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PARTIAL HYPOELLIPTICITY AND GEVREY CLASSES

TOMAS CLAESSON

1. Statement of results.

By definition a linear partial differential operator P(D), D=d/iox,
with constant complex coefficients is called hypoelliptic if all distribu-
tion solutions % of P(D)u=0 in an open set £ of R™ are infinitely dif-
ferentiable functions. Hormander showed in his thesis [7] that P(D)
is hypoelliptic if and only if there exist constants C'>0 and b= 1 such
that
(1) [Rel[» < C(1+Ime]), el P()=0.

A corresponding characterization of partially hypoelliptic operators was
later given by Garding and Malgrange [5]. Hormander also noticed
that P(D) satisfies (1) for a given b=1 if and only if all solutions of
P(D)u=0 are of Gevrey class b. This was generalized by Friberg [3] to
the partial hypoelliptic case. We shall deal with the same classes of
operators as Friberg in this paper. But instead of considering distribu-
tion solutions we shall see that one also can characterize these operators
by C* solutions. This will be proved by a method which is a generaliza-
tion of chapter 4.4 in Hormander’s book [6]. By regularization we then
obtain another proof of Friberg’s results.

We shall use the notation in [6] to a large extent and we also need
the following modification of Definition 4.4.2 in [6].

DEerINITION 1. Let 2 be an open set in R™ and set a=(a,,...,a,)
with 0<a;Z00. By I'Y(2) we denote the set of functions u e C*(2)
such that for every compact set K <2 there is a constant C for which
the inequality
(2) |D*u, K|, = supg |D*u| < Clel+1 yaa

is valid for every multi-index «. Here

- aja; ano;
a% = x, M, o, I
and we use the convention that
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wari = |1 =0,
J oo if ;>0 and a;=oo .

It follows from Heine—Borel’s theorem that « € I'4(2) if every point
z € £ has an open neighbourhood ¥V_ such that the restriction of » to
V, belongs to I'(V,). Observe that, when a;=o0, the inequality (2)
puts no restriction on D* with «;>0. In particular, I'*(Q2)=C%(Q)
if all @;=oc0. If all a;< oo, then we write @ <co and @ =1 has a similar
meaning. When some a;=co we shall often choose the coordinates

such that a;= oo if j>n'. Then we write a =(a’, ), where a’ = (ay,. . .,a,)
and split the coordinates x=(x,,...,z,) into x=(z',x"’), writing
2 = (%5,...,2,) €ERY, 2 = (Xpi1--.,2,) = RY

and n'+n''=n. We denote the closed ball |x|<¢ in R* by B, and we
use the norm |x|=max|x;| so that B,=B,xB,”, where B, and B,”

are the corresponding balls in R™ and R*” respectively.
If a; < oo, then % e I'(Q) implies Du € I'*(£2), since

(o + 1)4*D < 0% «,%%  for some constant C .

Hence I'%(2) is invariant under derivation if a <oco. On the other hand,
if some component of a is infinite, we have the following

THEOREM 1. If a=(a’, ), then I'Y(2) is invariant under derivation
if and only if a' 2 1.

Denote by 2, the open set of points in 2 with distance >¢>0 to
the boundary of Q. If u € 2'(2) and ¢ € CY(B,), then uxp e C*(L2,).

DeFinITION 2. By I'%(Q) we denote the set of distributions u € 2'(Q2)
such that uxp e I'(Q,) for every ¢ € C3’(B,) and o> 0.

Schwartz [8] has shown that I'e(Q)=I%Q) if a<oo. If a=(a, )
we get a definition of distributions which belongs to I'*(2) in the
variable z’. The next theorem gives a condition under which this
definition is equivalent with those of Friberg [3] and Gorin [4] (IV
respectively II below).

THEOREM 2. Let 1 £a’ < co. Then the following conditions on a distribu-
tion u in an open set 2 are equivalent.

I wel'™>)Q).

I1. To each open bounded ball w with @ < there exists a function v,
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such that w=DF"v for some B'' and with all derivatives D*v continous in
w and satisfying for some constant C

(3) |Da’0,w]°° é Cldl+1 “aa, 0‘1/ =0.
III. For every o> 0,
u*(6® ()9) € ["(a',oo)(_Qa) lf pe CSO(BGH) .

Here § is the Dirac measure at 0 in R,

IV. For all open sets Q' <R™ and Q" <R™ with Q' x Q"' <Q and every
@ € CP(2") the distribution in x’

uw(x/) — fu(x',x") (p(xu) dx"’

belongs to I'* (2').

CorROLLARY. [%(Q)=I%Q) if and only if a<oco. When a=(a’, ),
then

F«(Q) n 0°(Q2) = I'(Q)

if and only if ' 2 1.

Now we have the following extension of Friberg’s result.

THEOREM 3. Let a=(ay,...,a,) and b=(by,...,b,) with a; and b;
rational numbers =1 if not infinite. Then the following conditions on
P(D) are equivalent.

1) For some open nonempty subset 2 of R~

PDwu=0, uel'(Q) = we Q).
2) There exists a positive constant C such that for all { € C* with P({)=0,
Il = STIGM < C(L+Im]+12,) -
3) There exists a positive constant C such that for all & € R,
Elp = C(L+d(&)+1€l) -
Here d(&) is the distance from & to the surface P({)=0 in C».
4) For all open subsets 2 of R®,
PDu=0, uel'(2) = ue Q).
5) For all open subsets 2 of R™,
PDyu=0, ue Q) => uel®Q).
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6) For some open nonempty subset Q2 of R™,
PDwu=0, we Q) = uwe Q).

Finally I want to thank Lars Garding for suggesting the subject of
this paper and for guiding me in the course of my work.

2. Proofs.

We need some preliminaries for the proof of theorem 1. Let K be
a compact subset of 2 and choose ¢>0 such that K*<Q. Here K?
is the compact set of points in R® with distance =<2¢ from K. Take
a non-negative function

peCX(B) with f p(z)dz = 1
and define for any natural number % the function ¢, by
Pr(@) = k" p(kx) .
If y is the characteristic function of K*, set
(4) Xe = Pr* - * Q> 2,

where @, occurs k times in the convolution.

LeMMA 1. For every k is the function y, defined by (4) in C3(K*) and
18 equal to 1 in K. Moreover, if

lej¢(x)I de<C for each j,
then
(6) ID"p(@)| £ (CR)¥,  |a|<k, weRn.

Proor. See Boman [1].

Lemma 2. Let a=(a’, ) with 15a’<oco. Then, if ue I'Y(Q), there
exist a constant C, independent of k, such that for k=|x|

¥
®) 1Dallle = ([ 1D(e(@)2 da)' < €1 ace,
1D, 2 w)l ]y < ClHL.
Proor. It is enough to consider the case «'’=0. Since the support

of y, is contained in the compact set K*<{2, we get from the definition
of I'Y(£2) and (5) that for f <«
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|D=~t3, Do, S (k)= CFI¥1 gon 5 Gt [fos = Gl afas,
where ax=a,0,+ ... +a,x,. But
lx|o* £ (ax)®® < (ay+ ... +a,)% «%

because ¢logt is a convex function of ¢>0. Hence Leibniz’s formula
gives with a larger C

D% (u)lly < ClHt qoos, (

In the same way we get
1Dl S (14 Ck) maxoggy ( [, IDul? da)'

which is less than Cl**1 for another C, depending of course on u.

X

ﬂ) < (nC’)""IH xae

Proor or THEOREM 1. Parseval’s formula and the Cauchy inequality
give
ID°Dyolly = (D]t 1D,20llgt, v € CF(R) .

If we apply this with «’'=0 to v=y,,» and use (6) we obtain
IDD,, (yarw)ly < Clettt (2a)as Clebt |

which is less than Cl*l+14a« for another . Since y,,=1 in K, we have
proved that u e I'Y(Q) implies D,u € I'Y(Q) if we use L?*norms instead
of supremum norms in Definition 2. In the same way we see that I'%(£2)
is invariant under D; for j>n' and we have already seen that this is
valid also for j<n'. Hence I'%({2) is invariant under derivation and
then we can use Sobolev’s lemma to pass from L2-norms to supremum
norms (cf. formula 4.4.7 in [6]).

In order to prove the converse assume I'*({2) invariant under deriva-
tion. Let F be the Fréchet space of all u € C®(Q2) such that the semi-
norms

g, = X qp 0} D%, Koy + suP,x-2 | D%, K

are finite for every compact set K< and m=0,1,2,.... Take a com-
pact set K,<=f. According to the assumption, the union for r=1,2,...
of

F(r) = {ue F; |D*D,u,K,|, <r*Ha for every o}

is equal to F. Moreover, F(r) is closed in F, because the mapping
F 3 u— D*Dyulg, € C(K,)

is continuous. It follows from Baire’s theorem that F(r) has an interior
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point for some r,. Since F(r,) is convex and symmetric, the origin must
be an interior point. Hence there is a constant é >0, a compact set K
and a natural number m such that if ||u|| =4, then u € F(r,), that is

(7) 1D Dy, Kooy S 70" 00 07 fullpg py, 20

This inequality is valid for all » € F since it is homogeneous with respect
to w. #

Now if not all components of a’ are greater than or equal to 1, we
shall deduce a contradiction from (7). Let us assume that a;=d<1.
Take then K = {z°} and set

w@) = (2, —x,")* p((logk)¥(x, — z,°))
in (7) with « = (£,0,...,0). We choose ¢ € C*(R) such that all derivatives
of ¢ are bounded and ¢’(0)=1. This gives with a large C
(k') (logk)k < Ck+1E<d(C™km (log k)™ + C* supyg;<,.j~79k7) .

Since d <1 and j-9¢}/ is an increasing function of j when 0<j <e-1kV4,
we obtain for large &

(k) (logk)k < O+ (kk 4 CkEF) .

This and the inequality k! e-*k* gives the desired contradiction.

RemARK. It is possible to avoid Baire’s theorem by the following
explicit construction. Let x € R? for notational simplicity and set for
d<1

w(@) = Do k*¢ p((logk)*x,) x*[k! ,
where ¢ is chosen as above and such that ¢(z)=1 if || =1. Then one

can show that ue I"@&*(R2). But D,u & I"®»(R?), since D;*D,u(0,0)=
k¥ (log k).

Proor THAT I 1MPLIES IT 1IN THEOREM 2. Let y €2 and choose a number
¢>0 and an open ball w with center y entirely contained in £,. Then
for each ¢ € C3(B,) there exists a constant C'=C(¢) such that

sup,, | D*(u*@)| < Cll+l yaa

It follows that the Fréchet space CY(B,) is the union for r=1,2,...
of all ¢ with C(p)<r. An application of Baire’s theorem, as in the
proof of theorem 1, shows that for some C and m

(8) sup,, |Da(u*¢)‘ = CI“H-I xa ma’xlmngDﬂQD:Buloo’ pE CSO(Bo)’ xZ 0.
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Hence the derivatives D*(u*¢p) are continuous and uxg satisfies (3)
for every ¢ € C7(B,), since this space is dense in C3°(B,). Now put

y() = [z (m+1)!

if all ;20 and y(x)=0 otherwise, and let p=yy, where y € C3(B,)
equals 1in By,. Then ¢ € C7Y(B,) and D™+*2p=0+(, where D=D,...D,
and (e CP(B,). It follows that in w

(9) u = Dmti(uxp) — uxl .
Now o is a product of intervals y,°<z;<y,! and hence
w(x) = fzp(x——z)(u*é)(z)dz, 2;>y° for all ¢,

satisfies D™t2w=wux*{ in o and has the property (3). Hence, since
derivation with respect to ' does not influence (3),

v = (D) uxp — w)

has the desired properties.

Proor TtHAT II 1MPLIES III 1IN THEOREM 2. It suffices to show that
every y € 2, is the center of a ball w,< {2 such that

Supw0|D0‘u* (6@ q))l < C|a|+1 xas

for some €' and all x. Let w = be a ball with center ¥ and radius > }o
such that (3) holds and choose w, so that wy+B;,~w. The desired
estimate is then obtained from (3) and the formula

(Drurp@p)@) = [ (Do), ~y") D ply") dy -

"
a

Proor TtHAT IIT mMPLIES IV 1IN THEOREM 2. Fix a constant ¢> 0 such
that suppp € 2, and take a ¢ with 0 <o =c. By a partition of unity
we can then find a finite number of functions ¢, e C3(B,’) and an
equal number of points a,’”’ € 2, such that

Pa) = 3 pular —a").
This gives

u (') = Zpu* (0Q @) (' a;”) .

Since 2,/ x 2, <=Q,, it follows that u,e I'¥(2,’) for all ¢ with 0<ao<ec.
Therefore wu, el'¥(£2), because this is a local property of .
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Proor tHAT IV 1MPLIES I IN THEOREM 2. Let K'<Q’ and K" <Q”
be compact sets. In the same way as in the proof of theorem 1 we get

supK,lDa’ul é CI“[+1 a2 maxm]gmlDﬂ,‘P,K” pe CSO(K”)’ Lx":() ]

loos

Take ¢ € C3(B,) and set w=K_'x K. This inequality and the formula

D*(ux)a) = [ ([D*uty) pla—y) dy") dy

gives with a larger C that
sup, | D¥ (u*@)| < Clol+! yaa

In fact, D*p is bounded on B, and y" — p(x—y) has its support in
{&"}+ B, <K" if x € w. It follows that u*¢p e I'® )0 ) because every
point of £, is contained in some open set =K x K.

Proor oF THE CorROLLARY. It is evident that if e '), then
ue ['4(Q). Conversely, if a<co and we ['(2), then (9) shows that
w e I'(2). In fact, uxp and u*{ belong to I'* and I'* is invariant under
derivation. Hence I'4(Q)=I'%(Q) if @ < co. Here a < oo is also a necessary
condition, since when a=(a’,c), then we [ and w¢ I for u(zx)=
v(z')w(x"’), where v € I'* and w continuous but not C*.

The sufficiency of a’>1 for the second part of the corollary follows
in the same way as above with the help of theorem 1. The converse
also follows from this theorem, since I'*nC* obviously is invariant
under derivation.

Proor THAT 1) IMPLIES 2) IN THEOREM 3. We divide this proof into
three steps.

Step 1. Assume that all a; are finite.

Put for u € C*(2) and compact K <

”u“K = Supa:>0 o l‘Dlxu’Kloo

and let N be the Fréchet space of all u € C*(2) such that P(D)u=0
and ||u||g<oo for all K<2. Take a compact set K,=. According
to the assumption in (1), the union for r=1,2,... of

N(r) = {ueN; |DPu,K,| 7P+ 8% for every g}

is equal to N. It follows from Baire’s theorem, as in the proof of
theorem 1, that for some constant C and compact K <Q

(10) |DPu, K|, < CPHL B08 |, we N, f20.
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Take any ¢ e C* with P({)=0 and set wu(x)=¢X*% in (10). If 4 is an
upper bound for |x| when x € K, this gives with an z,e K
|~/:ﬁ| gz, Iml) < (lpl+1 Jild eAtm¢e] sup, o=« |% .
Since
7% |2,/ < explaet|; )

we get by putting f=(0,...,8

7

Iéjlllbi < Cﬂj ec(lImCI+|C|a)lﬂj, ﬂj >0.

,...,0) that for some constants ¢ and C

If we choose f; as the integral part of 1+ |Im{|+|{],, it follows that for
another constant C

151 < O(L+ Im¢[ +[C],)

and adding this for j=1,2,...,n gives the desired inequality.

Step 2. Assume that all b, are finite.

If all a;<oo, then we are ready according to step 1. So assume
a;=...=a;=oc0 and a;,,,...,a, finite. Since I'%(2) shrinks with a,
we have by the assumption in (1) that for ¢ >0

P(Dyu=0, we I'Ots-bitedi, oo (Qy = e V().
It follows from step 1 that

€y £ C(1+ImE|+ |5y MO+ [ |5 4|2, Yoy 4|z, [ Yem)

when P({)=0, which gives the desired inequality with a larger con-
stant C.

Step 3. Assume b,,. . .,b; finite and b,,,,. . .,b, infinite.

It is then enough to take a;,,,...,a, infinite and, by a reduction as
in step 2, a,...,a; finite. Now we define the space N and seminorms
I'llz as in step 1. In order to get N complete we also use the semi-
norms

ullg,m = MaxXjygm D%, K|, m=0,1,2,....

Then we get in the same way as in step 1

|DPu, Kolo < CPIL B2 (luflge + [l m)s  BZ0,
which gives
(11) I, £ C(1+Iml|+ L], +log(1+[C) if P(£)=0.

Since a; and b, are finite positive rational numbers for 1=<¢<j, there
exists natural numbers 4,, B; and N such that

l/a; = A/N and 1/b; = B;/N, 12i<j,
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and (11) is then equivalent to
S{ICP5 £ O(1 + [ImEPY + 3 (8,24 + log (L+]))  if P(¢)=0.
Hence by putting
u(t) = sup {31¢,25(1 + Im 2N + 3 |£,249-1; P()=0, || <7}

we get
(12) w(tr) = C + Clog(l+7).

But according to a lemma by Seidenberg (see Lemma 2.1 in the Appendix
of [6])
u(r) = Ar"(1+0(1)), 7> +o0.

Here r <0 by (12), so that u(z) is bounded, that is,
S{ILP < O+ [ImEPY+ {1524 or  |Z], £ C(1+[Tm]+]Z],)

if P(£)=0.
ReEMARK. If we only consider the partial hypoelliptic operators of
Garding and Malgrange then step 1 and 2 is enough so we do not need

the lemma of Seidenberg in that case. Step 3 is in order to take care of
the somewhat more general operators of Friberg.

Proor THAT 2) IMPLIES 3) IN THEOREM 3. If £ e R™ choose (0=
&9+ n° so that P((°)=0 and d(£)=|&—(°. Then we have

|6 = d(§) and 9% < d(§).
Since all b;= 1 we get
(13) (&, = CUE-L0,+10%) S C(A+1E=L0+12%,) = C(1+d(&)+]20) -

But by 2)
18% = C(1+ImE0+]%,) .

Here [Im{% =|9° <d(¢) and

1% = (18— &la+ 1’1o+ 1610)
S OO+ + 1+ +1&l,) = C(1+d(E) +él,) ,

so that
0%, = C(1+d(&)+ &) -

Now the desired inequality follows from (13).
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In the proof of the next implication in theorem 3 we need the following
modification of theorem 4.4.2 in [6].

Lemma 3. Suppose
(14) STEIE < C((L+d@)Y + 3TI&4),

where A;, B; and N are natural numbers with A;<N for all j. Then
there is a constant C, independent of u, 6 and 8, such that for every uw e C*(Q)
with P(D)u=0 and all 8,0, >0 we have

(15) Z?||Dijuaga+ol||P,a s CZT”DinU”le”P,a + CoNu,2,llp s,
where
0135 = Zand= [ PO (D) u(w)?de.
Proor. We use the same notation as in chapter 4.4 of [6]. It follows
from (14) that
SHEB 2 C(eNdy (£) + ITIE4) if 0<e<] and EeRm.
Hence Parseval’s formula gives
ggtng,Bwlzdx <0 (62N|nvm§,,£ + z;ble,.Afmzdx), ve OX(RM) .
Let ¢ € C3(B,) be equal to 1 in B,. If we apply the above estimate to
v=P@(D)(¢°u), we obtain
(16)  SPIDPiu By}, < 37 Saso &2 [IDFIPOD)(g*w) [ da
CeN3, Lo 2| POD) (@), . +
+ 31 Zaso o7 [ I DHPOD) (ghu) 2 de
But, according to Lemma 4.4.3 in [6]
(17) Sarot 2 IPOD) (@), < Cllu, B3, ,

IIA

and from the identity
e=lel DAP@(D)(gu)
(A . 8 e ks D(a—
=55 Soskza; € (k]) (¥t DFD|BY) &1 PLD Ak P=P (Do

we get from Lemma 4.4.2 in [6] that
I = 3,672 [ | DA P (D)(gu)|*dx

- —2k; Ak
C3, 0t 2o 20§k,‘§A7‘ £ ’IB,, IDi 751 P@Y(D)u|?dz .

Math. Scand. 26 — 9

IIA
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Now (see e.g. Ehrling {2, p. 270])
[LIf®Rde < OfL(f 2 +1f™F) de, O<k<n, feC™(R),
and this gives
&2k Iz, DjA,-—kj PO (Dyul2dz < C fp, (| DJ.A;' PE(Dyu|? + 245 | P@)( Dyu|?) dx

so that
(18) I £ C|\DAwu,B}, + Ce4 |u, B3, .

Since A; <N, we get from (16), (17) and (18) that
S UD 1w Bylp,, < O3LIDAw, Bfp,, + Ce=V |lu, BJfp, ,
and (15) follows from this as in the proof of thecrem 4.4.2 in [6].
Proor THAT 3) IMPLIES 4) IN THEOREM 3. Since % e I'*(Q) is a local

property of w, we can assume that (2 is bounded. If we choose the natural
members A;, B; and N such that

l/a; = A;/N and 1/b; = B;/N, j=1,2,...,n,

then the assumption in (3) gives that (14) holds and from a; > 1 we obtain
A;< N for all j. Hence lemma 3 gives

”D1B1u>95+01HP,6 S O X1 07V D, 2 |lp,s »
where

& = (Kgy&pye« os0y), ONe = § N0 Dod — peads | D ondn
By induction over k we get

k
1D, B2, 245 llp s < CF 302k (

[0 4

) 8-Na || D, O, 1, -

Let now K be a compact set contained in £2 and take a constant c,
0<c<2, such that K<, and set d=c/2k and d;=c/2. Since d<1
and all the derivatives of # are bounded on the relatively compact
set 2, , we obtain with m equal to the degree of P

8™ |D*4u, Q, ||p s S Cledl(xd)tled) = Qordrttondn(q AN (,, A,)N,
Now P@ is a constant =0 for some « with |x|=m and it follows that

(fgc |D1kBlu|2 de)t < Cam”leBl“’Qc”P,a
< Ck zlalzk (];) (%C)—NaOkN(k—rxl—...—an) 0“1A1+"'+a”A"(kA1)N“1. . (kAn)Nan

= Ck kN (e N+ CNM 4N+ ... +C4A Ny < CkBr(|B))®BD
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If we apply this estimate to D,*u for ¢+=0,1,...,B;—1 we get
(o, | Dfurda)t < €129, j=1,2,.. .,

and this gives with the help of formula (4.4.7) in [6] that
SUp, i |Diu(x)| < Cigbi, j=1,2,...,

that is, w € ['°(2) if by=...=b,=00. If both b; and b, are finite, then
one starts from the inequality

k1B ko B:
[|Dy™51 Dy 2u"Q(kl+k2)6+61”P,d

k1+k: 1 2 —N '+ )A
= ¢ B Z‘|°"|:]‘?1 2:[0‘"|=kz ( ') ({xu) 0 @+ ”D( o ’u”‘le”P,d

[04

and calculates as above. The other cases are treated similarily.

Proor THAT 4) IMPLIES 5) IN THEOREM 3. Take ¢ € C3(B). Then by
definition u*@ € I'*(2,). Furthermore

P(D)(uxg) = (P(D)u)*@ =0 in 9.

Hence wxg e I'(£2,), which again by definition gives u e I'*(Q), since
o and ¢ are arbitrary.

This finishes the proof of theorem 3, since 5) implies 6) is a triviality
and 6) implies 1) is a direct consequence of the corollary of theorem 2.
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