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THE REPRODUCING KERNEL OF 572 AND
RADIAL EIGENFUNCTIONS OF THE
HYPERBOLIC LAPLACIAN

MANFRED STOLL

Abstract

In the paper we characterize the reproducing kernel %, ;, for the Hardy space 92 of hyperbolic
harmonic functions on the unit ball B in R”. Specifically we prove that

T, ¥) =Y Spa(XD)Sna (1Y) Za(x, ¥),
a=0

where the series converges absolutely and uniformly on K x B for every compact subset K of B.
In the above, S,  is a hypergeometric function and Z, is the reproducing kernel of the space of
spherical harmonics of degree «. In the paper we prove that

Cn
< <

0= T = Ty + WPy

where C,, is a constant depending only on . It is known that the diagonal function J7, j (x, x)
is a radial eigenfunction of the hyperbolic Laplacian A;, on B with eigenvalue X, = 8(n — 1).
The result for n = 4 provides motivation that leads to an explicit characterization of all radial
eigenfunctions of A, on B. Specifically, if g is a radial eigenfunction of A, with eigenvalue
re = 4(n — D2a(a — 1), then

Pn,a (rZ)

g(r) = g(o)m,

where p,. o is again a hypergeometric function. If « is an integer, then p, o (r?) is a polynomial
of degree 2(o — 1)(n — 1).

1. Introduction

Throughout the paper we follow the notation of [9] for hyperbolic harmonic
functions on the unit ball B in R”, n > 2. Let v denote Lebesgue measure on
R" normalized so that v(B) = 1. Also, we denote by o the surface measure on
S, the boundary of B, again normalized such that ¢ (S) = 1. The hyperbolic
metric on B is given by

ds =2(1 — x| ldx,
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and the Laplacian A, with respect to the hyperbolic metric is given by
Anf =0 = xP)[A = xP)Af +20n = 2)(x, V)],

where A is the usual Laplacian in R", V f = (5){1 . 3f ) is the Euclidean
gradientof f, and (-, -) denotes the usual inner product in [R” Itis easily shown
that A, satisfies Ah f (a) A(fop,)(0), where ¢, is a Mobius transformation
of R"” mapping B onto B with ¢,(0) = a, ¢.(a) = 0 and @, (¢.(x)) = x.

A continuous real-valued function f is # -harmonic on B if and only if

fla@) = /§ F(@art)) do (1)

for all a € B and all » with 0 < r < 1. If this is the case, then f is C? on
B and satisfies A, f = 0. For 1 < p < oo let #? denote the Hardy space of
¢ -harmonic functions f for which

£, = sup /|f(rl)|pd0(t) < 0.
s

O<r<l1

The hyperbolic Poisson kernel P, (x, t) is given by

(1 __|x|2)n—1

Ph(x,t):Pn’h(x,t):m, (x,t)E[BXS

It is well known that if f € #P, 1 < p < o0, then there exists a function
f € L?(S), the boundary function of f, such that

f) =P[f]x) = f Py(x, 1) f(t)do (1)
S

with || fl, = || f Hp When p = 1, the function f is the Poisson integral of
a finite signed measure vy on S with || f|l; = |v/[($) where |vf| denotes the
total variation of vy ([5], [8], [9, Theorem 7.1.1]). It is easily shown that for
fedP, 1 <p < oo,onehas

1+ x]\"!
If(X)I”§<1_|x|> A1

Similar results hold for the space H”, 1 < p < oo, of Euclidean harmonic
functions on B [2]. In the Euclidean case, the Poisson kernel P, (x, t) is given
by

1—|x?

Pe(xst) == Pﬂ,e(-xvt) = |x _ t|" .
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In Section 2 we compute the reproducing kernel %, , of 2. For complete-
ness, we also include the reproducing kernel K, of the space H? of Euclidean
harmonic functions. As we will see, the reproducing kernel K, of H? is known
and is obtained by expanding the domain of the Euclidean Poisson kernel [2,
8.11]. On the other hand, the reproducing kernel of 7 2 is non-trivial and is
expressed in terms of a series of hypergeometric functions. As such, explicit
formulas may be obtained only for even dimensions, and for dimensions 6
and higher, even those are non-trivial. We illustrate this in dimension 4. As
we will see, the diagonal function %, ; (x, x) is a radial eigenfunction of the
hyperbolic Laplacian A;, with eigenvalue A, = 8(n — 1)?. When n = 4,

14 6|x|> + 6[x|* + |x|°
(1—1x|?3

‘?Zﬁ.l,h(x» x) =

Using this as a motivation we compute all radial eigenfunctions of Aj, in
Section 4.
2. The reproducing kernel of 572

The space 97 is a real Hilbert space with inner product (-, -) defined by
(f.8) = lim / frn)g(riydo () = f OHOYEIO
r— S S
Furthermore, since point evaluation is a bounded linear functional, 72 has a

reproducing kernel denoted by J7, (x, y), i.e.,

(1) for fixed y € B, the function x +— %, 5, (x, y) is in %2, and

(2) forevery f e 92,
f()’) = (f’ yﬁl,h(W y))

We begin with the following theorem, the proof of which is straightforward
and most likely well-known in the Euclidean case.

THEOREM 2.1. The reproducing kernel %, ,(x, y) of 7 is given by

yfn,h()é,y)2/Ph(x,l)Ph(y»l)dU(l)-
s

Proor. For x € B, set K, (y) = J, 5(x, y). If f is continuous on S, then
P,[f1(x) € 9*. By the Poisson integral formula

Ph[f](x)=/f(t)Ph(x»t)dO'(t)-
S
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On the other hand, by the reproducing property,

Pilf10x) = (Pl f1, K.) = /§ PUfIOR () do (1),
where K, is the boundary function of K. Since f is continuous

Pl f1(x) = / FOK (1) do(1).
S

Therefore,

/f(f)[Ph(x, 1) — K. (1)]do (1) = 0.
s

Since this holds for all continuous functions f on S we have
K () = Py(x,t)  forae. te€S.

Hence
T (x,y) = <Kx,Ky>=/Ph(x,t)Ph(y,t)d0(t).
S

Similarly, the reproducing kernel K, (x, y) of the space H? of Euclidean
harmonic functions is given by

Ke(xa y) = / Pe(x’ t)Pe(y’t)dU(t)-
S

Our next step is to provide explicit formulas for K, (x, y) and J7, 5 (x, t). Al-
though not identified as the reproducing kernel of H? the formula for K, (x, y)
is given in [2, 8.11].

THEOREM 2.2. For x,y € B,

1 —|xPlyP?

Ke £ = .
) = T 20 ) + kP PP

Even though the result is known, we include the proof since much of the
terminology and results concerning spherical harmonics are required in the
sequel. (See [2] for details.)

Form = 0,1, 2, ..., we denote by 7,,(R") the homogeneous harmonic
polynomials of degree m on R". A spherical harmonic of degree m is the
restriction to S of a harmonic polynomial in 7, (R"). The collection of all
spherical harmonic polynomials of degree m will be denoted by 7, (S). Every
element of 7,,(S) has a unique extension to 7, (R"). Furthermore, if m # k
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then %,,(S) and % (S) are orthogonal in L*(S). If {pm.1,-.., Pm.a,} is an
orthonormal basis of #,,(S), where d,, = dim 7£,,(S), set

dn
Zm(na {) = Z pm,j(n)pm,j(é.)‘ (21)

j=1

The function Z{™ (¢) = Z,(n, ¢) is called the zonal harmonic of degree m
with pole 1, and Z,, is the reproducing kernel of 7,,(S), i.e., if p € 7, (S),
then

p(n) = /Sp(é“)Zm(n,i)da(é“)-

Since every p € #,,(S) has a unique extension to 7, (R"), the function ng)
has a unique extension to 7, (R") which we denote by x — Z,,(x, ¢). Suppose
x € R", x #0. Then if p € #,,(R"),

p(x) = x| pCa/lx]) = |x|'"/§p<¢)zm<x/|x|, £)do (@)
=Am0%uxman
By orthogonality,
Lamxumwmao=o for k # m. 2.2)
Furthermore,
/§ 206, ) (3, 0 0 ©) = Zun(x, ). 2.3)

The proofs of (2.2) and (2.3) are classical for |[x|] = |y| = 1 and extend
immediately to B by homogeneity.

PrROOF OF THEOREM 2.2. By [2, Theorem 5.2.1] forx € B, ¢ € S,

Po(x,0) =Y Zu(x,0),
m=0

where the series converges absolutely and uniformly on K x S for every com-
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pact subset K of B. Thus

Ke<x,y>=/§Pe<x,oPe<y, 0)do(©),

which by orthogonality

_Z/z (5, ) Zn(y, ) do ©)
m=0

Z Zn(x,y) =Y Zu(lylx, y/Iy1)

m=0
1— x|y
(I =2(x, y) + x[2[y|)/?

= P.(ylx, y/lyD) =

which proves Theorem 2.2.

In the following we prove a generalization of the result obtained in The-
orem 2.2. This result will be needed in several examples as well as Theorem 3.1.

COROLLARY 2.3. Fork =0,1,2, ...,

= Pe(x,y)

k kA,
Yk Zy(x,y) = , 2.4
2O = T ) + R ¢

where Pi(x, y) is a polynomial in x and y.

ProoF. By Theorem 2.2 the result is true for £ = 0. Assume the result is
true for fixed k > 0, i.e.,

= Pi(x,y)
E: k e (x,

Zy(x, = ’
_005 () (1 =2(x, y) + |x]?|y[>)n/2+k

where P (x, y) is a polynomial in x and y. Then,

o0 o0 d
Zak+1Za(x,y) = Z T [Ol Zy(tx, y) [Zcx Zy(tx, y)]
a=0 a=0

=1

U

_ _[ Pi(tx,y) }
dr | (1 —2t{x,y) + 2|x|2|y|>)@/>+k | _|

_ Pk+1(x7 Y)
(T =205, y) + WPy
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ExaMPLE 2.4. Since we will need the results in Example 2.8, we compute
the sum in (2.4) for k = 1, 2 and n = 4. When k = 0, by Theorem 2.2

1—|xPlyl?
(1=2(x, y) + [x[[yH?

Y Zo(x,y) = Polx,y) =
a=0

Next, fork =1,

[ee] d e} . d
;aza(xay) = E[;[ Za(xv y)] = [EPe(tx7 y)]t_l

t=1

202(x, y) = 3Ix Pyl + Ix[*lyI*]
(1 =2(x,y) + |x[|y[»)?

=P1(x,y)=

Similarly, for k = 2,

ad d [ d
gazzm, y) = E[;z“aza(x, y)} = [EPI (tx, y)L1

t=1

_ 40(x,y)
(1 —=20x, y) + Ix]2ly/H*

where

O(x,y) = (x, y)(1 — [x[*|y[*) +4(x, y)* — 8(x, y)|x[*|y]?
= 3IxPyl* + 8lx Yyt — Ix[°yI°. (2.5)

We now turn our attention to J7, ,(x, y). For this we need to introduce
the hypergeometric function F(a,b; c; z) ([1], [3], [6]) which for ¢ ¢ C\
{0, —1, =2, ...} is defined by

=L (@) (b)i 2
F(a,b;c;z) = —, lz| < 1. (2.6)
kXZ(; (C)k k'

The hypergeometric function is the solution of the hypergeometric equation

d*w dw
Z(l—Z)—2+[c—(a+b+1)z]——abw:O, 2.7
dz dz

that is continuous at 0.
In(2.6) (a)g=1andfork=1,2,...

(@r=a@a+1)---(a+k—1.
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If a is not a negative integer, then
(@i =T(a+k)/TI(a),

where I" is the Gamma function defined on C\ {0, —1, =2, ...}.Ifc—a—b > 0
then the series (2.6) converges absolutely for all z with |z| < 1. Also, for
c—a—b>0,by[l, Equation 15.1.20]

_I'ol'(c—a - b)

F(a,b; c; 1) - F(C _a)F(C _b)

(2.8)

Fora =0, 1,2, ... and dimension n > 2, set
F(oz, 1— %n;a + %n; rz)

F(a,l—%n;a+%n; 1)

Sn,a (}") =

. F(%n)f‘(a +n-—1)
N I'n — l)F(a + %n)

Fla,1— %n;oe%—%n;rz)

F(An)F@+n-1 i () (1 - %”)k %
_ r

" T(n—DU(a+3n) &= (a+ in)k!

Then S, (1) = 1 and by [4], [9, Section 6.1], for p, € 7, (R"), the function
f(x) = S,.a(Jx])pe(x) is a solution of A, f(x) = 0 that is continuous on
B with £(¢) = pe(¢). By [9, Theorem 6.2.2] the hyperbolic Poisson kernel
Py(x,t) is given by

Pu(x, 1) =Y Spa(x))Zalx, 1),

a=0

where the series converges absolutely and uniformly on K x S for every com-
pact subset K of B. Thus by the orthogonality of {Z,(x, #)} we obtain the
following.

THEOREM 2.5. For x,y € B,

T, 3) =Y Sua(1XDSna (1Y) Za(x, y)

a=0

where the series converges absolutely and uniformly on K x B for every com-
pact subset K of B.

Prior to proving Theorem 2.5 we first prove the following lemma concerning
the functions S, 4 (7).
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LEMMA 2.6. Foralln =2,3,..,a=0,1,2,...and x € B,
aW/D-1 if n is even,

|Sn.a (x| < Cy
a2l if n is odd,

where C,, is a constant depending only on n.

PrOOF OF LEMMA 2.6. Let m = [n/2], and set

m—1 1
Pm(r) _ Z (Ol)k(l zn)k r2k,

— (@ + 5n)ik!

and

© (@)(l = 1n
Qm(l") _ Z ( )k( 1 2 )erk’

P (O[ + Ei’l)kk!
If n is even, then (1 — %n)k = Oforall X > n and thus Q,,(r) = 0. Also, since
@i/(a+3n), <1,

n (1= tn
|Pu() <> |(k—,2)k| = Cy.
k=0 :

where C,, is a constant depending only on 7.
We now obtain an estimate for Q,, when n is odd. For k > m we have

Pk = @)y +m)i_m. Thus

in

0,(r) = i (“)k( 2"k 2k

km( kk'

3n)
B (a)m(l — %n)mrz’" S (7 +m)j(1 +m—1

Zn)j rzj
(e + 3n) (oz—{—m—i—%n)j(m—l—j)!

m j=0
Smce(m—|—])'>]'and(1+m—— )>O
(1= ), | @+ m)T (o + 1n)
T(@)T (o + 3n + m)
x Fla+m,14+m—1in;a+m+in;r?).

|Om(r)] =

But F(a +m,1 +m— %n; o+ m+ %n; r2) is an increasing function of r.
Thus by (2.8),
F(e+m+3n)l(n—1—m)

F(a+m1+m noz+m—|— nr2)§ ;
F(En)l"(oc—l—n— 1)
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Therefore

|(1=3n), |0 —1—=m)T(@+mI(«+ in)

I'(3n) F@@+n—1) "

1O (r)] =

But S,.4(r) = Cpo[Pu(r) + QO (r)] where

I(3n)T(a+n—1)

Cha = .

“ T — D (e + 1n)
Thus

MNa+n-—1) Mo+ (2
S0 ()] < C, : e l5])
[(a+ 3n) (o)

where C,, and D,, are constants depending only on n with D, = 0 when 7 is
even. Since . . T(@+a)

lim "™ ———= =1,

o—>00 I'a + b)
we have

IN'la 4+ a) " asb

Tath 3

Thus |S, ()| < Coa2" U if n is even and |S, o (r)| < Coa™? if n is odd,
which proves the lemma.

NotE. In (2.9) A(x) & B(x) means that there exist positive constants ¢
and ¢, such that c; A(x) < B(x) < cpA(x) for all appropriate x.

PrOOF OF THEOREM 2.5. By Theorem 2.6,
| (6, ) < Co Y @™ Zo (x, ).
a=0
But with x = [x|¢, y = [yIn, ¢, n €S,
Zo(x,y) = |xI%|y1* Zo (&, m).
But by [2, Equation 5.13] and Exercise 7 of [2, Chapter 5],
1 Za &M = UZy, Zo)| SN Zyll2)| Ze N2 = do < Cua" 2.

Therefore, -~
| G, )| < Cu Y P x|*] %,

a=0
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where p = 2[5] + n — 2. The above series converges uniformly for (x, y) €
K x B where K C B is compact, which proves Theorem 2.5.

By (2.1),

da
Zoy(6,3) =Y Paj () Paj (),

j=1
where {pa,j cj=1,..., da} is an orthonormal basis of 7, (S). As a con-
sequence we obtain the following.
COROLLARY 2.7. {S,W(lx|)pa,j(x) j=1,..., do,}zozo is an orthonormal

basis for the space 3 of I -harmonic functions on B.

When n is even, say n = 2m, then b = 1 — m and thus (b); = 0 for all
k > m.Hence S, o (r) is a polynomial of degree n —2. Whenn = 2, #? = H*
and thus J% j, = K3 .. In the following example we compute Jj j,.

EXAMPLE 2.8. Whenn =4,
1 2
Saa(r) = 5(2 +a(l —r?).

Therefore

7{4‘11]1()@ y)
1 oo
= 7 2[4+ 20l = ) + (1= [yl + (1= x (A = [yD)] Za(x. ).
a=0
By the results of Example 2.4
1= |xPlyl?
(1= 2(x, y) + |xP[y»)?
[20x, ) = 31xPIy* + Ix[*1yI*]
(1= 2{x, y) + [x]2|y?)?

O(x,y)
(1 —20x, y) + x]2|yH*

where Q(x, y) is given by (2.5). By combining the above terms one has

Q4(x,y)
(1 —=20x,y,) + [xly»*

where Q4(x,y) is a polynomial in x and y. In Theorem 3.1 we obtain an
analogous representation of J7, ,(x, y) for all even n. Furthermore, since

Tap(x,y) =

+IA = )+ (1 = yP)]

(2.10)

+ (1= x| = [y]»)

‘7{4,}!()(’ }’) =
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(I—]xHA—y/* <41 —|x|lyD*and (1 —|x[*) + (1= |y|*) <41 —|x]ly])
we have

1— [xPly?
. ,y) <
a0 = T+ kPP

40 = Ix[lyDIQ1(x, y)[ + 419 (x, y)I
(1 =2(x,y) + Ix[?[y[»)’ ’

where Q(x, y) is given by (2.5). Therefore

C
Han(x,y) < z )
w0 S S A PP

In Theorem 3.2 we will prove that for alln = 2, 3, ...,

Cy
‘7{;’1 n X, S .
MO S T3y + R

From (2.10) it immediately follows that for n € S,

=[x = xR, ) + x* = 31x]

lim 2 5, (x, y) =
y—n

lx —nl* lx —nl®
(1—|x»?
= ————=h(x,n.
lx — nl
Also, 5 . .
1 + 6|x|* + 6]x|* + |x|
I ,X) =
) (1= k?)?
Since

Koy (x, X) =/Ph2(x,t)da(t),
S

by [9, Theorem 5.5.2] 7, »(x, x) is a radial eigenfunction of A, with eigen-
value A, = 8(n — 1)%. Using the result for % ; as a motivation, we compute
all radial eigenfunctions of A in Section 4.

3. Properties of J7, »(x, y)

In this section we prove several results concerning the function 7%, 5 (x, y). In
the following theorem we obtain a representation for %, ,(x, y) valid for all
even integers n.
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THEOREM 3.1. Let n > 2 be even. Then
On(x,y)

T (x,y) = ,

A(xX,y) 0= 2(x.3) + Py P2

where Q,(x, y) is a polynomial in x and y.
PRrOOF. Since we have already proved the result for n = 2 and 4, we assume
n > 6. Suppose n = 2m where m > 3. Then
m—1
(@) (1 —m)y 2k

F(a,l—m;a+mr Z
= (a+m)k!

,c =a + m, we have

Sincec—a—b >0wherea=o,b=1-—
rem-—1TI(a+m)

F(a,1 —m; ;1) = .
(@ L =miatm ) = F e+ 2m—1)

Hence

m

: C(a+2m —1) (@) (1 — m)erk

I'(m)
I'a+m) (a4 m); k!

Sl = F o 1) 4

Il
=}

ButI'(a +2m — 1) = (¢ + m),;,—1 ' (¢ + m). Therefore
— (@ +m)p_1(a); (1 —m)y 2k

D& (@+my k!

Sn,(x (I") = 5

1, (@ + m); divides (@ + m),,,—; and thus

Butfork=0,1,...,m
(Cl + m)mfl(a)k

(a + m)y

is a polynomial in « of degree m — 1. Grouping terms in like powers of « gives
m—1
Sna(r) =Y a; pr’)a’,
j=0

where p; is a polynomial in 7% of degree less than or equal to m — 1. Therefore

oo m—1

T2, 9) =D 3" aia;pilx P pi(ly e Zy (x, )
a=0i,j=0

2m—2

Z e qi(Ix 1, 1| )Za Zo (%, ).
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But by Corollary 2.3,
o
Pr(x, y)
k k
o Zy(x,y) =
; (1= 2(x, y) + xRy

forall k = 0,1,...,2m — 2, where P;(x,y) is a polynomial in x and y.
Therefore,

2m—2

T, 3) =Y exqi(x P |y )
k=0
= (1 =2(x,y) + [x]P[y]H "+
2m—2

x> argi(x P, Iy = 20x, y) + [Py > Putx, ),
k=0

which withm = n/2

Pr(x,y)
(1 =2(x, y) + |x|?[y[2)m+k

_ 0,(x,y)
(1= 2(x, y) + |x|?|y|?)@n/2=2"

where O, is a polynomial in x and y.
Our next result is an upper bound on J%, ; valid for all integers n.
THEOREM 3.2. Foralln =2,3,...,and x,y € B,

2n+1

Tlpn(x,y) < .
Y= 220 y) + xRy

where C,, is a constant depending only on n.

ProoF. We first note that

2
=1—2(x,y) + x|’y

y
‘Iylx - =
[yl

IA

1
5[2 — 4, y) + P+ 1y

1 2 2
=§[|x—tl +ly — 1P +2(x, 1 —y) + 2(y. 1 — x)]

IA

1 2 2
E[|x—r| + ly — 1>+ 2]y — 1]+ 2|x — 1]].
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Therefore,
1
[x —tPly —1?
3 1 [ L B 2 N 2 ]
2lyle — &Ly =2 e =t e = 1Ply —t] -y = 1P x 1]

Since |y —t| > 1 — |y| and |x — t] > 1 — |x| we have

1 - 1 [ 2 N 2 ]
Ix—tlzly—t|2_||y|x—|l ly —tPA = x») =P = yP ]

Therefore,
1
(Jx —t]2ly —t|>)n=D

- 2 [a —x)~ D (1 |y|2>—<"—“]
= 2(n—1) — £12(—1 _ 2(n—1 :
[yl = 5] " ly — =1 lx — ¢[2r=D
Hence,
1— 2 1— 2\\yn—1
K. y) = (1 = |x[HM = [y]7) do (1)
’ s (Jx =12y —t[»)=D
2"
= 2(n—1)
[yl = 5
(1 — [y ! (1 — fxH!
< e dow0+ [ = de

2n+1
< 9
T (1 =2{x, y) + [x|2y[Hm!

which proves the result.

As a consequence of the previous theorem we have the following:

COROLLARY 3.3. Foralln =2,3,...,x,y € B,
n+1
Fn(X,y) £ ————.
(1 — |x[ly])*-2

As we will see, when n is even we can improve on the above. Whenn = 2,

TPl 20—l _ 2
(=20, y) + KPP ~ (= IxllyD? = (= [x[ly)’

y{é,h(xv )’) =
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When n = 4, if we write Q(x, y) in (2.5) as

Q(x, y) = (x, M)A = [xI*ly1%) +4[(x, ) = 20, MIx Py + Ix*IyI*]

— 4 [1xPIyl? = I[P ] + Ix Pyl = xyl°,

we have
1Q(x, | < 8(1 — [x[P|y») + (1 = 2{x.y) + [x[*[y]D).
Therefore,
*%ffél,h(x’y)
_ 20— lxllyD | 40 = Ix[IyDIQi(x. )l 40(x, y)l
= (1= |x]lyD* (1 — |x|lyD® (1 —2(x, y) + [x[2[y]»)?
- 2 4101 (x, y)|
T (L= IxllyD? A= |x]ly])3
n 64 n 4
(I—|xllyD’ (1 —=2(x,y) + |x2|y[>)?
N
= (1= xllyD?

Thus for the special cases n = 2, 4,

C,
Ipn(x,y) < ————F—.
MY = S s

We now prove that this is the case for all even integers n.

THEOREM 3.4. If n is even, then

C,
Hyn i y) < —— "
Y= S

Proor. By Lemma 2.6, since 7 is even,

Hnn(x,3) < Co Y 0" | Za(x, ).

a=0
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But as in the proof of Theorem 2.5, | Z, (x, y)| < C,|x|%|y|*a”~2. Therefore,

oo
T, y) < Co >0 x| [y|",

a=0

B B it RN
2 TarD

(1= |x[[yD>=3

which by (2.9)

REMARKS 3.5. (a) A similar proof using Lemma 2.6 for odd n yields no
improvement on Corollary 3.3.
(b) As a consequence of Theorem 3.4, for even n, one has

Hnn(X,X) £ ———5—=—,
’h(x x) (1 _ |x|2)2nf3

with an analogous result for odd n. However,

- do (1)
2 _ _ 2\2(n—1)
||‘7{;’l,h(-x7 )”2 - 72(,,,;1()6,)6) - (1 - |'x| ) L |x _ l|4("_1) ?

which by [9, Theorem 5.5.7]
Cn
< - - @
T =P

for all n. An explicit formula for 77, , (x, x) will be derived in the next section.

4. Radial Eigenfunctions of A,

Eigenfunctions of the invariant Laplacian on real hyperbolic spaces were ini-
tially investigated by K. Minemura in [7]. In this section we provide a charac-
terization of the radial eigenfunctions of the hyperbolic Laplacian. For ¢ € R
set

&um=éwmnwm. @.1)

Then by [9, Theorem 5.5.2] g, o is aradial eigenfunction of A;, with eigenvalue

Aq given by _ 5
Ao =4(n — Da(ax — 1).

Furthermore, if f is aradial eigenfunction of A;, with eigenvalue A, then by [9,
Theorem 5.5.5] f(x) = f(0)gn.o(x). Asaconsequenceonehas g, o = gn.1—a-
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Also, by [9, Corollary 5.5.8]

(1 — |x|?)*0=D, ifa <

’

gna(¥) ~ { (1= [xP)2" Vlog by, ife =

ST ST ST

(1 — |x|»H)d-=0=D ifa >

In the previous section we obtained that

1+ 6]x|* + 6]x|* + |x|°
(1 —|x»)?3

g42(x) = Hyp(x, x) =
In this section we prove the following.
THEOREM 4.1. Fora > 3,

pn,a(rz)
(1 — 72)@DHe—D

gn,ot(r) =

where
Paar?) = F((L—a)(n = 1), 5 —a(n — 1); 5;7%)

((1 —a)(n — 1))k(% —aln — 1))k % 4.2)

-2 (3) k!

k=0

REMARKS 4.2. (a) For a < % we use the fact that g, o = gn.1-a-

b Ifa > %, thenc —a — b = Qo — 1)(n — 1) > 0 and the series (4.2)
converges absolutely for |r| < 1.
(c) If a is an integer, then pj, o (r?) is a polynomial of degree 2(a — 1) (n —1).

PROOE. Since g q(x) ~ (1 — [x[)1="=D fora > 1, we assume

p(xP)  p(xP)
(I — kP Do=D = (1= |x[2)F’

gn,a(x) =

where 8 = (¢ — 1)(n — 1). In terms of B, the eigenvalue A, = 4[B(B+ 1) +
(n — 2)B]. Set
p(t)

u(t) = TN
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Then

A= @) =0 -0)p'@)+ Bp@),
1=ty =B+ DA =P )+ A —0)*p (1) + (B— D)

=1 —0p" (1) +280 —0)p'®) + BB+ D)p@).
4.3)
Since g, 1s a radial function ([8, 2.1.7], [9, 3.1.4]),

(1 =P Apgno(x)
= (1—r)f*g (1)
2 1 gn a( ) 2 2
+ (=) — 1) =) 420 — 2)r7},
which since g, ,(r) = u(rz)
=4r(1 = 20" + A = P D201 = rH) + 4 = 2)r).

Replacing 72 by ¢ and using equations (4.3) above gives

(1 - t)ﬁAhgn,a
=4t(1 — P24 @) + (1 = P (O)[2n(1 — 1) + 4(n — 2)1]

=4t(1 —1)*p"(t) + [8Bt + 2n(1 — 1) + 4(n — Dt1(1 — 1) p' (1)
+[48(B + Dt +2n(1 — 1) +4B(n — t]p(1).

Now, using the fact that (1 — t)ﬁAhgn,a =4[B(B+1)+ (n—2)B]p, we obtain
4t(1—1)°p" () + [2n —4(=3n =28+ 2)t](1 =) p'(1)
+4p[—3n— B+ 1]l —)p@) =0
Dividing by 4(1 — ¢) yields
(= 0p"(0) + [3n— (2 =28 = In)t]p' () + B[—4n — B+ 1]p(1) = 0.
This however is the hypergeometric equation (2.7) with

=-B=>0-a)n-1), b———n ,3—}-1— sn—a(n—1), and c=%n,
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for which the solution that is continuous at O is given by

F(a,b;c;2) = F(1—a)(n — 1), 2 —a(n — 1); % 2)

_ i ((1 —a)(n — 1))1{(% —o(n — 1))k .

= (), &'
from which the result follows.
ExampLEs 4.3. (a) When o = 2, as above,

1+ 6r2+6r*+r°

842(r) = d =) ,
whereas
( 1+ 1?0,,2 +r
83.2(r) = 1 =22
and

1+%r2+%r4+%r6+r8
(1 —r2)* '

8s5.2(r) =

(b)y Whenn =4 and o = 3,

142172 + 105¢* + 175r° + 10518 +21r10+r12

g4,3(”) (1 . }’2)6
(c)Whena:%
&n.1 (1) 1) o D4k k
? R r( Z (=D +K)(;+k) ,
T(3n —1) pn (3+Kk)Tk+1)

which since I'(k + a)/ T'(k + b) ~ k*°

o0

1 I"2k
~ C,(1 —r?)z0=D [1 +> 7]
k=1

1
_ 2y (n—1)
=C,(1 —-r")2 |:l+log(1_r2)]

~ Cy(1 —r})10Vlog

a—r2

’
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APPLICATION 4.4. The above results can be used in the evaluation of certain

integrals in R”. As an example, by (4.1) and Theorem 4.1,

/ do (1) Zna(X) Pra(x]%)
s |x

EPERITESY = (1 — [x[2)2@=D = (1 — |x[?)@—Da—D"
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