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ON NARROW SPECTRAL ANALYSIS

LARS-AKE LINDAHL

1. Introduction.

The object of this paper is to generalize Beurling’s theorem in [1] on
the spectral analysis of uniformly continuous bounded funections on R.
In [4] Domar introduced and studied the narrow spectrum of bounded
linear functionals on commutative Banach algebras with identity. We
shall follow his line, but we will consider algebras without identity, too.
As regards the general Banach algebra theory used in the sequel, we
refer once for all to [8], especially chapters IT and III.

Let B be a commutative Banach algebra, normed so that |fg| <
IIfll llgll for every f,ge B. Whenever B has an identity e we suppose
lle]l=1. Denote by B* its dual space of bounded linear functionals and
by.# the space of all nontrivial multiplicative linear functionals on B.
Since we can identify the maximal regular ideals of B and the functionals
of A, we shall not distinguish between them and we shall use the same
symbol M to denote a multiplicative linear functional and its kernel.
We denote by f(M) the image of an element fe B under an M € .#.

We provide B* with the weak-star topology, denoting by U(I'; 4 ;¢)
the neighborhood of F € B* defined by the number ¢> 0 and the finite
subset 4 of B. Let .# carry the induced topology; then .#uU{0} is a
compact subset of the unit ball S={F € B*; | F||<1}. .# can be empty.
If B has an identity, then .# is a nonempty compact subset of the unit
sphere S, ={F € B*; |[F||=1}.

For any F € B* and any fe B we define the functional Fof by the
relation (Fof)(g)=F(fg) for every ge B. It is immediately seen that
Fofe B* and that |[Fof| <|F| |fll. With every F e B* we associate
the linear subspace Ly ={Fof; f e B}.

We now define the two sets

and we call Ay the spectrum of F and Ay’ the narrow spectrum of F.
The reason for this terminology will become clear in Section 4. Let us
remark that if .#<8;, then A, =LynS; n.#; thus, our definition
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agrees with the definition of /1’ in [4] in the case when B has an identity.
Indeed, this follows easily from the fact that if {@,} is a net (directed set)
in B*, which converges to G e B* in the weak-star topology, then
lim |6, | |G-

Obviously, Ap'<Ap. The following problem has been treated by
Domar [4]:

(1) Is Ap'=Ay for every F e B*?

We shall give a counter-example when B is the disk algebra (section 6).
However, if B is regular and semisimple, then the answer of (i) is in the
affirmative (Theorem 4). In particular, this result contains Beurling’s
theorem (Theorem 5). We shall also prove that A;' =4, whenever A
is totally disconnected (Theorem 3).

When B is an algebra with identity, A5 is nonempty if and only if
F 40 (see below, section 2). (Of course, this is not true in general for
the simple reason that .# can be empty.) This suggests the following
question :

(ii) Does F =+ 0 imply Ay’ =0 when B is an algebra with identity ?
Problem (ii) will be treated for algebras generated by one element f and
its inverse, and we shall show that the answer is “yes” at least in the
case when the spectrum of f is an annulus (Theorem 6). This extends an
analogous result of Domar [4] for algebras with one generator whose
spectrum is a disk. Domar has also proved that the answer of (ii) is af-
firmative when the subclass of all real-valued Gelfand transforms of B
strongly separates the points in .#. The question whether (ii) always
holds remains open.

Finally, let us mention that instead of Ly we could consider any
linear subspace V of B* which is ¢nvariant in the sense that ¥ € V implies
Fofe V for every f e B, defining A, =Vn.# and A,’=VnSn.#. Then
all our results concerning A, and A" are true for A, and A,’ and our
proofs apply with some minor modifications. However, we shall not in-
sist on this point.

2. Preliminaries.

Let I, be the annihilator of Ly in B. Then I,={fe B; Fof=0} and
it is a closed ideal of B. According to a general property of the weak-
star topology, L, is the annihilator of I in B*. Thus,

(1) Ap={MeH;IzcM}.

If F e L, — and this is certainly the case whenever B has an approxi-
mating identity — then f e I implies F(f)=0, and it follows that I} is
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a proper ideal for F+0. So in that case we may conclude that F+0
implies A0 if every closed proper ideal of B is contained in a maximal
regular ideal. In particular, this is true for algebras with identity.

We shall consider the quotient Banach algebra B=B/[I, of cosets
f=f+1I5, endowed with the norm | f||=inf{|f||;f€f}. According to a
duality theorem for arbitrary normed spaces, the dual B* of B is con-
gruent to the annihilator of I in B*, that is, to L. Indeed, this con-
gruence is established by the mapping G — G of L, onto B*, defined by
the relation
(2) G(f) = G(f) forevery feB.

Since L,ynU(G@;A4;¢e) is mapped onto U(G;4;e), it is also a weak-star
homeomorphism. Obviously, @ is multiplicative if and only if G is
multiplicative. Hence Ap=L,n# is mapped onto .#, the space of
maximal regular ideals of B. Let G € Ly; then Ay< A, because Ly<
L. Since (Gof) =Gof for every fe B, Ly is mapped onto Lg. Conse-
quently, Ag=Lyn.#=LynAy is mapped onto Lzn.# =Ag. The iso-
metry gives that LynS is mapped onto Lzn S, S denoting the unit ball
in B*. Thus, Ay =LgnSnAy is mapped onto mn.//?:/lg,’. Let us
summarize:

Lemma 1. The map G — G of Ly onto B*, defined by (2), is a con-
gruence and a weak-star homeomorphism, mapping Ay onto Ag and Ay

onto Ag'. Moreover, Ay is mapped onto M.

By Lemma 1, we may identify M with A,. Henceforth we shall do
so, writing f(M) instead of f(JI). Then Ag=A, and A5 =Ag .

When B is an algebra without identity, it will be convenient to con-
sider the Banach algebra B, obtained from B upon adjunction of the
identity e and by introducing the norm ||f+ Ae||=|f||+|A|, fe B, AeC.
We extend the functionals M € .# to multiplicative linear functionals
on B, by defining (f+ Ae)(M)=f(M)+2A. Then the maximal ideal space
of By is M= MU{M_}, where M =B. For an arbitrary f,=f+1e € B,
we define Fof; by the relation Fo(f+ Ae)=Fof+AF. It is then clear that
Fof, € B* and that ||[Fof,| <||F|| ||f,l| for every f, € B;. Finally, for any
fe€ B and any f; € B; we define (Fof)(f,)=F(ff1)-

If B is a Banach algebra with identity, we set B;=B and #,=.#
in order to simplify our notation. Finally, we define B, to be the Banach
algebra associated with B in the same manner as B, is associated with B,
and we extend the natural homomorphism B — B to a homomorphism
B, - B, by mapping the identity of B, onto the identity of B,. Then
(Gof) =Gof for every G € Ly and every fe B;.
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It follows easily from (1) that
(3) Agn{Me M, f(M)+£0} < Ap; < Ap
for every fe B;.

Before proceeding further we need the following definition, given in [4]
in a different but equivalent formulation (in the case B;=B).

DerFiNtTION 1. Let F € B*. A closed nonempty subset £ of # is
called an F-determining set if for every finite subset 4 of B;

(4) T, sup (|FoIT}f[V"; f, € A} < sup {|f(M)]; fe A, M e E} .

It is useful to note that the left side of (4), here denoted provisionally
by I(4), depends continuously on 4. In fact, if 4, is the set of elements
in B, whose distance to 4 is less than ¢, then [(4,) <1(4)+e&. To see this,
let {g,} be an arbitrary sequence of elements in 4, and choose for each »
an kb, € A such that |jg,— %, || <e. For every 5> 0 there exists a constant ¢
such that

sup {||FoIIfI; f,e 4} < C(I(A)+n)* for every n .

Consequently,
[FoTIig,ll = [FoIIi(h,+ (g,~ b))l
<cs (Z)(zm)m)ksn—k = C(A)+n+e).
k=0

It follows that I(4,) 1(4) + &+ 7, and since 5 was arbitrary, I(4,) S [(4) +e.

In virtue of the inequality |f(M)| <|/f]|, the right side of (4) also de-
pends continuously on A. It follows that for £ to be F-determining it
suffices to have (4) for every finite subset 4 of a dense set in B;. We may
also conclude, using a standard covering argument, that if ¥ is F-deter-
mining, then (4) holds for every compact subset A of B,.

LemMA 2. Suppose G € L. Then a subset B of Ay is G-determining if
and only if it is G-determining.

Proor. Let A be a finite subset of B, and let 4 be the corresponding
subset of B,. Then, by virtue of Lemma 1, (4), with F replaced by @,
will hold if and only if

lim, , ..sup{|GoTI7 £ f, € A} < sup {If(M)]; fe 4, M e B} .
This proves the lemma.

For arbitrary fe B,, lim,_, | f*|'*=sup{|f(M)|; M € #,}. In this
formula we want to replace .#, by .#. This can trivially be done when
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B;=B. In view of the fact that f is continuous on .#,, this can also be
done in the case B;=+ B provided M_ is not an isolated point of .#,,
that is, provided .# is non-compact. So suppose that M__ is isolated.
If we exclude the trivial case .# =0, then .#, is disconnected, .# and
{M .} being disjoint closed subsets of .#,. According to a theorem on the
decomposition of a Banach algebra into the direct sum of ideals (see e.g.
[5, p. 96]), there exists a unique element » € B such that u?2=w, u(M_)=0
and u(M)=1 on .#. Thus, since uf™=(uf)" and

sup {[u(M)f(M)]; M € My} = sup{|f(M)]; M € .4},
we obtain the following modified spectral radius formula:
(5)  lim, "V = sup{|f(M)|; M4} forovery fe B, .

If B has an identity or if .# is non-compact, we shall set w=e¢. Then,
by what we have said above, (5) remains valid, and we always have
u(M)=1 on .#. From (5) it follows easily (compare [4, p. 7]) that

T, o sup {Ju TAIV": £ e A} = sup{If(M)]; fe A, M e A}
for every finite subset 4 of B;. This gives

Lemyva 3. If A is nonempty, then M is Fou-determining for every
F e B*.

Levmma 4. Suppose Ay is nonempty. There exists an element v e B,
such that, for every G e Ly, the spectrum Ay is Gov-determining and
AGovZAG'

Proor. By Lemma 1 and by Lemma 3 applied to B, there is an
element & € B, with #(M)=1 on A, such that A, is Gog-determining for
every G e Lp. It follows from Lemma 2 that A is Gov-determining.
Since Az <Ay and v(M)=8(M)=1 on A, (3) gives A,,,=A,;. We note
that if B is an algebra with identity, we may take v=e.

The following definition from [4] will be useful in section 5. Again
we choose a different but equivalent formulation.

DeFinITION 2. Let E be an F-determining subset of .#. We shall say
that a point M, € E has the property A(F) with respect to E, if for every
neighborhood U of M there exists an element f € B such that

sup{|f(M)}; MeE} = 1,
sup{lf(M)|; MeE-U} <1,

lim, , o [[Fofrt/* = 1.
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We note that, given ¢>0, we may suppose that |f(M)|<e on E—TU,
replacing f by f%, if necessary. That still

1_ﬁ_ﬁn—-)oo“1;10(.fN)n”l/n =1
is a consequence of the inequality

|[Fofm™| £ ||[FofN*| max(1,||f||Y) for Nn<m=<N(n+1).

3. Main results.

THEOREM 1. Let F € B* and M, .#. Suppose that for every neighbor-
hood U of M, there exists an element fe B with Fof+0 and an Fof-
determining subset B, of U. Then Mye Ay’ .

CorOLLARY. If for every neighborhood U of My € Ay there exists an ele-
ment f € B such that Ag,;is a nonempty subset of U, then M, e A" .

Proor or THEOREM 1. Let U(M,;A4;6) be an arbitrary neighborhood
of M,. We have to show that LonSnU(M,;4 ;) is nonempty. Set

Ay = {g—g(My)e; g€ A};
then A, is a finite subset of B; and the elements of 4, vanish at M,. If
e max {l+|g(Mo)|; g€ A} < 0,

then LpnU(M,;A,U{e};¢) is a subset of LpnU(M,;A;6). Therefore, it
is sufficient to show that LynSnU(M,;A,U{e};¢) is nonempty, i.e.
that there exists a G € Lpn S such that

(6) |Ge)—1| < ¢
and
(7) |G(g)| < ¢ {forevery ge A4,.

Let us assume the contrary and let H € Ly be arbitrary 0. There is
an heB with ||h||=1 such that (1—¢)|H||<H(R)Z|H|. Thus, since
|[Hok| < ||H|, (6) will be satisfied if we take G=(||H|)-}(Hok). Conse-
quently, there is an element in 4,, say g,, such that (7) does not hold, i.e.

|Hogy(R)| = |Hok(gy)| 2 ¢|H]|.

It follows that ||[Hog,||2¢||H|. Repeating the above procedure with
Hog, instead of H, we obtain inductively a sequence {g,} of elements of
A, such that

(8) [HoIItg )l 2 eH|, n=1,2,....

Set U={M e A ; |g(M)| < ¢ for every ge 4,}. Then U is a neighbor-
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hood of M, and, by assumption, U contains an Fo f-determining subset
E; for some f < B with Fof+0. Now, take = Fof in (8). Since

FofoIlyg,IV™ < Sup{lg(M)l; QEADMEEf} = 3¢

we obtain a contradiction, which proves Theorem 1.

Proor oF THE COROLLARY. Let Ay~ U and M, € Ap,;. Choose ge B
such that g(M,)+0; then, by (3), M, € Ap,;. By Lerama 4, with F
replaced by Fof, Agp;is Fofgv-determining and Ay, = Az, Which is
nonempty. Consequently, Fofgv+0 and the corollary now follows from
Theorem 1.

Theorem 1 should be compared with the following result in [4], which
will be used in Section 5.

THEOREM 2. If M,c .# has the property A(F) with respect to some
F-determining set E, then My e Ag'.

Proor. It suffices to modify the end of the proof of Theorem 1 in
the following way. Let fe B fulfill

QD €1 on B, |f(M)| < /D on BE—U, T, [|Fofrftn=1,

where D=2 max{|lg||; g € 4,}. Then |(fg)(M)| < iz on E for every € 4,,
so we can find an integer N such that

sup {|FoIIY (fg.)ll; g: € Ai} < (3e)¥  and  [[FofV| > (PV.

We now obtain the desired contradiction by taking H = Fof¥ and n=N
in (8).

TarEOREM 3. Suppose M, € Ay has the following property: In the relative
topology of Ay there exists a basis at M, the sets of which are both open and
compact. Then Mye Ag'.

CoROLLARY. If Ap is totally disconnected, then Agp' = Agp.

Proor. Choose g€ B such that g(My)+0 and set G=Fog. Then
G € Ly and it will clearly suffice to prove that M,ec 4,;. By Lemma 1,
this is equivalent to showing that M,e Ay ; therefore, without loss of
generality, we may suppose that A,=.#. Let U be a set of the above-
mentioned basis. According to the already cited theorem on the decom-
position of a Banach algebra into the direct sum of ideals, there exists
an element ¢, € B such that e,2=e¢,;, ¢;(M)=1 on U and ¢, (M)=0 on
M —U. Let u be the element of Lemma 3. By (3), My € Ag.ue,- Thus,
GQoue, + 0, so if we show that U is Goue,-determining, then Theorem 3 will
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follow from Theorem 1. But this is an immediate consequence of the rela-
tions
Goueo [TV, = Gouell} (erf,)
and
sup {{(e,f )(M)|; M € M} = sup{|f(M)|; M € U}

and the fact that .# is Gou-determining. We note that we could also
have used Theorem 2, because lim, , [|Gouoce,?|V*=1 shows that M,
has the property A(Gow) with respect to .#.

Since A is a locally compact Hausdorff space, there exists a basis at
M, of open compact sets if and only if the component of M, in A, equals
{M,} (see [6, p. 75]). Therefore, if the component of M, in A, reduces
to {M,}, then M, e Ay'. This proves the corollary.

For any fe B, let suppf denote the closure in # of the set
{Me 4;f(M)+0}. We have the following converse of (3).

Lemma 5. If B is regular and semisimple, then Ap,,<Agznsuppf for
every fe B and F € B*,

Proor. Suppose M ¢ suppf and let U be a neighborhood of M, which
does not intersect suppf. There is a g e B such that ¢(M,)#+0 and
g(M)=0 on A —U. Thus, g(M)f(M)=0 on # and by the semi-sim-
plicity, fg=0. This gives g € I, and since g(M,)+0, M, & Ay,;. The
semisimplicity hypothesis can not be omitted in Lemma 5.

THEOREM 4. Suppose B is regular and semisimple. Then A" = Ay for
every F € B*.

Proor. We have to show that A< A,". Suppose Mye A, and let U
be a neighborhood of M,. Let V be another neighborhood such that
V = U and choose f e B such that f(M,)+0 and f(M)=0on .#—-V. By
(3), Mye Ap; and by Lemma 5, Ap,<V<U. Thus, the corollary of
Theorem 1 gives that Mye A5,

In [4] a weaker form of Theorem 4 is obtained from Theorem 2. The
above result will become more interesting if we impose some condition
on B, which guarantees that <0 implies Az=+0. If B is regular and
semisimple, then the condition that the set {fe B; suppf is compact}
is dense in B, implies that every closed proper ideal is included in some
maximal regular ideal. In particular, the group algebras, which we shall
consider in the next section, satisfy this condition, and since they have
also approximating identities, it follows, in view of the discussion at
the beginning of Section 2, that Theorem 4 may be applied to them, with
the additional information that A is nonempty whenever F +0.
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4. Beurling’s theorem.
For each F € B*, ¢>0 and each compact subset C of B, define

[F;C;e] = {G € B*; supsec |G(f) = F(F)+ 1G] - |Fll| <&} .

The topology in B*, having for basis all sets [F;C;¢], is called the narrow
topology.

Suppose the multiplicative linear functionals have norm 1. Then,
combining the definition of Az with an easy covering argument, we
obtain
(9) Ag' = (the narrow closure of Ly) n .4 .

We shall give a more concrete interpretation of (9) when B=L(G),
where G is a locally compact abelian group with Haar measure dz. We
identify the functions F € L*(G) with the bounded linear functionals
on L}(G) by means of the duality relation

() = [ F(-2) f(o) do
G

Then Fo fis the ordinary convolution F xf. To avoid confusion, we denote
the Fourier-Gelfand transform of fe LY(G) by f(M); in other words,

jan) = [ (-2 @ dz,

where M(-) is a character of G.

Suppose now that F e L*(G) and that M,e A,. Choose ge LY(G)
such that §(M,)+0 and such that suppg is compact and set G'=F xg.
By (3), M,e Ay. Choose ke LY(G) such that h(M)=1 on suppy; then
hM)§M)=9(M) on 4 and it follows that gxh=g. Consequently,
Gxh=G. Set h,(x)=h(x+y).

Let K be an arbitrary compact subset of G. Then C={h,; yc K} is a
compact subset of LY(G). By Theorem 4, M, e A, ; therefore, in virtue
of (9), given &> 0, there exists an f e L!(G) such that

(10) Gxf € [My;C5¢] .
Now,

Gxf(h,) = G(fxh,) = Ghxf,) = Gxh(f,)
= [e-) f@+y) do = @),
hy(Mo) = [ My(—2) hw+y) de = Mo(y)KMo) = Moy)

Thus, (10) means that
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supy g (G =f)(y) = Mo¥)| + G *fllro—1] < €.
Since G+f=F =(g=f), this proves the following theorem

THEOREM 5. Let F € L™(G). If My e Ay, then there exists a net {F «f,},
f. € LYG), such that

[F+fllgee =1 and  Fxf,—M,,

uniformly on every compact subset of G.

If F e L™(G) is uniformly continuous, then we can replace the net
{F«f,} by a net of finite linear combinations of translates of F in the
statement of the preceding theorem ; this is easily seen by approximating
the integral involved in F«f,. This is the original version of Beurling’s
theorem [1], except that it was stated and proved for G=R. Beurling
used analytic function theory in his proof. Domar proved the theorem
for arbitrary groups using Banach algebra theory in [2] and purely by
Fourier analysis arguments in [3]. A short proof can also be found in [7].
In this connection we should mention that the net in Theorem 5 can not
be replaced by a net of linear combinations of translates of ¥ for an
arbitrary function #. Indeed, Koosis [7] has constructed a continuous
function F' € L*(R) such that 1 € A5 but such that 1 does not belong to
the weak closure of any norm-bounded set of finite linear combinations
of translates of F.

5. Algebras with one or two generators of special type.

In this section we suppose B is an algebra with identity.

For any fe B we set spf={f(M); M € #} and we recall that spf
coincides with the set of complex numbers 4 for which f— 4e is not inver-
tible, commonly called the spectrum of f. Denote by C, the circle
{ze C; |z|=r} and by A(ry;r,) the closed annulus {ze€ C;r <|2| <7y},
with the tacit agreement that 0 <r; <7, < oo,

THEOREM 6. Suppose there exists an element f, € B such that f, and fy=*
generate B and such that spfo=A(r;R). Then Ag' is nonempty for every
F=+0.

The proof is patterned after the proof of Theorem 3 in [4]. The follow-
ing two lemmas replace Lemma 5 in [4].

Levma 6. Let B be an arbitrary Banach algebra with identity. If
spfc A(ry;ry), then

r, < lim

for every F 0.

lim,,_, o, |[Fof™[™ < Bim,_,|[Fofrin < r,
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Proor. Since 0 ¢ spf, f~* exists. Choose g, ||g||=1, such that F(g)+0.
Combining the inequality
()| = [(Fof")(f~"g)l = IIFef™|If~I
with the spectral radius formula
lim,, , [lf " = sup{|f(M)|"}; M € M} < 7',

we obtain lim,_ _||[Fof?/t*=r,. The other inequality follows from

((Fofr|<|IF| lIf* and the spectral radius formula.

If B fulfills the assumptions of Theorem 6, then f, induces a homeo-
morphism of .# onto A(r;R). Hence we may assume that .# = A(r;R)
and that fy(z) =z for every z € 4(r; R). Set

@ = T, IFofyn  and bt = [, . [[Fofy=n .
Applying Lemma 6 to f, and f,~1, we obtain r<e <R and r<b< R.

LevMa 7. With the assumptions of Theorem 6:

(i) if b= a, then CLuC, is F-determining,
(ii) if a <b, then C, and Cy, are F-determining.

ProoF. Let « and § be positive numbers such that a<«, f<b and
B <«, and consider the auxiliary Banach algebra B’ of all power series

f@) =2 az2,
with the norm

ot ~1
If@I" = OZ || fx”+_§j la,| " < oo.

The maximal ideal space of B’ can be identified with 4(8;«) (see e.g.
[5, p. 118]). With every polynomial P(z)=3", a,z" we associate the poly-
nomial P=P(f,)=3",a,fy in B. It follows from the choice of « and 8
that there exists a constant D such that |[Fof"| < Da™ and ||[Fof,~"|| <

DB~ for every natural n. Hence
(11) [FoP|| < 3 lal[Fofyll < DIPE" .

Let P,,...,Py be polynomials and set
d = sup{|P;(2)|; 1Si=N,ze A(f;x)} .

Let {@,} be an arbitrary sequence of polynomials chosen among the P;,
1£4£N. According to the spectral radius formula, applied to Py(z) € B’,
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there exists, given ¢> 0, a constant & such that [|(P;(2))"|’ < E(d +¢)* for
1<4<N and n=0,1,.... Then, using (11), we obtain

[FoII1 @) = DIIIT Q)" = DEN(d+e)™.
Hence _
lim, o ||[FoII7@,Y™ = d+e¢.
Since this is true for every ¢> 0 and for every «,f, subject to the initial
restrictions a < «, f<b and B <«, we conclude that

Iy oo [FoIT}Q, V" < sup{|Py()]; 1Si< N,z B,

where £ = A(b;a) if b<a (case (i)), and E=C, or E=C, if a <b (case (ii)).
In case (i) we may replace 4(b;a) by C,uC,, because the maximum of
each |P;(z)| is attained on the boundary of 4(b;a). Since the polynomials
form a dense subset of B, Lemma 7 now follows in virtue of the remark
following Definition 1.

Proor or THEOREM 6. By Theorem 2, it will suffice to find a point
which has the property A(F) with respect to one of the respective F-de-
termining sets of Lemma 7. To this end, we proceed as in [4], forming
the polynomials gy(z) = } exp (10) + 3z + }2% exp (—1¢0) for 0 <0 < 2n. Using
the identity gy(e’?) =e?(}+ % cos(0—¢)), it is easy to see that

2n

1
56{ 920" 46 = 4,27,

where A4, is a constant such that lim,, ,_4,Y"=1. Setting h,=g4af,),
we obtain an element of B, and it follows that

2n
1
= f (Fohy") d0 = A, an(Fof,).

0
Hence

o = Ana_n”FofOn“ )
. 27

21 [ “Foha"” do = H—l_j."(Foh"n) do
0

and we conclude that there exists a number 0, such that
[1Fo(hy,)"| 2 Apa="||Fofo"] .
By the definition of a,

lim,_, o, [|Fo(hg, )"V 2 1.

Since h, depends continuously on 6, it follows, using an argument similar
to that following Definition 1, that for a suitable limit point 6, of {6,}
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(12) ]i—nln»oo”Fo(hﬂo)n“l/n g 1.
Since |hy(2)| <1 on the F-determining set C,UC, if b<a (C, if a<b),
we have actually equality in (12). Moreover, on C,uC, (on C,),
|hgy(2)| =1 at z=a exp(if,), only. Thus, aexp(if,) has the property
A(F) with respect to CyuC, (with respect to C,).

A similar consideration of g,(bf,~!) would produce a point b exp (:6,)
having the property 4 (F) with respect to C,UC, (with respect to C,).

REMARK 1. Suppose Ap+A(r;R); then the part of Ag, which is
situated in the interior of A(r;R), consists of isolated points, while the
intersection of A, with the boundary of A(r; R) is a set of (linear) Lebesgue
measure zero. Indeed, f e I, implies that f(z) vanishes on A, and since
f(z) is analytic in the interior of A(r; R), A, can not be “bigger” unless
f(2)=0, that is, unless Ap=A(r;R). But for sets of the type described
above the condition of Theorem 3 is satisfied at every point. Therefore,
we may conclude that A" =A provided Ay .#; it is only in the case
Ap=.# that Theorem 6 gives something new.

ReMARK 2. The conclusion of Theorem 6 is still true if we assume
that spf, is homeomorphic to an annulus A(r; R) and that the boundary
of spf, is analytic.

To see this, let ¢ be a conformal mapping of the interior of A(r;R)
onto the interior of spf,. The analyticity of the boundary means that ¢
can be extended to a univalent analytic function on some open annulus
2 containing A(r;R). The inverse function ¢! is defined on the open
region ¢({2) containing spf,, so we can form g,=¢=1(f,), obtaining an
element in B with spectrum

spgo = ¢7H(spfo) = A(r;R) .
1t is easy to verify that fy=@(g,). Obviously, there exist polynomials P,
in z and z-! such that P, — ¢ uniformly on compact subsets of 2. Hence
[1Pr(g0) —foll = 1Pn(go) —@(go) >0 as n—oo.

Similarly, P,(g,™') = fo~%, and it follows that g, and g,~! generate B.
Therefore, we may apply Theorem 6. Of course, a similar extension holds
for Theorem 3 in [4].

6. A counter-example.

We shall give an example which shows that the narrow spectrum can
be a proper subset of the spectrum. Let D be the unit disk {z € C; |2| =1}
and let 4 be the disk algebra that is the subalgebra of C(D) consisting of

Math. Scand. 26 — 11
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all functions which are holomorphic in the interior of D. We identify the
maximal ideal space of 4 with D. Let {z,}° be a sequence of points on

I'={zeC; |z|]=1}
such that
E = {zv;v=l,2,.f}

is a proper subset of I" of positive Lebesgue measure and let {,} be a
sequence of nonzero complex numbers such that 3°|a,| < co. Define
Fed*by F(fy=37a,f(z,). Then A;'=FE whereas Ap=D.

To prove this we first of all note that ||[Fof|=3|a,f(z,) for every
fe A. This follows from the fact that, given ¢>0 and a complex se-
quence {w,}Y, we can find a g € 4 such that

llgll < max, ., ylw,| + ¢
and
g(zv) =wy’ lé'ﬂéN.

We also have that fe I, implies f(z,)=0 for every ». But then f(z)=0
on E which implies that f=0. Hence I,=(0), that is Ay=D. Taking
an fe A4, ||f|=1, which “peaks” at the point z, only, we see that z, has
the property A (F) with respect to . By Theorem 2, this yields z, € 45
and since Ay’ is closed, £ < A;'. We conclude the proof by showing that
if 2z, & K, then z, does not belong to the weak-star closure of any norm-
bounded subset of L. Let ¢>0 and choose a g € A such that g(z,)=0
and |g(z)—1|<eon E. If Fofe U(z,;1,9;¢) then

1ztlma'vf(zv) - ll <e and IZioavf(zv) g(zv)l <e.

e > [1+(Za,f(2)—-1)+3a,f(z,)(9(z) - 1)|
z l-e—e3Xa,f(z),

Hence

that is
[Fofll = Zla.f(z)] > (1—2¢)[e = K(e),

which shows that z, does not belong to the weak-star closure of Lyn
{G e A%, ||@|| < K(¢)}. Since K(e) - oo as ¢ — 0, this yields our proposi-
tion.

7. F-determining sets.

Since F-determining sets have played a decisive role in our investiga-
tion, we devote this final section to a study of them. We suppose that B
is an algebra with identity; then F € L and the Lemmas 3 and 4 are
simplified because u=v=e.
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We shall call an F-determining set F-minimal, if it contains no proper
F-determining subset.

Every F-determining set contains an F-minimal set. The proof of
this fact is a straightforward application of Zorn’s lemma; all we have
to verify is that, if {E,} is a totally ordered family (under the inclusion
ordering) of F-determining sets, then (_E is also F-determining. N_E,
will then be a lower bound of the chain {E,}. To this end, let 4 be a
finite subset of B and set

a = lim,_,sup {|FoTI7f|["; f, € 4}
and
Q={Mecd;|f(M)za for some fe A} .

@ is obviously closed. Since E, is compact, the supremum of the right
side of (4), with E instead of Z, is attained and it follows that QnE,
is nonempty. Consequently, Qn(N, E,)=N_(QnE,) is nonempty, i.e.

a < sup{|f(M)|;fe A, MeN K} .

Thus, N, E, is F-determining.
The following simple example shows that an F-determining subset can
be disjoint from A, which is F-determining according to Lemma 4.

ExampLE 1. Let B be a Banach algebra with one generator f, such that
spfo={2€C; 2| £1}. Identify .# with spf, and define Fe B* by
F(f)=f(0). Then Ap={0} and since .# is F-determining, so is also the
Shilov boundary, that is, {z€ C; |z|=1}.

It follows that there is no unique F-minimal set in general. We can not
do better by restricting our attention to F-determining subsets of A,
only, as shows the next example, suggested by Domar as an illustration
of the fact that case (ii) of Lemma 7 can occur.

ExampLE 2. Let B be the algebra of Theorem 6 (with » <R). Using
the notation of section 5, we define ¥ € B* by

1 rf(z) 1 f(2)
F(f) = %Cft?dz - %Cf Pz,

which is consistent since f(z) is analytic in the interior of A(r;R). By
considering Fof(f,") one easily obtains I,={fe B; f(z)=0}. Thus,
Ag=A(r;R). It follows from

1

o fo™(9)| = om < rsuplg(z)| = gl

f g(z) zr1dz

Cr
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that @ <7, which combined with Lemma 6 gives ¢ =r. By using the con-
tour O, instead of C,, we obtain b=R. In virtue of Lemma 7, C, and
Cp are F-determining subsets of A.

However, we have the following positive results.

THEOREM 7. (a) If B is reqular and semisimple, then Ay is the unique
F-minimal subset of M.

(b) If E is F-determining and if M, E has the property A(F) with
respect to E, then every F-determining subset of E contains M,. In partic-
ular, if Agp s totally disconnected, then Ay is F-minimal.

Proor. (a): Since Ay is F-determining, it will suffice to prove the fol-
lowing assertion: Given M, e A, and a neighborhood U of 3M,, then
M — U is not F-determining. To this end, choose a neighborhood V of
M, such that ¥V < U and choose f,g € B such that f(M)=1on ¥V, f(M)=0
on A —U, g(M)=0 on #—V and g(M,)+0. Then (frg)(M)=(fg)(M)
on .# and by the semisimplicity, frg=fg for every n. It follows from
f(M)g(My)+0 that Fofg+0. Therefore, the inequality

. IFofligh = [[Fofgll = [Fofyll
gives
im, o |[Fofr™ 2 1 > sup{|f(M)|; Me.#~U},

which proves the assertion.

(b): The first assertion is a trivial consequence of the definition of
the property A(F). If M, satisfies the condition of Theorem 3, then M,
has the property A(F) with respect to Ag; this follows from the proof
of Theorem 3 because we may now choose g=u=e.

In conclusion, I would like to thank Professor Domar for his kind
interest and assistance throughout the preparation of this paper.
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