. A convergence criterion.

A class $\mathscr A$ of subsets of the topological space X is said to *separate* points T_2 if, for every pair of distinct points x and y in X there exists a set A in $\mathscr A$ such that $x \in A$ and $y \notin \overline{A}$.

Theorem 1. Let $\mathcal A$ be a lattice of subsets of the Polish space X and suppose that $\mathcal A$ separates points T_2 .

- (i) If P and Q are probability measures on X such that $QA \leq P\overline{A}$ for all $A \in \mathcal{A}$, then P = Q.
- (ii) If P, $(P_n)_{n\geq 1}$ are probability measures on X such that $(P_n)_{n\geq 1}$ is tight and such that $\limsup P_n A \leq P\overline{A}$ for all $A \in \mathcal{A}$, then $P_n \to P$.

Part (ii) is the hoped for convergence criterion.

PROOF. (i) If K_1 and K_2 are disjoint compact subsets of X, we can find $A \in \mathscr{A}$ such that $K_1 \subseteq A$ and $\overline{A} \cap K_2 = \emptyset$. It follows that $QK_1 \leq 1 - PK_2$. Employing the tightness of P and Q, one deduces from this that P = Q.

(ii) Let $(P_{n_k})_{k\geq 1}$ be a convergent subsequence of $(P_n)_{n\geq 1}$, say $P_{n_k}\to Q$. Then

$$Q\overset{\circ}{A} \leqq \liminf_{k \to \infty} P_{n_k} \overset{\circ}{A} \leqq \limsup_{n \to \infty} P_n \overset{\circ}{A} \leqq P \overline{A}$$

for all $A \in \mathcal{A}$. By (i), Q = P follows.

Part (i) in the theorem can of course be considered as a special case of part (ii). It is easy to see, by means of a simple counterexample, that we can not drop the assumption that $\mathscr A$ be a lattice. We have been unable to decide whether one can relax this assumption assuming only that $\mathscr A$ is closed under finite intersections. The condition in Theorem 1 that $\mathscr A$ separates points T_2 is necessary, as is easily seen.

It is not difficult to extend the convergence criterion from measures on Polish spaces to tight measures (Radon measures) on arbitrary Hausdorff spaces; also, one may consider a lattice of functions in stead of a lattice of sets. It is our intention to publish elsewhere some results on weak convergence of tight measures on arbitrary Hausdorff spaces.

If \mathscr{A} in the convergence criterion is a subclass of $\mathscr{B}(X)$, then \mathscr{A} generates $\mathscr{B}(X)$; to see this, note that \mathscr{A} contains a countable subclass separating points and apply Theorem 3.3 of [3]. This argument was pointed out to us by E. T. Kehlet.

2. An application to measures on the Skorohod space D[0,1].

D[0,1] consists of those real-valued functions on [0,1] which are continuous from the right for $0 \le t < 1$ and have limits from the left for $0 < t \le 1$. The distance d(x,y) between two functions in D[0,1] is the infimum of those $\varepsilon \ge 0$ for which there exists an increasing homeomorphism λ from [0,1] onto itself such that $||\lambda - i|| < \varepsilon$ and $||x - y \circ \lambda|| < \varepsilon$; here i denotes the identity map and $||\cdot||$ the uniform norm. The metric space D[0,1] is known to be Polish. For a finite (ordered) subset $t = \{t_1, \ldots, t_k\}$ of [0,1] we denote by π_t the projection from D[0,1] onto \mathbb{R}^k . The projections are all measurable. For a probability measure P on D[0,1] we denote by T_P the set of $t \in [0,1]$ such that π_t is continuous a.e. P. There are at most countably many points in $[0,1] \setminus T_P$; these points are called fixed points of discontinuity for P.

The purpose of this section is to prove the following result:

Theorem 2. Let $(P_n)_{n\geq 1}$ be a tight sequence of probability measures on D[0,1] and let T be a dense subset of [0,1] containing the point 1. Suppose that for each finite subset t of T there is a probability measure P_t on the proper Euclidean space such that $P_n\pi_t^{-1}$ converges weakly to P_t . Then the sequence $(P_n)_{n\geq 1}$ converges weakly. Furthermore, the limit measure P can be identified by the formula

$$P\pi_{\mathbf{t}}^{-1} = P_{\mathbf{t}+},$$

which holds for any finite subset t of [0,1].

The formula $P\pi_{\boldsymbol{t}}^{-1} = P_{\boldsymbol{t}^+}$ means, first of all, that the limit from the right, in the sense of weak convergence, exists at \boldsymbol{t} and, secondly, that this limit is the finite dimensional distribution of P at \boldsymbol{t} . In more detail, what we claim is the following: Let $\boldsymbol{t} = \{t_1, \ldots, t_k\}$ be any finite subset of [0,1]; let, for each $\nu = 1, 2, \ldots$,

$$\boldsymbol{t_{v}} = \{t_{v1}, \dots, t_{vk}\}$$

be a finite subset of T with $t_{\nu i} > t_i$ for each i = 1, ..., k (unless $t_i = 1$ in which case we demand $t_{\nu i} = 1$); suppose further that

$$t_{i} \downarrow t_i$$
 as $\nu \to \infty$ for each $i = 1, \ldots, k$

(shortly: $t_{\nu} \downarrow t$). Then we claim that the measures $P_{t_{\nu}}$ converge weakly in \mathbb{R}^k to $P\pi_t^{-1}$ as $\nu \to \infty$.

In Theorem 2, the limit measure is not supposed to be known in advance; thus the result can be used to construct various measures.

A special case of Theorem 2 (with known limit measure and special T) has been established by Billingsley (Theorem 15.1 of [1]). Our method is completely different from Billingsley's.

To prove that (P_n) converges weakly in Theorem 2 we need some simple lemmas.

LEMMA 1. For any finite subset $\mathbf{t} = \{t_1, \dots, t_k\}$ of [0, 1] and any subset E of \mathbb{R}^k we have

$$\pi_{\boldsymbol{t}}^{-1}(\overline{E}) \, \subset \, \overrightarrow{\pi_{\boldsymbol{t}}^{-1}(E)} \quad \text{ and } \quad \pi_{\boldsymbol{t}}^{-1}(\overset{\circ}{E}) \, \supset \, \widehat{n_{\boldsymbol{t}}^{-1}(E)} \; .$$

In other words, all projections are open mappings.

PROOF. Assume that $x \in \pi_t^{-1}(\overline{E})$. Then $(x(t_1), \ldots, x(t_k))$ lies in \overline{E} . Thus, to any $\delta > 0$ we can find real numbers r_1, \ldots, r_k with $|r_i| < \delta$ for all i, and such that $(x(t_1) + r_1, \ldots, x(t_k) + r_k)$ lies in E. Clearly then, there exists a function y in D with $y(t_i) = x(t_i) + r_i$ for all i, and such that the uniform distance from x to y is less than δ . Then the Skorohod distance from x to y is also less than δ . Since $y \in \pi_t^{-1}(E)$ and δ is arbitrary the first inclusion follows. The second inclusion is a consequence of the first.

Lemma 2. Let s be a point in [0,1] and E a subset of R. Denote by A the cylinder set $\pi_s^{-1}(E) = \{x \in D : x(s) \in E\}$. If 0 < s < 1, then we have

$$\begin{split} \overline{A} &= \left\{ x \in D: \ x(s-) \in \overline{E} \quad \text{or} \quad x(s) \in \overline{E} \right\} \text{,} \\ \mathring{A} &= \left\{ x \in D: \ x(s-) \in \overset{\circ}{E} \text{ and } x(s) \in \overset{\circ}{E} \right\} \text{.} \end{split}$$

If s is either 0 or 1, then

$$egin{aligned} ar{A} &= \left\{ x \in D: \; x(s) \in ar{E}
ight\}, \\ \mathring{A} &= \left\{ x \in D: \; x(s) \in \mathring{E}
ight\}. \end{aligned}$$

PROOF. The case s=0 or 1 is easily treated. Now assume that $s\in(0,1)$. If $x\in \overline{A}$ then there exists a sequence (x_n) of functions in A and a sequence (λ_n) of increasing homeomorphisms of [0,1] onto [0,1] such that

$$||\lambda_n - i|| \to 0 \quad \text{ and } \quad ||x_n - x \circ \lambda_n|| \to 0 \ .$$

Put $s_n = \lambda_n(s)$. We may assume that either $s_n < s$ holds for all n or else $s_n \ge s$ holds for all n. If the first alternative takes place, then $x(s_n) \to x(s-)$ and one finds that $x_n(s) \to x(s-)$ so that $x(s-) \in \overline{E}$. The second alternative leeds to $x(s) \in \overline{E}$.

To prove the reverse inclusion, assume first that $x(s) \in \overline{E}$; it follows from Lemma 2 that $x \in \overline{A}$. Now assume that $x(s-) \in \overline{E}$. By moving the function a little to the right and then adding a small constant function, one arrives at a function in A. Intuitively, it is thus clear that $x \in \overline{A}$. It is left to the reader to make this argument rigorous.

Lemma 3. Let T be a dense subset of [0,1] containing the point 1. Denote by $\mathscr A$ the class of cylinder sets based on time-points in T, that is, $\mathscr A$ is the class of all sets $\pi_{\mathbf t}^{-1}(E)$, where $\mathbf t$ ranges over all finite subsets of T and E ranges over all Borel subsets of the proper Euclidean spaces. Then $\mathscr A$ is a field separating points T_2 .

PROOF. Clearly, \mathscr{A} is a field. We shall prove that \mathscr{A} separates points T_2 . Let x and y be distinct functions in D. This means that, for some s in [0,1], x(s) is distinct from y(s). We shall assume that x(s) < y(s) holds.

If s=1, then the set $A=\pi_1^{-1}((-\infty,m))$, where m is the midpoint of [x(1),y(1)] lies in $\mathscr A$ and by Lemma 2 we also find that $x\in \mathring A$ and $y\notin \overline A$.

If s < 1, we argue as follows. First choose three real numbers m_1 , m and m_2 such that $x(s) < m_1 < m < m_2 < y(s)$. Then, by the right continuity, we can find a positive δ with $s + \delta < 1$ such that $x(t) \le m_1$ and $y(t) \ge m_2$ hold for any t in $(s, s + \delta)$. Since T is dense in [0, 1], we can find a t from T in $(s, s + \delta)$. Now put $A = \pi_t^{-1}((-\infty, m))$. A lies in $\mathscr A$ and by Lemma 1 we also find that $x \in A$ and $y \notin \overline{A}$. Thus $\mathscr A$ separates points T_2 .

PROOF OF THE WEAK CONVERGENCE IN THEOREM 2. We begin by remarking that the family of measures (P_t) where t ranges over all finite subsets of T is consistent. Now, let Q_1 be any limit measure for (P_n) , say $P_{n'} \to Q_1$. Consider a finite subset $t = \{t_1, \ldots, t_k\}$ of T and a k-dimensional Borel set E. Then

$$\begin{split} Q_{\mathbf{1}}(\widehat{\boldsymbol{\pi_{t}}^{-1}E}) & \leq \liminf P_{n'}(\widehat{\boldsymbol{\pi_{t}}^{-1}E}) \\ & \leq \liminf P_{n'}(\boldsymbol{\pi_{t}}^{-1}\widehat{E}) \\ & \leq \limsup P_{n'}\boldsymbol{\pi_{t}}^{-1}(\overline{E}) \leq P_{\boldsymbol{t}}(\overline{E}) \;, \end{split}$$

that is, we have

$$Q_1(\widehat{n_{t}^{-1}E}) \leq P_t(\overline{E}).$$

If Q_2 is another limit measure for (P_n) then we find in an analogous manner

$$(3) P_{\boldsymbol{t}}(\overset{\circ}{E}) \leq Q_{2}(\overline{\pi_{\boldsymbol{t}}^{-1}E}).$$

Consider the class \mathscr{A} of those subsets A of D[0,1] for which there exist a finite subset $t = \{t_1, \ldots, t_k\}$ of T and a k-dimensional Borel set E such that $A = \pi_t^{-1}E$ and $P_t(\partial E) = 0$. Here ∂E is the boundary in \mathbb{R}^k of E. In checking which sets A belong to \mathscr{A} it does not matter which representation we use for A. Clearly, \mathscr{A} is a field. The proof of Lemma 3 shows that \mathscr{A} separates points T_2 . By (2) and (3), the inequality $Q_1(A) \leq Q_2(\overline{A})$ holds for any set A in \mathscr{A} . By Theorem 1, Q_1 and Q_2 are identical.

We shall now prove (1). In case the limit measure P has only finitely many fixed points of discontinuity, this formula obviously holds. In the general case we use a rather elaborate argumentation and we begin with a lemma.

LEMMA 4. Let x be a function in D[0,1] and t a point in [0,1] such that $|x(t)-x(t-)| < \varepsilon$. Then there exists a positive δ and a positive h such that any element in the open sphere $S(x,\delta)$ with center x and radius δ oscillates by less than ε in the interval [t-h,t+h].

This result is obvious.

PROOF OF (1) OF THEOREM 2. To ease the notation, we shall assume that the finite subset t that we consider in fact only contains one point t_0 . We may also assume that $t_0 < 1$. What we have given is a sequence (s_k) of points in T with $s_k > t_0$ for all k and $s_k \downarrow t_0$ as $k \to \infty$. We want to prove that $P_{s_k} \to P\pi_{t_0}^{-1}$. Fix, for some time, two positive numbers ε and η . Since there are at most finitely many points t for which

$$P\{x: |x(t)-x(t-)| \ge \varepsilon\} \ge \eta$$

holds, we can find an integer k_0 such that

$$PA_k > 1 - \eta \quad \text{ for all } k \! \geq \! k_0 \,,$$

where we have put

$$A_k = \{x : |x(s_k) - x(s_k - 1)| < \varepsilon\}.$$

Choose a compact set K_k with $K_k \subseteq A_k$ and $PK_k > 1 - \eta$. To any function x in K_k we choose two positive numbers δ_x and h_x such that the oscillation of any function from $S(x,\delta_x)$ over the interval $[s_k-h_x,s_k+h_x]$ is less than ε . Finitely many of the spheres, say $S(x_1,\delta_{x_1}),\ldots,S(x_r,\delta_{x_r})$, cover K_k . Put

$$G_k = S(x_1, \delta_{x_1}) \cup \ldots \cup S(x_r, \delta_{x_r})$$
 and $h_k = \min\{h_{x_1}, \ldots, h_{x_r}\}$.

Then G_k is open, G_k contains K_k and any function in G_k oscillates by less than ε in the interval $[s_k-h_k,s_k+h_k]$. Now choose a point t_k in the interval $[s_k-h_k,s_k+h_k]$ such that $t_k>t_0$, $|t_k-s_k|<1/k$ and such that $t_k\in T_P$. Let E be any Borel subset of R. Then, for $k\geq k_0$ the following inclusion holds:

$$\{x:\, x(s_k)\in E\} \subset \{x:\, x(t_k)\in E^{\mathfrak o}\}\cup G_k{}^{\mathfrak c}$$
 .

Here E^{ϵ} denotes the ϵ -neighbourhood of E, that is, the set of points within distance less than ϵ from E, and ϵ indicates complementation. Considering a $k \geq k_0$ and using the weak convergence $P_n \pi_{t_k}^{-1} \to P \pi_{t_k}^{-1}$ (which follows since $t_k \in T_P$), we now find that

$$\begin{split} P_{s_k}(\overset{\circ}{E}) \, & \leq \, \liminf_{n \to \infty} P_n \pi_{s_k}^{\, -1}(E) \, \leq \, \limsup_{n \to \infty} P_n \pi_{t_k}^{\, -1}(\overline{E^{\mathfrak s}}) \, + \, \limsup_{n \to \infty} P_n(G_k^{\, c}) \\ & \leq \, P \pi_{t_k}^{\, -1}(\overline{E^{\mathfrak s}}) \, + \, P(G_k^{\, c}) \, \leq \, P \pi_{t_k}^{\, -1}(\overline{E^{\mathfrak s}}) \, + \, \eta \, . \end{split}$$

Since $t_k \downarrow t_0$, the projections π_{t_k} converge everywhere to π_{t_0} as $k \to \infty$, hence

$$P\pi_{t_k}^{-1} \to P\pi_{t_0}^{-1}$$
 as $k \to \infty$.

From the above inequality we thus find

$$\limsup_{k\to\infty} P_{s_k}(\overset{\circ}{E}) \leq \limsup_{k\to\infty} P\pi_{t_k}^{-1}(\overline{E^{\mathfrak s}}) \,+\, \eta \, \leq P\pi_{t_0}^{-1}(\overline{E^{\mathfrak s}}) \,+\, \eta \\ \leq P\pi_{t_0}^{-1}(E^{2\mathfrak s}) \,+\, \eta \,.$$

Since this holds for all positive ε and η , we finally find that

$$\limsup P_{s_k}(\stackrel{\circ}{E}) \leq P\pi_{t_0}^{-1}(\overline{E}).$$

This being so for any E, we conclude by Theorem 1 that $P_{s_k} \to P\pi_{t_0}^{-1}$.

Acknowledgement.

I have had helpful discussions with K. R. Parthasarathy who suggested to me the two problems stated in the introduction; he was led to these problems by observing an error in the book by Gihman and Skorohod (p. 578 in [2]), where these authors seem to rely on a result like Theorem 2 without observing the difficulties involved.

REFERENCES

- 1. P. Billingsley, Weak convergence of probability measures, New York, 1968.
- I. I. Gihman and A. V. Skorohod, Introduction to the theory of random processes, Izdat. "Nauka", Moscow, 1965. (Russian.)

- G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165.
- 4. K. R. Parthasarathy, Probability measures on metric spaces, New York, 1967.
- Yu. V. Prohorov, Convergence of random processes and limit theorems in probability, Theor. Probability Appl. 1 (1956), 157-214.
- A. V. Skorohod, Limit theorems for stochastic processes, Theor. Probability Appl. 1 (1956), 261-290.

UNIVERSITY OF COPENHAGEN, DENMARK