
MATH. SCAND. 124 (2019), 81–101

THE REPRODUCING KERNEL OF H 2 AND
RADIAL EIGENFUNCTIONS OF THE

HYPERBOLIC LAPLACIAN
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Abstract
In the paper we characterize the reproducing kernel Kn,h for the Hardy space H 2 of hyperbolic
harmonic functions on the unit ball B in Rn. Specifically we prove that

Kn,h(x, y) =
∞∑

α=0

Sn,α(|x|)Sn,α(|y|)Zα(x, y),

where the series converges absolutely and uniformly on K × B for every compact subset K of B.
In the above, Sn,α is a hypergeometric function and Zα is the reproducing kernel of the space of
spherical harmonics of degree α. In the paper we prove that

0 ≤ Kn,h(x, y) ≤ Cn

(1 − 2〈x, y〉 + |x|2|y|2)n−1
,

where Cn is a constant depending only on n. It is known that the diagonal function Kn,h(x, x)

is a radial eigenfunction of the hyperbolic Laplacian Δh on B with eigenvalue λ2 = 8(n − 1)2.
The result for n = 4 provides motivation that leads to an explicit characterization of all radial
eigenfunctions of Δh on B. Specifically, if g is a radial eigenfunction of Δh with eigenvalue
λα = 4(n − 1)2α(α − 1), then

g(r) = g(0)
pn,α(r2)

(1 − r2)(α−1)(n−1)
,

where pn,α is again a hypergeometric function. If α is an integer, then pn,α(r2) is a polynomial
of degree 2(α − 1)(n − 1).

1. Introduction

Throughout the paper we follow the notation of [9] for hyperbolic harmonic
functions on the unit ball B in Rn, n ≥ 2. Let ν denote Lebesgue measure on
Rn normalized so that ν(B) = 1. Also, we denote by σ the surface measure on
S, the boundary of B, again normalized such that σ(S) = 1. The hyperbolic
metric on B is given by

ds = 2(1 − |x|2)−1dx,
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and the Laplacian Δh with respect to the hyperbolic metric is given by

Δhf = (1 − |x|2)[(1 − |x|2)�f + 2(n − 2)〈x, ∇f 〉],
where � is the usual Laplacian in Rn, ∇f = (

∂f

∂x1
, . . .

∂f

∂xn

)
is the Euclidean

gradient of f , and 〈·,·〉 denotes the usual inner product inRn. It is easily shown
that Δh satisfies Δhf (a) = �(f ◦ϕa)(0), where ϕa is a Möbius transformation
of Rn mapping B onto B with ϕa(0) = a, ϕa(a) = 0 and ϕa(ϕa(x)) = x.

A continuous real-valued function f is H -harmonic on B if and only if

f (a) =
∫
S
f (ϕa(rt)) dσ (t)

for all a ∈ B and all r with 0 < r < 1. If this is the case, then f is C2 on
B and satisfies Δhf = 0. For 1 ≤ p < ∞ let H p denote the Hardy space of
H -harmonic functions f for which

‖f ‖p
p = sup

0<r<1

∫
S
|f (rt)|p dσ(t) < ∞.

The hyperbolic Poisson kernel Ph(x, t) is given by

Ph(x, t) = Pn,h(x, t) = (1 − |x|2)n−1

|x − t |2(n−1)
, (x, t) ∈ B× S.

It is well known that if f ∈ H p, 1 < p < ∞, then there exists a function
f̂ ∈ Lp(S), the boundary function of f , such that

f (x) = Ph

[
f̂

]
(x) =

∫
S
Ph(x, t)f̂ (t) dσ (t)

with ‖f ‖p = ∥∥f̂
∥∥

p
. When p = 1, the function f is the Poisson integral of

a finite signed measure νf on S with ‖f ‖1 = |νf |(S) where |νf | denotes the
total variation of νf ([5], [8], [9, Theorem 7.1.1]). It is easily shown that for
f ∈ H p, 1 ≤ p < ∞, one has

|f (x)|p ≤
(

1 + |x|
1 − |x|

)n−1

‖f ‖p
p .

Similar results hold for the space Hp, 1 ≤ p < ∞, of Euclidean harmonic
functions on B [2]. In the Euclidean case, the Poisson kernel Pe(x, t) is given
by

Pe(x, t) = Pn,e(x, t) = 1 − |x|2
|x − t |n .
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In Section 2 we compute the reproducing kernel Kn,h of H 2. For complete-
ness, we also include the reproducing kernel Ke of the space H 2 of Euclidean
harmonic functions. As we will see, the reproducing kernel Ke of H 2 is known
and is obtained by expanding the domain of the Euclidean Poisson kernel [2,
8.11]. On the other hand, the reproducing kernel of H 2 is non-trivial and is
expressed in terms of a series of hypergeometric functions. As such, explicit
formulas may be obtained only for even dimensions, and for dimensions 6
and higher, even those are non-trivial. We illustrate this in dimension 4. As
we will see, the diagonal function Kn,h(x, x) is a radial eigenfunction of the
hyperbolic Laplacian Δh with eigenvalue λ2 = 8(n − 1)2. When n = 4,

K4,h(x, x) = 1 + 6|x|2 + 6|x|4 + |x|6
(1 − |x|2)3

.

Using this as a motivation we compute all radial eigenfunctions of Δh in
Section 4.

2. The reproducing kernel of H 2

The space H 2 is a real Hilbert space with inner product 〈·,·〉 defined by

〈f, g〉 = lim
r→1

∫
S
f (rt)g(rt) dσ (t) =

∫
S
f̂ (t)ĝ(t) dσ (t).

Furthermore, since point evaluation is a bounded linear functional, H 2 has a
reproducing kernel denoted by Kn,h(x, y), i.e.,

(1) for fixed y ∈ B, the function x �→ Kn,h(x, y) is in H 2, and

(2) for every f ∈ H 2,
f (y) = 〈f, Kn,h(·, y)〉.

We begin with the following theorem, the proof of which is straightforward
and most likely well-known in the Euclidean case.

Theorem 2.1. The reproducing kernel Kn,h(x, y) of H 2 is given by

Kn,h(x, y) =
∫
S
Ph(x, t)Ph(y, t) dσ (t).

Proof. For x ∈ B, set Kx(y) = Kn,h(x, y). If f is continuous on S, then
Ph[f ](x) ∈ H 2. By the Poisson integral formula

Ph[f ](x) =
∫
S
f (t)Ph(x, t) dσ (t).



84 M. STOLL

On the other hand, by the reproducing property,

Ph[f ](x) = 〈Ph[f ], Kx〉 =
∫
S

̂Ph[f ](t)K̂x(t) dσ (t),

where K̂x is the boundary function of Kx . Since f is continuous

Ph[f ](x) =
∫
S
f (t)K̂x(t) dσ (t).

Therefore, ∫
S
f (t)[Ph(x, t) − K̂x(t)] dσ(t) = 0.

Since this holds for all continuous functions f on S we have

K̂x(t) = Ph(x, t) for a.e. t ∈ S.
Hence

Kn,h(x, y) = 〈Kx, Ky〉 =
∫
S
Ph(x, t)Ph(y, t) dσ (t).

Similarly, the reproducing kernel Ke(x, y) of the space H 2 of Euclidean
harmonic functions is given by

Ke(x, y) =
∫
S
Pe(x, t)Pe(y, t) dσ (t).

Our next step is to provide explicit formulas for Ke(x, y) and Kn,h(x, t). Al-
though not identified as the reproducing kernel of H 2 the formula for Ke(x, y)

is given in [2, 8.11].

Theorem 2.2. For x, y ∈ B,

Ke(x, y) = 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2)n/2

.

Even though the result is known, we include the proof since much of the
terminology and results concerning spherical harmonics are required in the
sequel. (See [2] for details.)

For m = 0, 1, 2, . . . , we denote by Hm(Rn) the homogeneous harmonic
polynomials of degree m on Rn. A spherical harmonic of degree m is the
restriction to S of a harmonic polynomial in Hm(Rn). The collection of all
spherical harmonic polynomials of degree m will be denoted by Hm(S). Every
element of Hm(S) has a unique extension to Hm(Rn). Furthermore, if m = k
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then Hm(S) and Hk(S) are orthogonal in L2(S). If {pm,1, . . . , pm,dm
} is an

orthonormal basis of Hm(S), where dm = dim Hm(S), set

Zm(η, ζ ) =
dm∑

j=1

pm,j (η)pm,j (ζ ). (2.1)

The function Z(m)
η (ζ ) = Zm(η, ζ ) is called the zonal harmonic of degree m

with pole η, and Zm is the reproducing kernel of Hm(S), i.e., if p ∈ Hm(S),
then

p(η) =
∫
S
p(ζ )Zm(η, ζ ) dσ (ζ ).

Since every p ∈ Hm(S) has a unique extension to Hm(Rn), the function Z
(m)
ζ

has a unique extension to Hm(Rn) which we denote by x → Zm(x, ζ ). Suppose
x ∈ Rn, x = 0. Then if p ∈ Hm(Rn),

p(x) = |x|mp(x/|x|) = |x|m
∫
S
p(ζ )Zm(x/|x|, ζ ) dσ (ζ )

=
∫
S
p(ζ )Zm(x, ζ ) dσ (ζ ).

By orthogonality,

∫
S
Zm(x, ζ )Zk(y, ζ ) dσ (ζ ) = 0 for k = m. (2.2)

Furthermore,

∫
S
Zm(x, ζ )Zm(y, ζ ) dσ (ζ ) = Zm(x, y). (2.3)

The proofs of (2.2) and (2.3) are classical for |x| = |y| = 1 and extend
immediately to B by homogeneity.

Proof of Theorem 2.2. By [2, Theorem 5.2.1] for x ∈ B, ζ ∈ S,

Pe(x, ζ ) =
∞∑

m=0

Zm(x, ζ ),

where the series converges absolutely and uniformly on K ×S for every com-
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pact subset K of B. Thus

Ke(x, y) =
∫
S
Pe(x, ζ )Pe(y, ζ ) dσ (ζ ),

which by orthogonality

=
∞∑

m=0

∫
S
Zm(x, ζ )Zm(y, ζ ) dσ (ζ )

=
∞∑

m=0

Zm(x, y) =
∞∑

m=0

Zm(|y|x, y/|y|)

= Pe(|y|x, y/|y|) = 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2)n/2

,

which proves Theorem 2.2.

In the following we prove a generalization of the result obtained in The-
orem 2.2. This result will be needed in several examples as well as Theorem 3.1.

Corollary 2.3. For k = 0, 1, 2, . . . ,

∞∑
α=0

αkZα(x, y) = Pk(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)(n/2)+k
, (2.4)

where Pk(x, y) is a polynomial in x and y.

Proof. By Theorem 2.2 the result is true for k = 0. Assume the result is
true for fixed k ≥ 0, i.e.,

∞∑
α=0

αkZα(x, y) = Pk(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)(n/2)+k
,

where Pk(x, y) is a polynomial in x and y. Then,

∞∑
α=0

αk+1Zα(x, y) =
∞∑

α=0

d

dt

[
αkZα(tx, y)

]
t=1 = d

dt

[ ∞∑
α=0

αkZα(tx, y)

]
t=1

= d

dt

[
Pk(tx, y)

(1 − 2t〈x, y〉 + t2|x|2|y|2)(n/2)+k

]
t=1

= Pk+1(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)(n/2)+k+1
.
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Example 2.4. Since we will need the results in Example 2.8, we compute
the sum in (2.4) for k = 1, 2 and n = 4. When k = 0, by Theorem 2.2

∞∑
α=0

Zα(x, y) = Pe(x, y) = 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2)2

.

Next, for k = 1,

∞∑
α=0

αZα(x, y) = d

dt

[ ∞∑
α=0

tαZα(x, y)

]
t=1

=
[

d

dt
Pe(tx, y)

]
t=1

= P1(x, y) = 2[2〈x, y〉 − 3|x|2|y|2 + |x|4|y|4]

(1 − 2〈x, y〉 + |x|2|y|2)3
.

Similarly, for k = 2,

∞∑
α=0

α2Zα(x, y) = d

dt

[ ∞∑
α=0

tααZα(x, y)

]
t=1

=
[

d

dt
P1(tx, y)

]
t=1

= 4Q(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)4
,

where

Q(x, y) = 〈x, y〉(1 − |x|4|y|4) + 4〈x, y〉2 − 8〈x, y〉|x|2|y|2
− 3|x|2|y|2 + 8|x|4|y|4 − |x|6|y|6. (2.5)

We now turn our attention to Kn,h(x, y). For this we need to introduce
the hypergeometric function F(a, b; c; z) ([1], [3], [6]) which for c /∈ C \
{0, −1, −2, . . .} is defined by

F(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, |z| < 1. (2.6)

The hypergeometric function is the solution of the hypergeometric equation

z(1 − z)
d2w

dz2
+ [c − (a + b + 1)z]

dw

dz
− abw = 0, (2.7)

that is continuous at 0.
In (2.6) (a)0 = 1 and for k = 1, 2, . . .

(a)k = a(a + 1) · · · (a + k − 1).
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If a is not a negative integer, then

(a)k = �(a + k)/�(a),

where � is the Gamma function defined onC\{0, −1, −2, . . .}. If c−a−b > 0
then the series (2.6) converges absolutely for all z with |z| ≤ 1. Also, for
c − a − b > 0, by [1, Equation 15.1.20]

F(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
. (2.8)

For α = 0, 1, 2, . . . and dimension n ≥ 2, set

Sn,α(r) = F
(
α, 1 − 1

2n; α + 1
2n; r2

)
F

(
α, 1 − 1

2n; α + 1
2n; 1

)

= �
(

1
2n

)
�(α + n − 1)

�(n − 1)�
(
α + 1

2n
)F

(
α, 1 − 1

2n; α + 1
2n; r2

)

= �
(

1
2n

)
�(α + n − 1)

�(n − 1)�
(
α + 1

2n
) ∞∑

k=0

(α)k
(
1 − 1

2n
)
k(

α + 1
2n

)
k
k!

r2k.

Then Sn,α(1) = 1 and by [4], [9, Section 6.1], for pα ∈ Hα(Rn), the function
f (x) = Sn,α(|x|)pα(x) is a solution of Δhf (x) = 0 that is continuous on
B with f (ζ ) = pα(ζ ). By [9, Theorem 6.2.2] the hyperbolic Poisson kernel
Ph(x, t) is given by

Ph(x, t) =
∞∑

α=0

Sn,α(|x|)Zα(x, t),

where the series converges absolutely and uniformly on K ×S for every com-
pact subset K of B. Thus by the orthogonality of {Zα(x, t)} we obtain the
following.

Theorem 2.5. For x, y ∈ B,

Kn,h(x, y) =
∞∑

α=0

Sn,α(|x|)Sn,α(|y|)Zα(x, y)

where the series converges absolutely and uniformly on K ×B for every com-
pact subset K of B.

Prior to proving Theorem 2.5 we first prove the following lemma concerning
the functions Sn,α(r).
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Lemma 2.6. For all n = 2, 3, . . ., α = 0, 1, 2, . . . and x ∈ B,

∣∣Sn,α(|x|)∣∣ ≤ Cn

{
α(n/2)−1, if n is even,

α[n/2], if n is odd,

where Cn is a constant depending only on n.

Proof of Lemma 2.6. Let m = [n/2], and set

Pm(r) =
m−1∑
k=0

(α)k(1 − 1
2n)k

(α + 1
2n)kk!

r2k,

and

Qm(r) =
∞∑

k=m

(α)k(1 − 1
2n)k

(α + 1
2n)kk!

r2k,

If n is even, then
(
1 − 1

2n
)
k

= 0 for all k ≥ n and thus Qm(r) ≡ 0. Also, since
(α)k/

(
α + 1

2n
)
k

≤ 1,

|Pm(r)| ≤
m−1∑
k=0

∣∣(1 − 1
2n

)
k

∣∣
k!

= Cn,

where Cn is a constant depending only on n.
We now obtain an estimate for Qm when n is odd. For k ≥ m we have

(γ )k = (γ )m(γ + m)k−m. Thus

Qm(r) =
∞∑

k=m

(α)k
(
1 − 1

2n
)
k(

α + 1
2n

)
k
k!

r2k

= (α)m
(
1 − 1

2n
)
m
r2m(

α + 1
2n

)
m

∞∑
j=0

(α + m)j
(
1 + m − 1

2n
)
j(

α + m + 1
2n

)
j
(m + j)!

r2j .

Since (m + j)! ≥ j ! and
(
1 + m − 1

2n
)

> 0,

|Qm(r)| ≤
∣∣(1 − 1

2n
)
m

∣∣�(α + m)�
(
α + 1

2n
)

�(α)�
(
α + 1

2n + m
)

× F
(
α + m, 1 + m − 1

2n; α + m + 1
2n; r2

)
.

But F
(
α + m, 1 + m − 1

2n; α + m + 1
2n; r2

)
is an increasing function of r .

Thus by (2.8),

F
(
α + m, 1 + m − 1

2n; α + m + 1
2n; r2

) ≤ �
(
α + m + 1

2n
)
�(n − 1 − m)

�
(

1
2n

)
�(α + n − 1)

.
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Therefore

|Qm(r)| ≤
∣∣(1 − 1

2n
)
m

∣∣�(n − 1 − m)

�
(

1
2n

) �(α + m)�
(
α + 1

2n
)

�(α)�(α + n − 1)
.

But Sn,α(r) = cn,α

[
Pm(r) + Qm(r)

]
where

cn,α = �
(

1
2n

)
�(α + n − 1)

�(n − 1)�
(
α + 1

2n
) .

Thus

|Sn,α(r)| ≤ Cn

�(α + n − 1)

�
(
α + 1

2n
) + Dn

�
(
α + [

n
2

])
�(α)

,

where Cn and Dn are constants depending only on n with Dn = 0 when n is
even. Since

lim
α→∞ αb−a �(α + a)

�(α + b)
= 1,

we have
�(α + a)

�(α + b)
≈ αa−b. (2.9)

Thus |Sn,α(r)| ≤ Cnα
1
2 n−1 if n is even and |Sn,α(r)| ≤ Cnα

[n/2] if n is odd,
which proves the lemma.

Note. In (2.9) A(x) ≈ B(x) means that there exist positive constants c1

and c2 such that c1A(x) ≤ B(x) ≤ c2A(x) for all appropriate x.

Proof of Theorem 2.5. By Theorem 2.6,

|Kn,h(x, y)| ≤ Cn

∞∑
α=0

α2[ n
2 ]|Zα(x, y)|.

But with x = |x|ζ , y = |y|η, ζ, η ∈ S,

Zα(x, y) = |x|α|y|αZα(ζ, η).

But by [2, Equation 5.13] and Exercise 7 of [2, Chapter 5],

|Zα(ζ, η)| = |〈Zη, Zζ 〉| ≤ ‖Zη‖2‖Zζ‖2 = dα ≤ Cnα
n−2.

Therefore,

|Kn,h(x, y)| ≤ Cn

∞∑
α=0

αp|x|α|y|α,
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where p = 2[ n
2 ] + n − 2. The above series converges uniformly for (x, y) ∈

K × B where K ⊂ B is compact, which proves Theorem 2.5.

By (2.1),

Zα(x, y) =
dα∑

j=1

pα,j (x)pα,j (y),

where
{
pα,j : j = 1, . . . , dα

}
is an orthonormal basis of Hα(S). As a con-

sequence we obtain the following.

Corollary 2.7.
{
Sn,α(|x|)pα,j (x) : j = 1, . . . , dα

}∞
α=0 is an orthonormal

basis for the space H 2 of H -harmonic functions on B.

When n is even, say n = 2m, then b = 1 − m and thus (b)k = 0 for all
k ≥ m. Hence Sn,α(r) is a polynomial of degree n−2. When n = 2, H 2 = H 2

and thus K2,h = K2,e. In the following example we compute K4,h.

Example 2.8. When n = 4,

S4,α(r) = 1

2

(
2 + α(1 − r2)

)
.

Therefore

K4,h(x, y)

= 1

4

∞∑
α=0

[
4 + 2α[(1 − |x|2) + (1 − |y|2)] + α2(1 − |x|2)(1 − |y|2)]Zα(x, y).

By the results of Example 2.4

K4,h(x, y) = 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2)2

+ [(1 − |x|2) + (1 − |y|2)] [2〈x, y〉 − 3|x|2|y|2 + |x|4|y|4]

(1 − 2〈x, y〉 + |x|2|y|2)3
(2.10)

+ (1 − |x|2)(1 − |y|2) Q(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)4
,

where Q(x, y) is given by (2.5). By combining the above terms one has

K4,h(x, y) = Q4(x, y)

(1 − 2〈x, y, 〉 + |x|2|y|2)4
,

where Q4(x, y) is a polynomial in x and y. In Theorem 3.1 we obtain an
analogous representation of Kn,h(x, y) for all even n. Furthermore, since
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(1−|x|2)(1−|y|2) ≤ 4(1−|x||y|)2 and (1−|x|2)+(1−|y|2) ≤ 4(1−|x||y|)
we have

K4,h(x, y) ≤ 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2)2

+ 4(1 − |x||y|)|Q1(x, y)| + 4|Q(x, y)|
(1 − 2〈x, y〉 + |x|2|y|2)3

,

where Q(x, y) is given by (2.5). Therefore

K4,h(x, y) ≤ Cn

(1 − 2〈x, y〉 + |x|2|y|2)3
.

In Theorem 3.2 we will prove that for all n = 2, 3, . . . ,

Kn,h(x, y) ≤ Cn

(1 − 2〈x, y〉 + |x|2|y|2)n−1
.

From (2.10) it immediately follows that for η ∈ S,

lim
y→η

K4,h(x, y) = 1 − |x|2
|x − η|4 + (1 − |x|2)[2〈x, η〉 + |x|4 − 3|x|2]

|x − η|6

= (1 − |x|2)3

|x − η|6 = Ph(x, η).

Also,

K4,h(x, x) = 1 + 6|x|2 + 6|x|4 + |x|6
(1 − |x|2)3

.

Since
Kn,h(x, x) =

∫
S
P 2

h (x, t) dσ (t),

by [9, Theorem 5.5.2] Kn,h(x, x) is a radial eigenfunction of Δh with eigen-
value λ2 = 8(n − 1)2. Using the result for K4,h as a motivation, we compute
all radial eigenfunctions of Δh in Section 4.

3. Properties of Kn,h(x, y)

In this section we prove several results concerning the function Kn,h(x, y). In
the following theorem we obtain a representation for Kn,h(x, y) valid for all
even integers n.
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Theorem 3.1. Let n ≥ 2 be even. Then

Kn,h(x, y) = Qn(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)(3n/2)−2
,

where Qn(x, y) is a polynomial in x and y.

Proof. Since we have already proved the result for n = 2 and 4, we assume
n ≥ 6. Suppose n = 2m where m ≥ 3. Then

F(α, 1 − m; α + m; r2) =
m−1∑
k=0

(α)k(1 − m)k

(α + m)k k!
r2k.

Since c − a − b > 0 where a = α, b = 1 − m, c = α + m, we have

F(α, 1 − m; α + m; 1) = �(2m − 1) �(α + m)

�(m) �(α + 2m − 1)
.

Hence

Sn,α(r) = �(m)

�(2m − 1)

m−1∑
k=0

�(α + 2m − 1) (α)k

�(α + m) (α + m)k

(1 − m)k

k!
r2k.

But �(α + 2m − 1) = (α + m)m−1 �(α + m). Therefore

Sn,α(r) = �
(

n
2

)
�(n − 1)

m−1∑
k=0

(α + m)m−1(α)k

(α + m)k

(1 − m)k

k!
r2k.

But for k = 0, 1, . . . , m − 1, (α + m)k divides (α + m)m−1 and thus

(α + m)m−1(α)k

(α + m)k

is a polynomial in α of degree m−1. Grouping terms in like powers of α gives

Sn,α(r) =
m−1∑
j=0

aj pj (r
2) αj ,

where pj is a polynomial in r2 of degree less than or equal to m−1. Therefore

Kn,h(x, y) =
∞∑

α=0

m−1∑
i,j=0

aiajpi(|x|2)pj (|y|2)αi+jZα(x, y)

=
2m−2∑
k=0

ck qk(|x|2, |y|2)
∞∑

α=0

αkZα(x, y).
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But by Corollary 2.3,

∞∑
α=0

αkZα(x, y) = Pk(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)m+k

for all k = 0, 1, . . . , 2m − 2, where Pk(x, y) is a polynomial in x and y.
Therefore,

Kn,h(x, y) =
2m−2∑
k=0

ckqk(|x|2, |y|2) Pk(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)m+k

= (1 − 2〈x, y〉 + |x|2|y|2)−3m+2

×
2m−2∑
k=0

ckqk(|x|2, |y|2)(1 − 2〈x, y〉 + |x|2|y|2)2m−2−kPk(x, y),

which with m = n/2

= Qn(x, y)

(1 − 2〈x, y〉 + |x|2|y|2)(3n/2)−2
,

where Qn is a polynomial in x and y.

Our next result is an upper bound on Kn,h valid for all integers n.

Theorem 3.2. For all n = 2, 3, . . . , and x, y ∈ B,

Kn,h(x, y) ≤ 2n+1

(1 − 2〈x, y〉 + |x|2|y|2)n−1
.

where Cn is a constant depending only on n.

Proof. We first note that∣∣∣∣|y|x − y

|y|
∣∣∣∣
2

= 1 − 2〈x, y〉 + |x|2|y|2

≤ 1

2

[
2 − 4〈x, y〉 + |x|2 + |y|2]

= 1

2

[|x − t |2 + |y − t |2 + 2〈x, t − y〉 + 2〈y, t − x〉]
≤ 1

2

[|x − t |2 + |y − t |2 + 2|y − t | + 2|x − t |].
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Therefore,

1

|x − t |2|y − t |2

≤ 1

2
∣∣|y|x − y

|y|
∣∣2

[
1

|y − t |2 + 1

|x − t |2 + 2

|x − t |2|y − t | + 2

|y − t |2|x − t |
]
.

Since |y − t | ≥ 1 − |y| and |x − t | ≥ 1 − |x| we have

1

|x − t |2|y − t |2 ≤ 1∣∣|y|x − y

|y|
∣∣2

[
2

|y − t |2(1 − |x|2) + 2

|x − t |2(1 − |y|2)
]
.

Therefore,

1

(|x − t |2|y − t |2)(n−1)

≤ 2n∣∣|y|x − y

|y|
∣∣2(n−1)

[
(1 − |x|2)−(n−1)

|y − t |2(n−1)
+ (1 − |y|2)−(n−1)

|x − t |2(n−1)

]
.

Hence,

Kn,h(x, y) =
∫
S

((1 − |x|2)(1 − |y|2))n−1

(|x − t |2|y − t |2)(n−1)
dσ (t)

≤ 2n∣∣|y|x − y

|y|
∣∣2(n−1)

×
[∫

S

(1 − |y|2)n−1

|y − t |2(n−1)
dσ (t) +

∫
S

(1 − |x|2)n−1

|x − t |2(n−1)
dσ (t)

]

≤ 2n+1

(1 − 2〈x, y〉 + |x|2|y|2)n−1
,

which proves the result.

As a consequence of the previous theorem we have the following:

Corollary 3.3. For all n = 2, 3, . . . , x, y ∈ B,

Kn,h(x, y) ≤ 2n+1

(1 − |x||y|)2n−2
.

As we will see, when n is even we can improve on the above. When n = 2,

K2,h(x, y) = 1 − |x|2|y|2
(1 − 2〈x, y〉 + |x|2|y|2) ≤ 2(1 − |x||y|)

(1 − |x||y|)2
≤ 2

(1 − |x||y|) .
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When n = 4, if we write Q(x, y) in (2.5) as

Q(x, y) = 〈x, y〉(1 − |x|4|y|4) + 4
[〈x, y〉2 − 2〈x, y〉|x|2|y|2 + |x|4|y|4]

− 4
[|x|2|y|2 − |x|4|y|4] + |x|2|y|2 − |x|6|y|6,

we have

|Q(x, y)| ≤ 8(1 − |x|2|y|2) + (1 − 2〈x.y〉 + |x|2|y|2).

Therefore,

K4,h(x, y)

≤ 2(1 − |x||y|)
(1 − |x||y|)4

+ 4(1 − |x||y|)|Q1(x, y)|
(1 − |x||y|)6

+ 4|Q(x, y)|
(1 − 2〈x, y〉 + |x|2|y|2)3

≤ 2

(1 − |x||y|)3
+ 4|Q1(x, y)|

(1 − |x||y|)5

+ 64

(1 − |x||y|)5
+ 4

(1 − 2〈x, y〉 + |x|2|y|2)2

≤ C4

(1 − |x||y|)5
.

Thus for the special cases n = 2, 4,

Kn,h(x, y) ≤ Cn

(1 − |x||y|)2n−3
.

We now prove that this is the case for all even integers n.

Theorem 3.4. If n is even, then

Kn,h(x, y) ≤ Cn

(1 − |x||y|)2n−3
.

Proof. By Lemma 2.6, since n is even,

Kn,h(x, y) ≤ Cn

∞∑
α=0

αn−2|Zα(x, y)|.
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But as in the proof of Theorem 2.5, |Zα(x, y)| ≤ Cn|x|α|y|ααn−2. Therefore,

Kn,h(x, y) ≤ Cn

∞∑
α=0

α2n−4|x|α|y|α,

which by (2.9)

≤ Cn

∞∑
α=0

�(α + 2n − 3)

�(α + 1)
|x|α|y|α

= Cn

(1 − |x||y|)2n−3
.

Remarks 3.5. (a) A similar proof using Lemma 2.6 for odd n yields no
improvement on Corollary 3.3.

(b) As a consequence of Theorem 3.4, for even n, one has

Kn,h(x, x) ≤ Cn

(1 − |x|2)2n−3
,

with an analogous result for odd n. However,

‖Kn,h(x, ·)‖2
2 = Kn,h(x, x) = (1 − |x|2)2(n−1)

∫
S

dσ(t)

|x − t |4(n−1)
,

which by [9, Theorem 5.5.7]

≤ Cn

(1 − |x|2)n−1

for all n. An explicit formula for Kn,h(x, x) will be derived in the next section.

4. Radial Eigenfunctions of Δh

Eigenfunctions of the invariant Laplacian on real hyperbolic spaces were ini-
tially investigated by K. Minemura in [7]. In this section we provide a charac-
terization of the radial eigenfunctions of the hyperbolic Laplacian. For α ∈ R
set

gn,α(x) =
∫
S
P α

h (x, t) dσ (t). (4.1)

Then by [9, Theorem 5.5.2] gn,α is a radial eigenfunction of Δh with eigenvalue
λα given by

λα = 4(n − 1)2α(α − 1).

Furthermore, if f is a radial eigenfunction of Δh with eigenvalue λα , then by [9,
Theorem 5.5.5] f (x) = f (0)gn,α(x). As a consequence one has gn,α = gn,1−α .
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Also, by [9, Corollary 5.5.8]

gn,α(x) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − |x|2)α(n−1), if α < 1
2 ,

(1 − |x|2) 1
2 (n−1) log 1

(1−|x|2) , if α = 1
2 ,

(1 − |x|2)(1−α)(n−1) if α > 1
2 .

In the previous section we obtained that

g4,2(x) = K4,h(x, x) = 1 + 6|x|2 + 6|x|4 + |x|6
(1 − |x|2)3

.

In this section we prove the following.

Theorem 4.1. For α ≥ 1
2 ,

gn,α(r) = pn,α(r2)

(1 − r2)(α−1)(n−1)

where
pn,α(r2) = F

(
(1 − α)(n − 1), n

2 − α(n − 1); n
2 ; r2

)

=
∞∑

k=0

(
(1 − α)(n − 1)

)
k

(
n
2 − α(n − 1)

)
k(

n
2

)
k
k!

r2k.
(4.2)

Remarks 4.2. (a) For α < 1
2 we use the fact that gn,α = gn,1−α .

(b) If α > 1
2 , then c − a − b = (2α − 1)(n − 1) > 0 and the series (4.2)

converges absolutely for |r| ≤ 1.
(c) If α is an integer, then pn,α(r2) is a polynomial of degree 2(α−1)(n−1).

Proof. Since gn,α(x) ≈ (1 − |x|2)(1−α)(n−1) for α > 1
2 , we assume

gn,α(x) = p(|x|2)
(1 − |x|2)(α−1)(n−1)

= p(|x|2)
(1 − |x|2)β ,

where β = (α − 1)(n − 1). In terms of β, the eigenvalue λα = 4[β(β + 1) +
(n − 2)β]. Set

u(t) = p(t)

(1 − t)β
.
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Then

(1 − t)β+1u′(t) = (1 − t)p′(t) + βp(t),

(1 − t)β+2u′′(t) = (β + 1)(1 − t)β+1u′(t) + (1 − t)2p′′(t) + (β − 1)p′(t)

= (1 − t)2p′′(t) + 2β(1 − t)p′(t) + β(β + 1)p(t).

(4.3)

Since gn,α is a radial function ([8, 2.1.7], [9, 3.1.4]),

(1 − r2)βΔhgn,α(x)

= (1 − r2)β+2g′′
n,α(r)

+ (1 − r2)β+1 g′
n,α(r)

r

{
(n − 1)(1 − r2) + 2(n − 2)r2

}
,

which since gn,α(r) = u(r2)

= 4r2(1 − r2)β+2u′′(r2) + (1 − r2)β+1u′(r2)[2n(1 − r2) + 4(n − 2)r2].

Replacing r2 by t and using equations (4.3) above gives

(1 − t)βΔhgn,α

= 4t (1 − t)β+2u′′(t) + (1 − t)β+1u′(t)[2n(1 − t) + 4(n − 2)t]

= 4t (1 − t)2p′′(t) + [8βt + 2n(1 − t) + 4(n − 2)t](1 − t)p′(t)

+ [4β(β + 1)t + 2nβ(1 − t) + 4β(n − 2)t]p(t).

Now, using the fact that (1− t)βΔhgn,α = 4[β(β +1)+ (n−2)β]p, we obtain

4t (1 − t)2p′′(t) + [
2n − 4

(− 1
2n − 2β + 2

)
t
]
(1 − t)p′(t)

+ 4β
[− 1

2n − β + 1
]
(1 − t)p(t) = 0

Dividing by 4(1 − t) yields

t (1 − t)p′′(t) + [
1
2n − (

2 − 2β − 1
2n

)
t
]
p′(t) + β

[− 1
2n − β + 1

]
p(t) = 0.

This however is the hypergeometric equation (2.7) with

a = −β = (1−α)(n−1), b = − 1
2n−β+1 = 1

2n−α(n−1), and c = 1
2n,
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for which the solution that is continuous at 0 is given by

F(a, b; c; z) = F
(
(1 − α)(n − 1), n

2 − α(n − 1); n
2 ; z

)
=

∞∑
k=0

(
(1 − α)(n − 1)

)
k

(
n
2 − α(n − 1)

)
k(

n
2

)
k
k!

zk,

from which the result follows.

Examples 4.3. (a) When α = 2, as above,

g4,2(r) = 1 + 6r2 + 6r4 + r6

(1 − r2)3
,

whereas

g3,2(r) = 1 + 10
3 r2 + r4

(1 − r2)2

and

g5,2(r) = 1 + 44
5 r2 + 594

35 r4 + 44
5 r6 + r8

(1 − r2)4
.

(b) When n = 4 and α = 3,

g4,3(r) = 1 + 21r2 + 105r4 + 175r6 + 105r8 + 21r10 + r12

(1 − r2)6
.

(c) When α = 1
2

gn, 1
2
(r)

= (1 − r2)
1
2 (n−1)

�
(

n
2

)
�

(
1
2 (n − 1)

)
�

(
1
2

) ∞∑
k=0

�
(

1
2 (n − 1) + k

)
�

(
1
2 + k

)
�

(
n
2 + k

)
�(k + 1)

r2k,

which since �(k + a)/�(k + b) ≈ ka−b

≈ Cn(1 − r2)
1
2 (n−1)

[
1 +

∞∑
k=1

r2k

k

]

= Cn(1 − r2)
1
2 (n−1)

[
1 + log

1

(1 − r2)

]

≈ Cn(1 − r2)
1
2 (n−1) log

1

(1 − r2)
.
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Application 4.4. The above results can be used in the evaluation of certain
integrals in Rn. As an example, by (4.1) and Theorem 4.1,∫

S

dσ(t)

|x − t |2α(n−1)
= gn,α(x)

(1 − |x|2)α(n−1)
= pn,α(|x|2)

(1 − |x|2)(2α−1)(n−1)
.
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