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INTERPOLATION OF QUASI-NORMED SPACES

TORD HOLMSTEDT

Introduction.

The study of interpolation spaces has hitherto mainly been restricted
to Banach spaces (e.g. normed and complete spaces). Krée [5] was the
first to realize that large parts of the theory could be carried over to
quasi-normed spaces which need not even be complete. We will here
continue Krée’s work. Most of our results, however, are new even for
Banach spaces.

Let 4, and 4, be a couple of quasi-normed spaces continuously em-
bedded into a topological vector space o/. For every a € A,+ A4, let us
put

K(t,a) = inf, 1 o (ll@ollg+tllaals,), a;€dy i=0,1,

where 0 <t < oco. With the aid of K(¢,a) we introduce in section 1 inter-
polation spaces (4y,4,)p,, 0<6<1, 0<p=oco. In section 2 we express
K(t,a; Ey, E,), where E;=(A,,4,)s,4;, in terms of K(t,a; 4y,4,).
Our main result is
7 ds\ Y20
K(t,a; Ey,E,) ~ (f (s"o"K(s,a;Ao,Al))q“—;) +

0

0 ds Yq
+ t(f (s K(s,a; Ay, Ay))2 ——) ,
tll"] 8

where =0, —0,, 0<0,<0,<1, 0<q,,q; <oo.
From this result we derive

(A07A1)0,p = (Eo,E1)A,p: 0 = (1“‘}*)00"‘ }*91 s

algebraically (which Lions-Peetre [8] have shown for Banach spaces).
We also get a very precise estimate of the corresponding norms (section 3),
which is more precise than that of Lions—Peetre. For instance we prove
a new Marcinkiewicz’s interpolation theorem with the right order of
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magnitude on the constant in the “‘convexity inequality” [17, 112-116].
We also get, in section 4, a theorem by O‘Neil [13]. In section 5 we ex-
tend to the case of quasi-normed spaces a result by Peetre [15] concerning
the equivalence between (4,,4,), , and the spaces (4y, A,)s,p,,», defined
there. Our method, which is different from Peetre’s, gives a very precise
estimate of the norms.

The main results of this paper have been summarized in a note [3] by
the author.

The problems treated in this paper have been suggested to me by
professor Jaak Peetre. I wish to thank him for valuable advice and for
his great interest in my work.

1. Preliminaries on interpolation spaces.

We consider couples (4,,4,) of topological vector spaces 4, and 4,,
which are both continuously embedded in a topological vector space <.
(In the sequel we let < denote continuous embedding.)

If (44,4,) and (B,, B;) are two such couples with

Ay A4, =« and By,B, <%,
and if 4 and B are two other spaces with
Acs/ and Bc<c 4,
we say that A and B are interpolation spaces with respect to the couples
(Ay,4,) and (B,,B;) if the following interpolation property is fulfilled:
For every linear operator 7' such that
T: 4,—~B,, T:4,-~B,,

it follows that

T. A-B.

Here we let the symbol 7': A — B denote that the restriction to A4 of
the linear operator 7' is continuous.

We shall in the sequel mainly be occupied with couples (A4,,4,) of
quasi-normed spaces. Most frequent in the applications are couples of
Banach spaces, but our theorems for quasi-normed spaces are also true
for normed spaces. A quasi-norm ||-|| on a vector space 4 is a functional
defined on 4 such that ([6, p. 162])

llz]] > 0 if 0,
lAz|| = |A| ||=||, where A is a real or complex number ,

le+yll = (el +llgl), kz1.
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In all the following sections except section 5 we shall restrict ourselves
to one very important interpolation method introduced by Peetre [14].
(An interpolation method is a method of constructing interpolation spaces
from a given couple of spaces.)

Let (4,4,4,) be a couple of quasi-normed spaces with 4,7, 1=0,1.
For every a € A5+ A, we define the functional

(Ll) K(tra’; AO:AI) = K(t7a) = infao+a1=a(“a0HAo+t“a‘l”Al) ’

where a, € A;, 1=0,1, and 0<t<oo. For every fixed ¢ this is a quasi-
norm on Ay+ A, and from the definition it is easy to see that K(t,a) is
a non-negative, increasing and concave function of ¢.

For 0<0<1,0<p=oo, the space

o0

dt
(L.2) (AO’AI)G,p = {“? acdy+4,, (t—oK(taa'))p7 < 00}

0

with the quasi-norm
{o 0]

dt 1/p
@]ty gy = ( |tk 7) ,

0

is an interpolation space and we have the following fundamental inter-
polation theorem [8], [14].

THEOREM 1.1. If (44, 4,) and (By,B,) are two couples of quasi-normed

spaces with A; <o/ and B;<%B,1=0,1, and if T is a linear operator
T: Ay~ B,, T: A, - B,,
with the quasi-norms My and M, respectively, then
T: (Ao, A1)o,p > (Bo, B, p

18 also continuous, and for its quasi-norm we have the so called convexity
wnequality
(1.3) M= MPOMP°.

Proor. From the definition of K(t,a) it is obvious that
(1.4) K(t,Ta; By,B;) < M K(Mt|Mya; Ay, Ay)

and from this inequality the theorem follows at once.
In the sequel we often write 4, , instead of (4, 4,)s,,-
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2. An estimate of K(I,a).
NoraTion: f(t)~g(t) < Cf(t)<g(t)=C-Yf (), C>0.

THEOREM 2.1. Let (44, 4,) be a couple of quasi-normed spaces and put

E; = (AgAy)g o = A4 i=0,1.

0i,q; 0; q;°

Then
(2.1) K(t,a; By, E,)

tm

~(f

0

oo

1/qo0 ds\ V1
(s%K(s,a; Ay, 4,))0 8) +t(f s K(s,a; A, 4,))" 8)

1M

if n=0;—0p, 0<0p<0;<1 and 0<qq, q; S oo

Proor. For the sake of simplicity we prove the theorem only when
G712 1. Put K(t,a; Ay, 4,)=K(t,a) and

an
d 1/90 0 d 1/q1
(2.2)  H(t,a) = (f (s‘ﬂoK(s,a))q"—f) + t(f (S—GIK(S,G/))QI _8_)
0 § 2 $
= L1+L2 .
By definition we have

(23) K(t,d; EO’EI) = infao+a1=a(”a0“Eo+t“a’1HE1)

00 /g0 00 Yo
= infﬂlwal:a [(f (s~eoK(3:ao))q0 ij) +t (f (s_olK(,s,al))‘h d_:> ] .

] 0

Suppose that

(2.4) la+blly; < k;(lallg,+IBly), ¢ =01,
and put

(2.5) k = max(ky, ky) .

Then it is obvious that

(2.6) K(t,a+b) £ kK(K(t,a)+K(t,b)) .

We now start showing that H(t,a) < CK(¢,a; Ey, E,;). If ay+a,=a is
any partition of ac B+ E, with a,€ E;, 1=0,1, then by (2.6) and Min-
kowski’s inequality

$1m 1 1/q0

d. 1/90 d
(2.7) k1H(t,a) < (6[ (8_0°K(3,a0))40£) + (Of (s“’°K(s,a1))q°;S) +
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1/q1

¢ d ® 1/q1
+ t(f (51K (s,a,)) _'f) + t(f (s K(s,a,)) iif)
1/ $ {1/ $

=5L+1,+1;+1,.

(If 0<gq, g1 <1, then the constant in the left member has to be bigger.)
We define

< Yqi
(2.8) J, = ( f (u—"fK(u,ai))qi-ui‘) =01,

0
From the definition of K(¢,a) it is easily seen that K(¢,a) is increasing

and that ¢t-1K(t,a) is decreasing. Hence we get respectively

S 8
Jg Ju‘oiqi“K(u,ai)W du 2 (s1K(s,a;))% f w0041 gy
0 0

= K(s,a;)%s™ % [(1 - 0,)g,]*

and
J¥ 2 fu‘oni‘lK (w,a;)% du 2 K(s,a,)% f w0 dy
s 8
= K(s,a;)%s™"%(0,9,)",
that is,

(2.9) K(s,a;) £ J;s%q % [min(0;; (1-6,))]"% = J;s%C;, 4 =0,1.

We can estimate I, and I, with the aid of (2.9):

o 1/q90
I, £ J,0, (J §r=000-1 dS) = tJ,C1(ngo) V%,
0
? a1
I, < tJ,C, (J $@o—0Dg1—1 ds) — Jooo(nql)—llql )
t]ﬁ?

For I, and I, we have the trivial estimates

I,£J, and I, =tJ,.
Thus
H(t,a) = C(Jy+J1),

where C'=Q(y™™2x(1/20;1/90) a5 5 » 0. If we now take inf over all parti-
tions ay+a,=a, we get
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H(t,a) < CK(t,a; B, E,) .

To show the remaining inequality of the equivalerice between H(t,a)
and K(t,a; Ey E,) we choose a,(t) € 4;, 1=0,1, so that

(2.10)  ay(t)+a4(t) = @ and ()|l 4, +tllas()lly, S 2K(¢ a)
for t>0. We now define a,’ and a,’ by

(2.11) a;/(t) = a,(tt), 1= 0,1.

Then ay +a,"=a and

(212)  K(s,a0'() < lag'Ollsy = lagt)s, < 2K(E,a) ,
(2.13)  K(s,0,'(t) S sllay (O, = slan(®)lLy, S 256 VnK(B,a) .
By the quasi-triangle inequality it follows that

(2.14) K(s,ay(t)) < KK(s,a)+K(s,a,'(1))) ,

(2.15) K(s,a,'(t)) < K(K(s,a)+K(s,a,/(t))) .

But @, +a,"=a is a special partition of a. Therefore

(2.16)  K(t,a; Eo, E,)

I o , ,ds 10 ¢ o, , L ds
< (Of(s b K (s,a,/(1))) —;) + t(!(s %K (s,ay(F)))" ;—)

1/q1

{111

1/go 3 1/q0
< (f (s"’o K(s,ao’(t)))qods> : + <f (8—90 K(s,ao'(t)))qods) E .
0

8 S
1M

t1m

o, , 1d8 1q1 o . , ld
+ t(bf (‘9 K(s:“l (t)))q ;) + t(f (s 0 A(s,al (t)))q _S_)

t1n

g

= K,+K,+K;+K,.

Introducing L, and L, from (2.2) we now get, in the same way as before
(cf. (2.9)),
(2.17) K(s,a) £ Lys™(qo(1—0,))V% if s

IIA

tl/n s

v

(2.18) K(s,a) < t1L,s%(q,6,)" if s 2.

From (2.14), (2.13) and (2.17) we get
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t1n 11

1/q0 1/go
(2.19) k'K, < (fs_"“q"'lK(s,a)q"ds) + (fs"’“q"“K(s,al'(t))‘l"ds)

0 0
S Lo+ 2K(87,a)t™(go(1 = 0p)) 7% < 3L, .
From (2.15), (2.12) and (2.18) we get

[e o] o0

Yq 1/q1
t(f's_oxfh-lK(S, a)%ds) + t(fshelq‘—lK(s’ao’(t))ql d3>

2% (23

(2.20) k1K,

IIA

I\

L, 4+ 2K (8, ) t1~01(q,0,)7Y9 < 3L, .

From (2.12), (2.13), (2.17) and (2.18) we get

(2.21) k1K, £ 2K(tVn,a)t™%" (q,0,) 1% < CL,
(2.22) k1K, £ 2K(tY7,a) %" (q,(1-0,))" < CL, ,
where C'=0(1) as 5 -~ 0. Thus we finally have

(2.23) K(t,a; £, E,) < CH(t,a).

REMmARK 2.1. With exactly the same technique we can estimate
K(t,a; By, E,) in the two extreme cases K(t,a;AO,Aolql) and

K(t,a; Agogr A1) The result in these two cases is
© ds a1
(2.24) K(t,a; Ay, 4g,q,) ~ t< f (s K (s,a)) —) ,
11101 §
$1/(1—0¢) s /g0
(2.25) K(t,a; Ay 4,) ~ ( [ K —) :
s

0

3. Interpolation theorems.
THEOREM 3.1. If (44,4,) ts a couple of quasi-normed spaces and (Eq, E,)

s a couple of interpolation spaces, where

E, = (4,4, 0<0;<1, B0, 0<g;So00, 1=0,1,

i,
then
(3°1) (EO’El)l,p = (AO’AI)O,p

and
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(3_2) O )—min(1/p; N/g0) (1 _2)~min<1/p;1/m) “a”(A A
041/0,p

IIA

“a”(Eo,E])o,p
< C-ll—max(llp;llqo) (1 _2)—max(]/p;]/q1) ”a“(A PR
- ! 0,41°6,p

Here 6=(1—2)0,+20,, 0<A<1and 0<p=oco.

REMARK 3.1. This theorem is an improvement of the so called reitera-
tion theorem of Lions—Peetre (se [8]). Besides that our theorem is true
even for quasi-normed spaces, the constants in the estimates of the norms
are better, in fact as we will show later on, they are the best possible
what concerns their dependence on A.

Proor or THEOREM 3.1. We first suppose that p=1 and 6,<0,.
From theorem 2.1 we get

AN
(3.3) lallgy, 1, = ( (E*K(ta; Bo, By))P t)

1M
® t ds\ Y\ P g\ 1P
) (J (t—l ( ‘f (S_OOK (8’ a))qo 5) ) 7t) +

0

© by @ 1/
(T (w4

= Iy+1;.

0%8

The constants occuring in the equivalence in (3.3) are of course inde-
pendent of .. We now make two changes of variables in I, and I,.
We first put s=¢""¢ and then t=17. We get

1

< 1/q0\ P 1/p
nt'r (f (1“’ (6[ (a“"’K(at,a))“%g) ) d—:) )

0

< o 1/q1\ P 1/p
nl/p (f (r—o (f (O-_OIK(O-T’a))QI d_:.) ) %:_r)
1

0

(3.4) I,

(3.5) I,

For the further estimates we distinguish between several cases.
1° g, <p. Jessen’s inequality (cf. [2, p. 148]), implies

: 0/ 1/qo0
(3.6) I, < pi» (f (f(a—oot_gK(o_T a)) dr)q P@) a

g
0
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; ¢ g \u
= P (f o~ 0(00—0) (J( 0K (t,a))? dt)%z da) ®
t ¢
o 0

1

do 1/90
= 771“7 (J O_~qo(00—-0) -;) ”a”Ao,p = C}"‘]/QO Ha“AOyP ’
0

where C is independent of A.
2°. If ¢, <p, we get in the same way

(3.7) I, £ O(1=2)Yall, -
30' If QO Z p’
1

P/QO 1 do
— ~0 ~0o —
(3.8) A—<f( K(o7,a))® > Of K(o7,a))? . — = BC.

0
For, when 0<s<1,

8

Bz [ (o K(r.a) doy (’_L“’“’)”Tp [ a1t do
o ST
0 0
= K(st,a)? s7%(p(1—0,))1,
that is,
(3.9) K(st,a) < BUs(p(1—09)" .
But

Pl90
A= (f a""‘”’_lK(ar,a)”o""(”‘q")K(o‘r,a)q"””da) ,
0

so with the estimate (3.9) we get

as]

B (p(l — 00))(qo—p)lqo .

F200)
g for-1 K( o, a)p do‘) ( B(q"“”)/p(p( 1— 00))(qo—p)/p)p/qo

If we use the inequality (3.8) in formula (3.4), we get

C T a0 K( a))p‘.lfif
fof T (o7, oz

o( g ) lollagy = CA2lalLay, -

(3.10) I,

IIA
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4°. If g, 2 p, we get in the same way

(3.11) I, = CQ1 _l)_llp”a”Ao,,, .
From (3.6), (3.7), (3.10) and (3.11) we now get
(3’12) ”aH(Eo,El)Z ) < ¢ )—max(1/p;1/g0) (1 _}L)—max(l/mllm) ”aH(AOyAl)Op X

With exactly the same methods one can then show that

(3.13)  llaliimy,my,, = CATRUPIO) (1 — 2)7minUPSIID Yig 10 1,

If p<1 the same principles for estimating will work, the constants C
however will be worse depending on the fact that L,, 0<p<1, is quasi-
normed. The dependence on 4 will not be affected. We can get rid of the

assumption 0, < 0; by observing that
K(t,a; Ay, 4,) = tK(1[t,a; Ay, 4,)
which implies that

(3.14) (AO’AI)O,p = (ApAo)l—e.p with Ha”(Ao,Al)o,p = “a“(Al,Ao)l—O,p .

Thus if 6,>0, we get from (3.14) and from that part of theorem (3.1)
which is already proven

(315) 1@l g s = NWlcttgrdpai sy = 1@t trry

with
0= (1—(1=2))8, + (1 —2)6y = 0.

REMARK 3.2. Remark 2.1 shows that theorem 3.1 is true even in the
two extreme cases, i.e.,

(3.16) (Ag, Ey);, = (Ag,A4y)p, Wwith =20, and 0,=0,
(38.17)  (EpA4y)s, = (Ao, A1), With 6=(1-2)0;+2 and 6;=1.

REMARK 3.3. The constants of theorem 3.1 are the best possible with
respect to their dependence on 4 and 1—4, for if 4y=L,; and 4,=L,,
it is well known (see also section 4) that every increasing, concave func-
tion f(¢) with f(0)=0, is a K(t,a). Let therefore a,,a, € L, + L, be such
that

K(t,a,; L, Ly) =t for 05t<1,
1 for 1<t,

I

and
K(t,a,; Ly, L) =t for 0<t<1,
to  for 1<¢t.
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Rather simple computations now show that

@l s, (02llagape,) = OGP (1= 2)12)
“%”(EO,EI)M (H“z||(440,A1>6,,,)71 = O(A—]/qo(l “l)_llql) ’

as A—->0and A ->1.

THEOREM 3.2. If (A4,,4,) and (By, B,) are two couples of quasi-normed
spaces and T a linear operator such that

T: (A, A1)ngpe = (BosBrloyg,  with the norm M ,

T: (4o, 44),, . — (Be, B1) with the norm M, ,

71,P1 61,91

and if n=1—=Ano+in, 0=(1-2)0,+20,, 0<i<1 and p=gq, then
T: (4y,4,1),, = (Bo,By)oy with the norm M ,
where
M < CMPA2MA20 (-2
and
a; = min(1/q; 1/g;) —max(1/p; 1/p;) +1/p—1/g, i=0,1,

Proor. If p=<gq, then

(3.18) lollty 4, = Cllallity,ap,, [0(1—0)]P-12,

For K(t,a) is increasing so that

(3.19) lallp, = f t-0-1K (¢, a)r df > f s~w-1K (s,a) ds
0 t
2 K(t,a)?¢- (0p)*
and K(t,a)t~! is decreasing so that
t t
(3.20)  falf, 2 f s~w-1K(s,a)0 ds = K(t,a)Pt-» f §1-0p-1
0 0
= K(t,a)pt-o(1—9)-1p-1
thus
(3.21) K(t,a) < Cllajl,, 612 (1—0)/r |
If ¢= p, then
(3.22) lalg, = f 1-00-1K (¢, a)ot-0a-0 K (t, @) dt
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< [allf,Co?la|§ ;P 6@-P'P (1 - g)a-P/p

and (3.18) is proved.
By theorem 3.1 we get

min(1/g;1/ge) (1 in(1/g;1/q1)
(3.23)  |ITallg,my,, < C* (1 — Ay | Tl

and from (3.18)

(3:24) T alkzy gy gpng S CAVPY2(1= P24 | Tal\q,

»B| 01;?1)1777 :

Further the interpolation theorem 1.1 yields

(3.25) 1Tz, gpB0,0020 = Mo Mit Ol post onr
and finally form theorem 3.1 we get

(3.26) ”aI](A”0 pordnyp iy < O xmex(Uip;lipo) (1 — 2)~max(1/p;1/py llallitg, 4, -

Combining (3.23), (3.24), (3.25) and (3.26) we get the convexity inequality
of the theorem.

4. Concrete examples.

4.1. Lebesgue and Lorentz spaces. Let (X,u) be a measure space.
The Lebesgue space L, =L,(X,u), 0<p= oo, is the space of all u-meas-
urable functions such that

1/p
(4.1) lallz, = ( [ 1a@e d/z) < oo,

X

In this space ||a||Lp is a norm if 1<p=<o and a quasi-norm if 0<p<1.
The Lorentz space L,,=L,  (X,u), 0<p, g<oo, is the space of all
measurable functions such that

dt 1/q
(4.2) lallzy = (T (P ax(t))e 7) < o,

where a*(f) is the decreasing rearrangement of |a(z)| on the intervall
0=t<oco. (See [2, pp. 260-299].) Here |ja|| Ly is a quasi-norm. Observe
that L,,, =L, and [al, =lall,-
Peetre [14] has shown that
t
(4.3) K(t,a; L,,L,) = fa*(s) ds.

0
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This result has been generalized by Krée [5] to yield
v 1/r
(4.4) K(t,a; L, L) ~ <f a*(s)" ds> , O<r<oo.

0

From (4.4) it is easy to derive the following lemma.

LeMMA 4.1. If O<r<p<co and 0=1—r[p, then
Ly Leo)op = Ly -

The norms |aliw, Lop,p @nd llallL, are equivalent.
Now we can further generalize (4.4).

THEOREM 4.1. If 0<py<p;Soco and 1/ax=1[p,—1/p,, then

t* 00

1/po 1/p1
K(t,a;L,,L,) ~ (f a*(s)Po ds) +t (f a*(s)P ds) .

0 tr

Proor. For the sake of simplicity we prove the theorem only when
1<po<prSoo. By (4.3), lemma 4.1, and theorem 2.1 we have

(4.5) K(ta; L,,L,) ~ K(t,a; (Ll,Lm)l_l,pomo,(Ll,Lm)l_l,pm)
e s P 1ipo % s P 1/p
- (f (8_l+llp°f“*(u)d'w> °c£.9_>) N t(f (S*I”Ll/mja*(u) du) 1 ’E) 1.
0 0 8 to [} 8
As a*(s) is decreasing, [ a*(u)du = sa*(s), thus
tx 8 Po ds >
(4.6) f(s“”””“fa*(u) du) — = Ja*(s)"" ds .
s
0 0 0

From Hardy’s inequality (see [2, pp. 239-243]) we get

>

e 8 0 7.\ 1/ 1/po
(47) (f(s—1+1/m fa*(u) d’u,)p %-9) Do < poljpo (Po — l)vI/Po (fa,*(s)ﬁo d8) .
0

0 0

The remaining term of (4.5) is treated in the same way and the proof is
complete in the case 1 <py,<p, < oo. If 0<py<p, S0 we can either use
Krée’s formula (4.4), or copy the proof of theorem 2.1.
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For the Lorentz spaces L,, we have an analogous result, which is
proven exactly as theorem 4.1. For similar results see also Oklander
[10] and [11].

THEOREM 4.2. If 0<py<p;Soo, 0<qpq, S0 and 1/a=1[/p,—1/p,.
then

t* 00

d 1/q0 1/q1
K(t,a; Lpo’qo, Lm.ql) ~ (f (8llzma*(s))qo ;3) 4t (f (sl/Pla*(s))QI OE) .
S

0 1
As a special case we get

(4.8) K(t,a; L,,,L,) ~ sup,.,s""a*(s) .
It is rather simple to sharpen (4.8) if r=1, then K(t,a; L, ,L,) is equal
to the least concave majorant of fa*(t).

For Lorentz spaces we have an analogue of lemma 4.1.

Lemma 4.2. If O<r<p<oo, 0<g<oo and O=1—r7[p, then
(Lr,ooLoo)B,q = Lp.q °

Theorem 3.1 and lemma 4.2 give us the following, generalization of
lemma 4.1 and 4.2.

THEOREM 4.3. If 1/p=(1—2)[pe+4[py, 0<py Pi<o0, Dotp; and
0< ¢y 91,9 < oo, then
L

»p,q°

(L oL

podor Lopa)ag =
~—min(1/q;1/go) (] _ 3)—min(l/g;1/q1)
(4.9) Ci (1-2) lalz,,,

|i“|kL,,0,qo,Lpl,ql)1,p
-1 7—max(1/g;1/q0) (1 _ 7)—max(1/g;1/q1)
c-12 (1-2) lalz, , -

IIA

IIA

REMARK 4.1. In general the interpolation parameter 0 in (4o, 4,)y,
cannot be 0 or 1, but in the case of Lebesgue and Lorentz spaces it is
easy to see that the following formulas are true:

(4-10) (Lr’Loo)O,oo = Lr’ (Lr,oo’Loo)(),oo = Lr,oo )
and
(4'11) (Lr’Loo)l,co = Loo’ (Lr,oo’Loo)l,oo = Loo H]

where 0 <r < oo.

As an application of the above results on L, and L, ,-spaces we shall
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prove Riesz’s and Marcinkiewicz’s interpolation theorems and also
Calderon’s extension of the Marcinkiewicz’s theorem. All the theorems
will be true if 0<p, g < co.

THEOREM 4.4. (M. Riesz’s interpolation theorem [16]). If T is a linear
operator such that

T: L, — L, withthe norm M;, i = 0,1,
i i 1

and if 1/p=(1=A)po+4[py, 1g=(1—2)/go+1/q1, 0<O<1 and 0<p<
q < oo, then
T: L, L, with the norm M ,
where
M < COMP*MP*.

REMARK 4.2. Riesz’s theorem is true without the assumption p<gq.
Our method like most other pure real proofs does not work if p>q.

Proor oF THEOREM 4.4. By theorem 4.3, (3.18), theorem 1.1 and
finally theorem 4.3 again we get

lmin(llq;l/qo)(l — J)min(/g; gD

(412)  |Taly, < ClTalq, 1,

(4.13) HTaII(qu’qu)M =C ||Ta]]<qu,qu)l’pAl/p—l/q(1 — A)\p-lia |
(4.14) 1Tl gy, 2,05, = Mot~ M llalia,, 2,y -

(415)  lallgypyyy S Ol 2= (1 — gyt

We now combine (4.12)-(4.15) to

(4.16) [Tl

<C M01_1 Mll“a”L lmin(O,qo—l—q-l)+min(0,p“1~p0"l) (1 _ l)min(O,qu-Q"1)+min(O,p“1~p1“1)
= D b
but gt —g =g~ 1), &' —¢7 = (1-A)(q,~* — o ") and analogously
for p so that the constant in the right member of (4.16) is O(1) as 2 — 0
and A — 1. The above proof will only work if p,+p, and ¢,+¢,. The
cases when p,=p, or q,=¢; follow from the fact that

lallg, = pA(1—2)alz, 1., -
TrEOREM 4.5. (Marcinkiewicz’s interpolation theorem [9].) 7 is a li-
near operator such that

T: L, - Ly, withthe norm M;, 1= 0,1,

00
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then, if qo+qy, 1/p=(1—2)[po+4/py, 1/g=(1-1)[go+4/q1, 0<A<]1, and
0<p=gs oo,
T: L, L, with the norm M ,
where
M < CMPAMy*)-19(1— )V,

ProoF. In the same way as in the preceding theorem we get
(8.17)  [Taly, S OMG=4M 2 jaly, A71/8mnONe1m) (1 — jyasminip-ipy
q = P ’

where 11/P~VPo and (1—2)/P~1P1 are O(1) as A - 0 and 4 - 1.

REMARK 4.3. The dependence on 4 and (1—21) in the ‘“‘convexity in-
equalities” of theorem 4.4 and 4.5 is the best possible. See Zygmund
[17, chap. XII].

THEOREM 4.6. (Calderon’s interpolation theorem [1]). T is a linear
operator such that

T: Ly — Ly with the norm M;, 1 = 0,1,

a0

then, if Do%py, Qo¥q, 1Yp=(Q—A)po+2p;, 1g=(1—2)/qe+Aq:,
0<i<l, and r<s,

T: L,,— L,, with the norm M ,

q,8
where

M é CMol—J.Mllll/r—l/s—l(l__}“)l/r—l/s—-l .

This theorem is proven exactly in the same way as the theorems 4.4
and 4.5.

4.2. Lip spaces. As another application of theorem 3.2 we will prove
a theorem by O‘Neil [13] about interpolation of Lip spaces.

TaEOREM 4.7. If T is a linear operator such that
T : Lipx; —~ LipB; with the norm M;, i = 0,1,

then, if 0<oy<o; 21, 02Bp,B151, O<ld<l, a=(1-Axy+4ix,, and
B=(1—2A)Bo+ 1By,
T : Lipx — Lipf with the norm M ,

where
M < CMQ*MP>.
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Proor. It is well known in the theory of interpolation spaces (see [14])
that

(4.18) Lipa = (C,,C)

*,00 ?

where C, is the space of continuous functions and C, is the space of con-
tinuously differentiable functions. The constant in the equivalence of
the norms of the spaces Lipx and (C,,(,), . is independent of x, so
the theorem follows at once from theorem 3.2.

5. The equivalence between (dq,4,), ;. p, and (4 4,), 4, -

For any couple (A4,,4,) of quasi-normed spaces we define the space
(AgsA1)o.pyp, (s€€ [8], [15]) to consist of all a € A5+ A4, for which

(5.1) “a”(A.,,Al)O,po.pl

) d po /% d ey
= inf max [(J(t’ellao(t)lle)p°7t) ; (J (t1_0[|al(t)||A1)7’17t) ] < oo,

ag(t)+ai(t)=a o o

where a,(f) e A;, 1=0,1, 0<6<1 and 0<p,,p;Soo. In this space we
have the quasi-norm |||l 4, 4., . defined by (5.1). The main result of
this section is the following theorem.

THEOREM 5.1. If 1/p=(1—0)[py+0/p,, 0<O0<1 and 0<py,py,p= o,
then

(5-3) (AO’Al)B,po,pl = (A07A1)0,p
and
(5'4) Oo[[a“uo,,al)o,p = ||alI(A.,,Al)t‘l,po,p1 = Cl”“’”(Aq,A;)O,p ’

where Cy and C, are independent of 0.

REMARK 5.1. Our theorem is an improvement of a theorem by Peetre
[15]. The constants C, and C; are better, besides our theorem is true
even for quasi-normed spaces.

In the sequel we write 4, ,
and |lall4,, 46,02 respectively.

and “aHﬂ,po,Pl instead of (A07Al)0,po,p]

Lemma 5.1. 4,,,=4,, and
(5-5) ”“”a,p,p —*<—‘ ”a“o,p é 20““”0,;9,1;’
where

Math. Scand. 26 — 13
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(5.6) C=1 if p21,
= 2"+ §f 0<p<]1.

Proor. It is obvious that
) < dt 1/po o di 1/p1
inf [ ( | (t—ouaou)m;) - ( | (t“"llallul)”‘—) J
Gdotar=a ] \y - 0 t
é 2”“”0,1)0,1)1 .

By the definition of K(t,a; 4, 4,) there are a,(t) € 4, and a,(t) e:Al
with a,(t) +a,(t)=a such that

IIA

(5~7) ||a”0,po,pl

o)y, < K(t,@) and tllay(t)l4, < K(ta),
thus

Sl de\1’» 0 df\1/»
(5.8) ( J (¢ llo(t) gy ) 7) = ( | (t-"K(t,a))";) ,

0
00 d 1/p
(5.9) Q (B0 llay(t) )7 —tf)

that is, lallyy,p = llallep -
Now let a,(t) +a,(t)=a be an arbitrary partition of @, then

IA

(o]

( [xEay ‘?)

0

IIA

00 dt 1/p
(5.10)  |aly, = ( f (t9K (t,a))? 7)

0

T de\ 1P
= ( f (=2 (lag(t) |4 + tllaa(t)]La,) Y _tf>
0

00 df\1'» 2 dt\'?
<C [( f (0 lag(t)]] 4o)? 7) + (Of (“”Hal(t)llm)"y) ]

0

where C is defined by (5.6). Taking the inf over all partitions ay+a,=a
we get by (5.9)

llallep = 2Clalls,p,p »
and the proof is complete.

To prove theorem 5.1 it suffices, according to lemma 5.1, to show that
Ao pop,=40pp if 1/p=(1—0)/py+0/p,, which is an immediate conse-
quense of lemma 5.3 below. To prove this lemma we need a reformula-
tion of the definition (5.2) of the quasi-norm |ja|| 6,00, (see 5.11 and 5.12).
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For every a=ay+a,, a;€ A;, i=0,1, and for every 20 we now
define the function

(5.11) fla,x) = inf lladlly,, @ = ap+a,.
llaoll 4y=%

From the definition of f(a,x) it is easy to see that f(a,x) is non-negative,
decreasing and convex function of x. If we use the function f, we get the
following definition of |lally 5, p, :

(5’]‘2) ”ano,po,pl
Q 1/ < 1/p1
= :01’(];'5 max [(of (tOw(t))Po d—tt) Po; (! (1-0f (@, w(t))Pr) ?) P] ,

where the inf is to be taken over all non-negative measurable functions
w(t).

The main idea is now to show that we will come close to the inf in
(5.12), if we choose w(f) so that the two integrands ¢=?Po~lw(t)™ and
t1-9Pr1f(q w(t))P* become proportional. For this purpose we define

00

(p1—po)l
(5.13) a(a) = O®—PVIP (f (tl“’f(a,t)o)p '_?) P1—P0 p.

0

(In the sequel we keep a fixed and so we do not write a in the formulas).
The function v—1(s) defined by

(5.14) v-1(s) = “P/Poplsp/Plf(s)_P/Po , §=0,

is increasing, continuous and v~1(0)=0. Accordingly v»~! has an inverse
function v with the same properties. Thus (5.14) is equivalent to

(5.15) t = ap/pomv(t)p/pr(v(t))~plpo
which obviously is equivalent to

(5.16) atPly(t)Po = (ORI E (y(8))Pr

LemMma 5.2. With the assumptions of theorem 5.1 we have

(I( e )llpo ( J, (E-of o) dt) 1p1
_ g-up (f (B-07 (1) 0 dt)llp.

0
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Proor. Making a change of variables by putting ¢=v-1(s) we get
(5.17) [ruop= = [oxsyrtsm a(e-a(s)
0 0
which after an integration by parts yields
T -0 podt ~1g-14-1(g)—Pob gPo7® 10<> 1(g)—100 gPo—1
(5.18) f(t v(t)) 7= [—po 10 1v=1(s) P%sP0]° + 6~ fv' (8) POst1ds .
0 0
If [Q(t-0v(t))Pdtft<oo, it is easy to see that lim,  ,t-%»(t)=0 and

lim, | t-%v(t)=0, so the term within brackets in (5.18) vanishes. ¥From
the definition of v-1(s) (5.14) and (5.13) we finally get

(5.19) 61 f v-1(s) PPl dg = §-1 &~ Piim f(s)P® §PopO/p1+po—1 o
0

ds

(s*=f(s))? .

= -1, P/P1

o—8 °—z3

00

= grolp <f (-0 £ (s)°) C_'lsf)Pom‘

0

This proves one half of the lemma. The other one is obtained in exactly
the same way.

LeMMA 5.3. With the assumptions of theorem 5.1 we have

00 dE\Y/? ol de\ 1P
OHWUWﬂwwﬂ swmméW%ﬂWWMﬁ),
0 0
where
(5.20) C = 2~max(po/p1;Pi/po) if PPz,

= 9-max(po/p12; pi/pe?) if py Or py<1.

Proor. From lemma 5.2 and (5.12) we get

lo 0]

(5.21) lallopoz, < 6777 (f =P %f)

0

Let now w(t) be an arbitrary measurable function and put
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(5.22) M= M(w) = {t; t=0 and v(t) 2 w(t)}
= {t; t20 and f(v(t)) 2 f(w(t))}

and [M the complement of M. Then by lemma 5.2, Minkowski’s in-
equality and (5.16)

(5.23) I = (f(tl‘af(t oy dt)l/p

0

_ o-1gup [(T(t ol )llpo (T(tl 95 (o dt)llpl]
1/po
f (t—"v(t))p"flt‘t) "

2-19Yp " [( f (t-2v(t))P El;) 1/m+ (
M cM
d 1/p1 d 1/py
#(Jeroor) " ([ eseord) |

cM

IIA

de\ e AN
= 2-1gup [( (t-ﬂv(t))po _) + 0‘—1/1»0< (tl 0f (t) )m ) +
Jrere) el
dr\ Ve de\/p
+ oc”pl( (E-0v(t))Po ~) + ( (tl“’f(v(t)))’”1 —) ] .
o) e

The constant ¢’ in Minkowski’s inequality is

(5.24) ¢ =1 i popr21,
= gmaxWpoilip0-1  if poor p, <1 .

If we now substitute w(t) for v(f) in the four last integrals of (5.23), all
these integrals will increase, and if we put

1/

T dr\ ' T dt
(5.25) I, = <f (t*”w(t)”"—}) and I, = (f(tl’of(w(t)))”IT) )

0
we get with the aid of (5.13)
(5.26) 1 £ 2-16v2 ' (I, + §~Po—PirPo J~@1—po)/po Ilmlm +
+ @®o—p/PP1 [(P1—P0)iP1 Io”"”" +1,).
If we put K,=1,0"PI7!, K,=1,6YPI' and p,/p,=¢ in (5.26), we get
(5.27) 1 £ 210" (Ky+ KM+ K7+ K,) .
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It is easy to see that (5.27) implies

(5.28) max (K, K,) = (20') ™% @olP1;Pr/po) |
that is,

(5.29) I < up(20")mex@olpi; il max (I,; 1,)
or

(5.30) <f (-0 (1)0)° d{)lm

0
00 1/ ol 1/p

< gup (20')max(po/pl;mlpo)max [(J(t—ﬂw(t))po ’?) p"; (f (tl-ﬂf(w(t)))pl d;) P] '
0 0

The inequality (5.29) is true for all measurable functions w(t). Taking
the inf over all such functions we get the remaining inequality of lemma
5.3.

Proor or THEOREM 5.1. From lemma 5.3 we get, if

¢ dt\v»
J = 6-1p (f (er-of (1)0)» 7) >
0
the inequalities
(5.31) Cod = lallopep, = J
and
(532) 03'] é ”a”a,p,p é J ’
where C, is the constant C defined by (5.20) and
(5.33) Cy =21 if p21,

=2-Ur if p<1.

(5.31)—(5.33) and lemma 5.1 obviously imply the theorem.
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