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A THEORY OF CAPACITIES FOR POTENTIALS
OF FUNCTIONS IN LEBESGUE CLASSES

NORMAN G.MEYERS
Introduction.

This paper develops a theory of capacities for potentials of functions
in the Lebesgue classes %,,,, where u is a fixed positive measure on
Euclidean n-space and 1<p<oo. This contrasts with the classical or
older theories which are concerned with the case p=2 and with poten-
tials of measures or what we will call the space .#;. The theory for
& ,.» parallels the classical theory in many ways and I have taken some
pains to draw the parallel as closely as possible. However the two are
not completely parallel because the special advantages of %, over %,
permit us to treat a much broader class of potentials and often in a
simpler way.

Section 2 is concerned with potentials of functions in £, with
respect to a positive lower semi-continuous kernel, k. It introduces a
capacity Cy,,., and studies such questions as convergence of potentials,
convergence of sequences of potentials under the weak and strong
topologies in .Z,.,,, capacitary distributions, capacitary potentials and
the capacitability of sets. The capacitability results become important
later in proving certain theorems in proper generality.

Section 3 presents a parallel theory for the case .#; and its correspond-
ing capacity C,,,. Here it is apparently necessary to make further
restrictions on the kernel and though I have not attempted to make
the class of kernels as large as possible I have striven for a reasonable
degree of generality.

In Section 4 I study the capacities as functions of p. The main results
are presented in Theorems 10 and 11 and give continuity properties
of the capacities; in particular they relate the classical and non-classical
capacities by showing in considerable generality that

Ck;m;p(K) g Ck;l(K) as p — 1+
for every compact K, m being Lebesgue measure.
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A different capacity cy,,, and its counterpart c,,, are introduced
in Section 5. These capacities unlike the previous ones are based on
potentials of measures in %;. The two capacities are however closely
related as is shown in Section 6. In particular Theorem 14 gives the
equality

¢ ;:;I‘;P(A) = (Ck;,u;p(A ) )I/p

for all sets A, where cp, u;p 18 the outer capacity corresponding to ¢,
This permits one to state results for c,,., which would be difficult
to reach in any other way; for example the capacitability of analytic
sets. Theorem 16 then shows that in the case of compact sets of finite
capacity the C,,,.,-capacitary distribution can be simply expressed
by means of the c,,,.,,-capacitary potential.

This completes the general theory. The reader should note that while
I have confined considerations to a single Euclidean space many of the
results hold in greater generality; for example in the context of pairs
of locally compact Hausdorff spaces or groups. The rest of the paper
is concerned with the case of Bessel potentials (Section 7). The theory
of the previous sections is sufficiently general so that all of it applies
intact to this particular case. In addition I apply it to get more specific
results, the most interesting of which is the relation between Hausdorff
measure and the Bessel capacities (for example see Theorem 21).

Variants of the capacities C,,,,, appear in the literature in at least
two different connections. First in the general theory of functional
completion and the trace theory for strongly differentiable functions
(see [1], [2]) and second in the theory of removable singularities for
solutions of quasi-linear elliptic equations of second order (see [12]).
Recently Littman (see [11]) has studied removable singularities for
higher order equations but has found it necessary to introduce a different
capacity. Though ours and his are very closely related they appear to
be different; the exact relation between the two is, however, unknown.

1. Preliminaries.

The underlying space in this entire paper will be the Euclidean n-space
E* n21; all point sets are tacitly assumed to be subsets of E. By
z,y and z we denote points of £». By G and K we denote open and
compact subsets of E” respectively.

A function whose values are real numbers or + oo will be called real
valued and if further, the function assumes only values greater or equal
to zero it will be called positive.
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DzrFINITION 1. For the purposes of this paper we define a capacity
to be a positive set function C given on a g-additive class of sets &,
which contains the compact sets and has the properties:

(i) C(@)=0, G=the empty set.
(ii) If A, and A4, are in & and 4, < A4,, then C(4,)<C(4,).
(i) If 44, ¢=1,2,..., are in &, then C(U;2,4,)S32,0(4,).

If in addition C has the property
(iv) For every A e %, O(A)=supg 4C0(K),

then C is called an tnner capacity. If C has the property
(iv)" For every A e %, O(4)=inf; ,O0(®),

then C is called an outer capacity.

Note that if F'<c% is a o-additive class and for all A we define
Cf'(A) = ianCA'ef'C(A,) .

then C¥’ is a capacity defined on all subsets of E™ and agrees with C
on &', In particular, if we take &’ to be the class of all open sets then
C¥’ is an outer capacity and we denote it by C*.

If a statement holds except on a set 4 where C¥(A4)=0, then we say
that the statement holds C-a.e. If f and the elements of the sequence
{f;} are real valued functions which are finite C'-a.e. and for every £>0

Cf ({2 | Ifix)—f(@)| 28}) — O,

then we say f; — f in C-cap. If for every &> 0 there is a set 4 depending
on &, such that

C¥(4) < e and f,— f uniformly on E*—4 ,
we say that f; —» f C-a.u.

DErFINITION 2. By a measure we mean the completion of a real valued,
o-additive set function u, defined on the Borel field and having the

property
w(K) is finite for all K .

'm’ will stand for Lebesgue measure in E* and we will generally drop
m’ from the notation when no confusion can result; thus [...dz means
integration with respect to 'm’.

If u is a measure and 4 is a y-measurable set, we say that u is con-

Math.Scand.26 — 17



258 NORMAN G. MEYERS

centrated on A if u(B)=0 for all sets B which are u-measurable and
contained in E"—A.

Let x4 be a measure and A a Borel set. By u|A4 we shall mean the
measure which for every Borel set, B, is given by

plA(B) = p(AnB) .

DEerinITION 3. Let A be the vector space of all Radon measures.
Though these elements are measures only locally we use the same nota-
tion as for measures. We define a topology on .# by saying that a net
{1}, & € &, converges to u weakly in A if

limy [¢(e) dp,(2) = [9(2) du(a)

for every test function ¢; that is, ¢ is finite real valued, continuous and
has a compact support. The cone of positive elements, which are neces-
sarily measures, will be denoted by .#+ and this illustrates a procedure
we will follow generally without further comment; a superscript + on
a symbol for a set indicates the subset of positive elements.

If ue A and fis a u-measurable function on every bounded open set

and
j‘K f(x) du(z) exists and is finite for all K ,

then we define the Radon measure fu by
{fu @) = f p(x) f(2) du(z) ,
where ¢ is any test function.

DeFiNiTION 4. If g€ A+ and 1<p< oo, then £, , will be the Banach
space of all y-measurable functions f such that

U lp = ( [ir@ye d‘u(x))llp .

%, will stand for the Banach space of all measures with norm
llull, = total variation of u < .

We will deal with weak topologies in these spaces. We take the usual
weak topology in %, and in #; we take the topology induced by .#.

2. The capacities C,,.,,-

DEeFmntTION 5. Let k=Fk(x,y) be a positive, lower semi-continuous
kernel defined on E"x E™. Let » and u be in . If o0=v,Ppy, is the
tensor product, then o € # with respect to the product space. ¢ has
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a canonical Jordan decomposition o =o0t—¢-, where o+ and o~ are in
M +. We define

ko) = [k@y) dov(w,y) - [ Ky do(wy).

provided one of the terms on the right is finite. So that k(v,u) can
always have a value we put

k(v,u) = + 00 otherwise.

Let 6, denote the Dirac measure concentrated at x. Then k(z,u)=
k(d,,p), and k(»,y) is defined similarly.

Lemma 1. The functions k(v,u), k(zx,u) and k(v,y) are lower semi-con-
tinuous functions on M+ x M+, E"xX M+ and M+ x E" respectively.

The lower semi-continuity of the second and third are simple conse-
quences of the lower semi-continuity of the first. For a proof see Lemma
2.2.1 of [7].

DeriNiTION 6. Let £ be a kernel as given in Definition 5 and let
ue M+ If Aisan arbitrary point set, then

Ck;y;p(A) = Cy;p(A) = inff”f”;’:;py
where the above infimum is taken over all f in Z5,, such that

k(z,fu) 21 on 4.

We follow the convention that the infimum over an empty set equals
+o00; thus C,,,(4)= + oo if and only if no such f exists. We shall call
a function f in &/, such that k(z,fu) 2 1 on 4, a test function for C,,,,(4).
One can easily show that

Op;p(A) = inff{infa:eA k(x’f.“)}ap = {supfinfxeA k("”:f.u)}_p!
where fe Zf., and ||f]|,,,<1.

TueoreM 1. C,., s an outer capacity defined on all subsets of E™.

Proor. Conditions (i) and (ii) of Definition 1 are trivial to verify.
To verify (iii) we may as well assume that 352,0,.,(4;) < +oo; then
C,.p(4;)< + 00 and for every £>0 there exists a test function f; such
that
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Ifil2p £ C,n(4y) + 27
Put f(x)=sup,fy(x). Then (f(2))P < 3:Z,(fi(»))? which implies

(1) IFIEp = Zeallfillfip < Z321Cup(4s) + €.

Since k(x,fu) 2 k(z,f;u) it is clear that f is a test function for C,,, (U2, 4,),
and (iii) easily follows from (1).

We have shown that C,,, is a capacity and it remains only to verify
condition (iv)’ of Definition 1. Again we may assume that C,,,(4) < co.
Then if 0<e<1 there must exist a test function for C, ,(4), call it f,
such that

Iflfip = Cpip(4) + ¢

Put f,=(1—¢)1f and let

Q= {x| kz,f,u)>1}.
Since k(x,f,u) is lower semi-continuous in z, G is an open set and since
k(z,fu)Z(1—&)" on 4, G> A. Therefore f, is a test function for C,,(Q)
and we have

(2) C,n@® 2 M2, S C

wp

(AYQ—g) P +e(l—é)P,

(iv)’ is now an easy consequence of (2).

TurorEM 2. For all fe L, ,, and 0<a < oo we have
CI‘;P ({z | lk(x.fulza}) = a"’”ﬂl’,’;p .

Proor. Note first that |k(z,fu)| <k(x,|f|lp) and therefore it is suf-
ficient to take f e &}, ,. But then a~f is a test function for the capacity
of the set under consideration and Theorem 2 follows directly from
Definition 6.

TaroreM 3. If fe Z,., and |k(x,fu)]=+oc0 on A then C, ,(4)=0.
If C,.,(A)=0, then there exists f € &, such that k(z,fu)= +oco on 4.

Proor. The first statement follows by letting @ — oo in the statement
of Theorem 2. To prove the second statement take a sequence of test
functions for C,,,(4), {f;}, such that

”f'i"p;p é 2-¢ .
Set f=321f:
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CoroLLARY. If f=f, +f, u-a.e., where f, and f, are in &L, ,, then

)
kz,fu) = k(x.fip) +k,fon) O, p-ae.
and

k(z,afu) = ak(z,fu) C,,-ae.,

where ’a’ 18 any finite constant.

Proor. The only points x, where the above equalities can fail are
points where one of the terms on the right is infinite. Since these are
sets of C, -capacity zero the equalities must hold C, -a.e.

THEOREM 4. Each of the following statements implies the succeeding one:

i) fi—>f strongly in Z,.,,.
(ii) k(x,fpu) > k(z,fu) in C,,,-cap.
(iii) There exists a subsequence {f;'} such that

k(x’fi’”) - k(x,f,u) Cp;p-a"u'
(i) K@ f ) > M@ fu) Cprae

Proor. The potentials k(z,fu) and k(xz,f;u) are finite C,,,
the preceding Corollary and Theorem 2,

B)  Oup{z] k@ fin) — k(z.fu) 2 })

-a.e. From

Cusn({2 | k{2, (fe=S)m) 2 £})
_p”fz _f”p;p .
From (3) we can immediately infer that (i) =- (ii).

Now suppose that (ii) holds. Then given &>0 there must exist a
subsequence {f,} and sets {4,} for which

IIA Il

k(w, fyp) — k(z,fu)] < j—'  except on 4,
where
C,.p(4;) < €279,

Hence k(z,fup) - k(z.fu) as j-> oo, uniformly on E"—U;4;, where
C,.p(U;4;)Se. A simple diagonalization argument will now prove (iii).
That (iii) => (iv) is obvious.

CoroLLARY. Suppose f;, i=1,2,...,are in L,.,. If 32,|f;| s in &,
then

Sio1 k(z,fin) = k(z, (Z5Z1fr) Cpsp-aee.



262 NORMAN G. MEYERS

Proor. Set f;(x)=max(f;(x),0) and f;~(x)=max(—f(x),0) wherever
fi(@) is defined. Then 337,f;+ and 332,f;~ are in %, .. If the result
holds for f;* and f;~, then it will hold for the f;. Hence we may assume
that f,(x)=0. By Theorem 4 a subsequence of the partial sums

27 ke, o)
converges to k(x, (3;o,fi)u) C,.p-a.e. But since all terms of the series
are positive the full series must converge wherever the subsequence of
partial sums converges, thus proving the result. We also see that the
partial sums converge C,.,-a.u.

TuroreMm 5. (i) If f; - f weakly in £Z,,,, then

H
lim inf k(z,fu) < k(z,fp) < lim sup k(z,fiu) C,,
(i) If f; - f weakly in &

wp?

-a.e.
then

k(z,fu) < lim inf k(x,fu)  everywhere
and
k(z,fu) = lim inf k(z,f;u) C,,,-a.e.

Proor. Suppose f; - f weakly in &, ,. Then by the Banach-Saks
Theorem a subsequence {f;'} exists such that

g5 =471 z'g—lfi,

converges strongly to f in %, . Therefore, from Theorem 4, a sub-
sequence {g,'} exists such that

k(x,fu) = lim k(z,g,/u) O, -a.e.

o

(i) now follows by observing that
lim k(x,g;/p) 2 lim inf k(z,f;/u) Z lim inf k(z,fiu) C, ,-a.e.

This proves the first inequality in (i). The second follows by replacing
fiand f by —f; and —f respectively.
We now turn to the proof of (ii). If f; —f weakly in &} ,, then
clearly
fip > fu  weaklyin A .

The first statement in (ii) is then a consequence of Lemma 1. Assertion
(i) and the first part of (ii) clearly imply the second part of (ii).

TraEOREM 6. If A, t A, then C, ,(4,) 1 C, ,(4).
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Proor. Without loss of generality we assume that the sequence
C,.p(4;) converges to a finite limit, I. Let f; be a test function for
C,.p(4;) such that
(4) 1B S Cupl(4d + Vi .

Since the f; form a bounded sequence in £}, a subsequence { ft,} con-
verges weakly to a function fe %} ,. From Theorem 5,

k(x,fu) 21 ond; C,,ae.

Hence

(5) k(z,fu) 21 ond C,,-ae.

Let B be the subset of 4 where (5) holds. Then from (4) and the weak
convergence

(®) Cuinld) = C,iy(B) < If s S 1.

The desired result is now a simple consequence of (6).

We can now prove a lower semi-continuity property of the capacities
which is an analogue of Fatou’s Lemma.

CoroLLARY. If {4,} 18 any sequence of sets, then
C,.p(liminf, A4,) < liminf, | C,.,(4,) .

PROOF. Let/ B=1iminfi_>°°.A,‘= Uj nkngk a:nd Bi= U;:=l nkngk.
Then

(7) B;+B.
Therefore, from Theorem 6,
(8) C,.»(B) = lim; , C(B;) < liminf, | C(4,;).

Turorem 7. If K; | K, then C,,(K;) | C,.,(K).

Proor. This proposition holds not only for C,., but for any outer
capacity. Let @G> K; then for sufficiently large values of ¢ we must

have K;<=@. Therefore
(9) lim C, (K,) £ C,. (&),

and since C,, is an outer capacity (9) must hold with G replaced by K;
we can then easily infer Theorem 7.

DzrintTION 7. If C i8 & capacity, we say that a set 4 is C-capacitable if
supg < 4 C(K) = infg ,C(@) = C*(4) .
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Capacitability has been studied in a very general context by Choquet
[4]. Theorem 1 of [4] together with our Theorems 6 and 7 give

TrEOREM 8. All analytic sets, and hence all Borel sets, are C,,.,-capacitable.

Theorem 8 is an interesting result in itself but its main importance
to us is that it will allow us to extend results known for compact sets
to all sets, thus giving a more general and aesthetically pleasing theory.

We now take up a brief discussion of capacitary distributions and
potentials for the C,,,. Let 4 be any set such that C, ,(4)<co. We
consider the following variational problem:

(10) min,|fIF,,

the minimum being taken over all f in £, , such that
k(x.fu) 21 on 4 C,-ae.

We will call such a function f, a test function for A in (10).

DernrTiON 8. We call a solution, f, of problem (10) a C,. ,~capacitary
distribution of A and we call k(z,fu) a C,,,-capacitary potential of A.

TrrEOREM 9. If C,.,(4) < oo, then A has a unique C,,,-capacitary distri-
bution f; feLry, IfIEy=Chnld) and

[ @) g(a) dutz) 20
for all ge 2., such that
k(z,gu) 2 0 on 4 C, -a.e.

Proor. The set of test functions in (10) is obviously convex and by
Theorem 4 is strongly closed and hence weakly closed in &,,,. The
existence of a unique minimizing function, f, now follows by well-known
techniques of the calculus of variations. Now f+(z)=max(f(x),0) is
also a test function and |f*|f,=<I|f|f,; therefore f=f+ so that

feZ}.,. If Bis the subset of 4 where k(z,fu) <1, then
Cn;p(A) = Ou;p(A_B) s “fnﬁ;p = Cu;p(A) ’
so that |]f||f;p=0mp(A). Finally, if ge.‘Z’,‘;p and
k(z,gu) = 0 on4d C,,ae.,

then f+ig is a test function in (10) when ¢=0; therefore
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d
G| = [P g e 2 0,

thus completing the proof.

We now present another corollary which is closely associated with
some later work; see Theorem 16.

CoroLLARY. Let 0< 0, (4) <oo and let f be the C, ,-capacitary distri-
bution of A. Then for every ge L., we have

[17294u(@)| = Cyiplat) sup, (e, gu) -

Proor. The inequality is clearly true if sup,|k(x,gu)|=occ. On the
other hand if sup 4 |k(x,gu)| =0, then from Theorem 9 the left side is also
zero; so let us assume that

0 < a = sup,|k(x,gu)] < .
Since k(z,fu) is the O, -capacitary potential of 4,
Kz, (f—a-lg)u) 20 on 4 O, -ae.
From this and Theorem 9 we then have

[#71 (1-a719) dute) 2 0

or
ff”‘lgd,u(x) < aff" du(x) .

Since the same inequality holds with —g in place of g we have proved
the inequality.

CoRrROLLARY. Let A, 1=1,2,..., and A be sets with capacitary distribu-
tions f; and f respectively. If A<liminfd; and limC,. (4;)=C,.(4),
then f, — f strongly in &,.,. In particular this conclusion holds if 4,1 4
or the A; are compact and A, | A.

Proor. The f; form a bounded set in #, , so that a subsequence
{/i;} must converge weakly in £}, , to some function g. From Theorem 5
k(z,gu)z1 on A C, ,-a.e. Therefore g is a test function for A in the
variational problem (10); further from the weak convergence

(11) l9lfip £ Cusn(4) -
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But then
(12) g=f and  |fillp > Wfly a8 j—>oo.

From (12) it follows that f; ;= [ strongly as j — co. By a simple argument
one concludes this is true for the full sequence.

3. The classical capacity Cy, .
For the sake of completeness and comparison with the capacities

Cy;u;p W€ NOW summarize some known results concerning the classical
capacity Cy,;. The conditions we give on the kernel are not the most
general known but still contain most cases of interest.
DerintTION 9. If 4 is an arbitrary point set, then
Cin(4) = Cy(4) = inf|ul,,
where the above infimum is taken over all u € #,* such that
k(x,p) 21 on 4.

We call such a measure u a test measure for Cy(4).

The natural analogues of Theorems 1-4 and their Corollaries are true
for C,.

The proofs proceed as before except with minor changes; for example
in Theorem 1 the f; are replaced by positive measures u; and f is replaced

by u=3Z1-
To carry the theory beyond this point it is apparently necessary to
place additional restrictions on the kernel k(z,y).

DerintTION 10. We say that a kernel k(z,y) € X~ if
(i) k(xz,y) = ky(lz—-yl),

where k,(r) is a positive, decreasing, continuous function of r for 0 <7 < co
which is finite for 0 <7 < o0;

(ii) limr—n«okl(r) =0.

In place of Theorem 5 one has:
If ke X and p; — p weakly in L+ with ||u)| £ M < oo, then
k(x,/l) = lim inf k(x,”i) Cl‘a«.e.
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The above result follows from the work in [9] and the fact that %
is regular.
Also:

If k € A then the natural analogues of Theorems 6—8 and their Corollaries
are true for C,.

DEeriniTION 11. Let A be an arbitrary set such that C;(4) <. Con-
sider the variational problem

min,, flull; ,

where the above minimum is taken over all u € %, such that
k(z,u) 21 on A Ci-a.e.

We call a solution, u, of this problem a C-capacitary distribution of A
and we call k(x,u) a C;-capacitary potential of 4.

One can now easily show

If Cy(A)<oo, then A has a Ci-capacitary distribution and every C,-
capacitary distribution of A is in L.

4. The capacities C,,, as functions of p.

Here we propose to study the behavior of C,,,(4) as a function of p
for a fixed measure y, a fixed kernel £ and a fixed set 4.

DrriNirion 12. Let &£, be the vector space of all u-simple functions;
by u-simple we mean that the function is u-measurable, vanishes except
on a set of finite u-measure and assumes only finitely many values
each of which is a finite real number. If 4 is an arbitrary set we define

Sp;p(A ) = infs HSHP

;o 2
where the above infimum is taken over all s in £, * such that

k(z,su) 21 on 4.
Lemma 2. 8, ,(K)=0,.,(K) for all K.

Proor. It is obvious that S, ,(K) = C,,,(K), so we need only prove the
opposite inequality. For this purpose we may assume that C,,,(K) < cc.
Let f be a test function for C,,,(K), let 0<e<1, and put f,=(1—¢)1f.
There exists a sequence of functions in %,*, {s;}, such that

(13) 8; ~f, stronglyin &} .



268 NORMAN G. MEYERS

I claim that

(14) k(x,s;,u) 2 1 on K for ¢ sufficiently large .

For if (14) is false, then for arbitrarily large values of ¢ there exist points
z;€ K where k(x;,s;u)<1. The points z; have a limit point z in K.

From Lemma 1 we must then have k(x,f,u) <1 which is not possible.
Therefore from (13) and (14)

Sup S (1—8)? O p(K)

and the desired inequality follows immediately.

Lemma 3.
(i) C,,,(K) is an upper semi-continuous function of p.
If 0<|lully< oo, then

(ii) (C,,p(A)/llull )P 358 an tncreasing function of p
and
(iii) O, (K) 18 continuous from the right.

Proor. Consider the set of all functions se & .+ such that
k(x,su) 21 on K.

If this set is empty, then by Lemma 2, O, ,(K)= oo for all p and there
is nothing more to prove. If the set is not empty, then by Lemma 2,
C,.p(K) is the infimum of continuous functions of p and hence
upper semi-continuous thus proving (i). The assertion (ii) is a conse-
quence of the Holder inequality applied to test functions for C,,,(4),
and (iii) follows from (i) and (ii).

TeEOREM 10. Let k(z,y) satisfy the condition that for every K there
exists R such that

f(li/l%R) SUPyex k(il?, y) d,u(y) < oo and suplvlzR,ZGK k(x,y) < 00,

Then O, ,(K) 18 upper semi-continuous and continuous from the right in
P, 1<p.

Proor. In view of Lemma 2 we may assume that C,,,(K) < oo for all p;
for if even one were infinite then all would be and the result would hold.
Now choose 1<¢<2 and restrict considerations to those values of p
such that

gSspsq wheregl+gl=1.
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Since, according to Lemma 2, C, ,(K) is an upper semi-continuous
function of p it must attain a maximum value on the interval g<p<g¢q’
and must thus be bounded. That is,

Cop(K) £ M < 0o for gSp<q’.
For each value of p choose a test function, f, for C, ,(K) such that

IfIE, < C () + ¢,
where 0 <e<1. Now

(15) Ker) J@) dty) < ( [

. 1/p’
Wiz ) ds)) ™ 1l

{lv]zR}
1/p’
S ([ ) 00))* (50Pgz F@9) [

From our assumption it is then clear that for R sufficiently large and
independent of p,

SUPgex (vIzR) k(x,?/)f(?/) d.u'(y) <e€,

and hence if we set »=u|{|x| <R}, then (1—¢&)~1f is a test function for
C,.n(K). Now

C,p(K) 2 Cyp(K)
since if g is a test function for C,,,(K) and we extend it by setting g(x)=0
for |z|2 R it will be a test function for C,,,(K), while

“g”p;p = "g"';p *
On the other hand we have

C,p(B) £ (1=6)2 [[fIEy S (1—6) (C,p(K) +6) .

“p

We conclude that C,,,(K) - C,.,(K) uniformly on ¢<p=q’ as B — co.
Now according to Lemma 3, C,,,(K) is continuous from the right;
therefore C,,,(K) is continuous from the right for g<p<q’ and finally
for 1<p.

Remark. If we replace the assumption

f iz SPeek K(@:Y) du(y) < oo
by .
k(z,y))2 d )
.[ {lvI=R} (sUPsex k(2,9))? du(y) < o

where ¢ is a fixed number, 1<¢<oo, then we can prove by the same
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method that C, ,(K) is continuous from the right for 1<p<gq'. Ex-
amples, which we will not discuss here, show that C,.,(K) is not generally
continuous from the left.

We now turn to the case p=1.

LemMa 4. C(K)=8,(K)=inf,||s-m|,, where the infimum is taken over
all 8 in £,+ such that k(x,s-m)=1 on K.

Proor. The proof is similar to that of Lemma 2. Again we need only
prove S;(K)<C,(K) in the case when the latter is finite. Then given
0<e<1 there must exist a test measure for Cy(K),u, such that

lully S Cy(K) + ¢

Put u,=(1—¢)~'u. There exists a sequence of continuous positive
functions {f;}, such that

fi > U Wea'kly in 'gl and ”f'i”l = ”;ucHI .

This can be proved by mollifying x4, with a positive continuous kernel
J =J(z) having compact support and [J(x)dr=1. Then, for example,

1) = & [Tie-9) dutw)

Since each f; can be approached strongly in %, and from below by a
sequence of positive functions in %, + we conclude that there exists
a sequence of positive functions {s;} in #,,+ such that

si >k, weaklyin Z;  and [y < sl -
The remainder of the proof is the same as that of Lemma 2.
We now show that under quite general circumstances the classical

capacity is the limit of our capacities. We put C,.,=0C,.

TaEOREM 11. Let k(x,y) satisfy the condition that for every K there
exists R such that

a

J‘(IIIIZR) (SupzeKk(x:y)) dy < o,

where q is a number, 1 Sq<oco. Further let k(x,y) satisfy the condition
lim, —ooBUPxk(Z,y) = 0.

Then C,(K) is continuous from the right at p=1.
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Proor. We first need a replacement for (i) in Lemma 3. Just as
before we can show that C,(K) is an upper semi-continuous function of
p for 1=p. Now proceed as in the proof of Theorem 10 but restrict p
to 1=p<q’ and in place of the test functions f use test functions s in
Z.t. Replace (15) by

1/p’ . i’
f(lulaR) k(z,y)s(y)dy = (f{'ylzR)(k(x,?/))‘ldy) (SUPgy 2y k(@ )27 |,
for 1<p and

f(IUIZR) k(z,y)s(y) dy < |sll,8upyy1zmy *(®,Y)

for 1=p. Put v=m|{|z|<R}. Again we consider the function C,.,(K)
and for p=1 we take
inf, [ls ,

the infimum being over all s in #,,* such that
k(xz,sv) 21 on K.

The resultant function of p is continuous from the right for 1<p. The
proof is completed by showing that these functions tend uniformly to
Cp(K) in a right neighborhood of 1.

RemARES. If k € X" then open sets are C,-capacitable and Theorem 11
yields the following characterization of C;(4):

Cy(4) = infgo g supg g lim, 1+ Cp(K) .

Simple examples show that the kernel k must decrease to zero at infinity
with sufficient rapidity in order for Theorem 11 to hold.

5. The capacities Cpe

In this section we introduce new capacities which are based on measures
as test elements and we develop some of their simpler properties.

DeFintTION 13. Let € A+, 1 <p<oo and 4 € &#,. Here &, denotes
the o-field of sets which are »-measurable for all measures » in Z;*.
We then define

¢u;p(4) = sup|ply,

where the above supremum is taken over all measures » in %,;* such
that » is concentrated on 4 and

@, Y)lysp < 1.
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We will call such a » a fest measure for c,.,(A).

From Definition 13 one can see that for 4 € #,

cp;p(A) = (inf.”k(%y)lh;pl)‘l = (inf,supfk(v,f,u))’l 3

where v € Z;+, is concentrated on 4 and [v[,=21 while fe &}, and
Iflly;p<1. Without harm we may restrict either |||, or ||f||., to equal
one.

THEOREM 12. c,,, 18 an inner capacity on F,.

Proor. Clearly c,, has properties (i) and (ii) of Definition 1. To
prove that it has property (iii) let 4=U:2,4, and without loss of
generality assume that the sets 4; are disjoint. Let » be a test measure
for c,.,(A4) and set »;=»|4;; then »=33,», and »; is clearly a test
measure for c,,,(4;). Therefore

Il = Zezalldlls S 35216,5(40)
and (iii) follows immediately. We now show that ¢, ,, is an inner capacity.
To this purpose let 4 € &, and let » be a test measure for c,,,(4). If
Kc A, then v|K is a test measure for ¢, ,(K) and
SuPx < 4 [WKlly = [Py -
Therefore we must have
suPKCAcp;p(K) = ﬂ;p(‘A‘)
which implies that c,,, is an inner capacity.

We can form the corresponding outer capacity c. .

DermviTioN 14. Let 4 € &#; then v is called a ¢, ,-capacitary distri-
bution, and k(»,y) is called a c,,,-capacitary potential for 4 if » is a test
measure for ¢,.,,(4) and

rinl ) bl = )

TrEOREM 13. If A is a closed set such that c,,(4) <o and
lim,_,c,.,(4,) =0 where A, = An{x]||z|>r},
then A has a c,,-capacitary distribution. In particular, if c,.,(K)<oo
then K has a c,,-capacitary distribution.

Proor. Let K;t+ A as ¢ - co and let »; be test measures for ¢, ,(K;)

such that .
Pilly £ €y;p(4) a8 ¢ o0,
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The existence of such »; follows from Theorem 12. A subsequence {vii}
then converges weakly in #;* to a test measure for c,,(4),». Now
vif[A,. is obviously a test measure for 4,; therefore

Hw,-’,IATH1 Sc,p(dg) =¢ forrzR.

Thus

vild—A4,l; 2 |pglly —e  for r2R,
and we then infer

vll, 2 ”le -4, zc¢

= P

(A) — ¢

from which the desired result follows.

DEeriniTiON 15. Let 4 € &#,. We define
¢(A4) = sup|ply,
where the above supremum is taken over all measures » in %;+ for which

supyeEﬂk(v>y) b 1.

We call such a » a test measure for ¢,(4). Clearly ¢,(4) may also be
defined by
¢y(4) = (inf,sup, k(v,y))?,

where the infimum is taken over all measures » € #;* such that » is
concentrated on 4 and |||, = 1.

Our theorems concerning ¢
the same.

wp Will also hold for ¢,; the proofs are

6. The relation between C,.,and ¢, , .

We will show in Theorem 14 that the capacities C, , and c,,, are very
closely related. The method of proof is due to Fuglede in [8], where he
has shown, among other things, that C;(K)=c,(K), and in [10] where he
has extended his previous results to capacities of the type considered
here and proved a result overlapping Theorem 14.

THEOREM 14.
(i) c¥ (4)=(C,,p(A)V7 for all sets A.

’

(ii) ¢,,5(A4)=(0,;p(4))"/? for all analytic sets A.

Proor. Following Definition 6 we have seen that

(Cuin(K))TVP = sup| gy, ainbeex k(@ f0),  fE Ly

Math. Scand. 26 — 18
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Hence

(CspK)) VP = 8UP|i gy, <1 10 )y 1m0 K (2, f0)

uip=

where fe £}, and v e £+ and is concentrated on K. Following Defi-
nition 13 we have seen that

(Cuip(K)) ™Y = indy), g SUPY g1, <2 KV, S1) 5

where again fe £/, and ve #;* and is concentrated on K. In the
weak topologies of #; and &, the sets over which » and f respectively
vary are compact and convex. The following extension of von Neu-
mann’s Minimax Theorem is known; see [6] where an even more gene-
ral result is derived.

Let V, be a real linear space and V, a Hausdorff real linear topological
space. Let H<V,, K<V, where H i3 non-empty, convex and K ts non-
empty, convex and compact. Let @ =D(x,,x,) be a real valued function on
H x K, @(x,,%,) > — 00, which 18 concave in z, for each fixed z, and convex
and lower semi-continuous tn x, for each fixzed x,. Then

sup,, inf, @(z,,2,) = inf,, sup, D(z;,%,) .

We conclude that
Cup(K) = (Ou;p(K))l/p :

From Theorem 12 and Theorem 8 we further conclude

Cup(G) = (Cmn(G))lm’

wp
and since c:;p and C,,, are both outer capacities, (i) follows.

From (i) and Theorem 8 we infer that analytic sets are ¢ ,-capacitable.
Since analytic sets are in &, this observation and Theorem 12 imply
that

Cup(4) = ciy(4), A analytic.
(ii) now follows.

ReMARK. In the case p=1 it is true that ¢,(K)=C(K). However
the equality ¢,*(4)=C,(A4) apparently requires additional restrictions
on the kernel k(z,y); for example k € X is sufficient. For further infor-
mation see [9] where this problem is discussed in great generality and
detail.

In particular Theorem 14 implies that ¢, and C,., have the same
null sets. These sets have already been characterized in several ways.
It also implies that sets of infinite capacity are the same in both cases.
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We now give a simple characterization of compact sets of infinite
capacity.
THEOREM 15. The following statements are equivalent.

(i) CoplK) = +oo.
(i) c,,p(K) = +oo.

(iii) There exists a point x' € K such that k(z',y)=0 u-a.e.

Proor. From Theorem 14 we know that (i) and (ii) are equivalent.
Hence it suffices to prove the equivalence of (i) and (iii). Suppose that
(i) holds. If we take a covering of K by a finite number of cubes then
the intersection of K with at least one of the cubes must have infinite
C,.p-capacity. By a familiar nesting procedure we can then find a point
2’ € K and a sequence of closed cubes {I';} where

N{a'y asi—>o.

But then it follows from Theorem 7 that C,,,(x')=oco. Since there can
be no test functions for €, ,(=') we must have

k@', pld) = 0

for every u-measurable set A and we get (iii). On the other hand if
(iii) holds, it is obvious that no test function can exist for C, (') so
that C,.,(x') = oo, and hence O, ,(K)=o0.

Lemma 6. If ve A+ and k(v,y) € £ ., then for all sets A we have
v*(4) £ k@,)l|up Cin(4) -

Proor. Let C, (@) <o and let f be a test function for C,,,(&). Then

[ k0169 f@) duty) = [ bz fw) do1G@) -
Since k(x,fu)=1 on G@ we have from Holder’s Inequality
‘V(G) é ”k(‘v?y)”y;p’ ”f”[‘;p ’

from which we can easily infer the desired result.
The following proposition establishes the connection between the two

capacitary distributions, the most important of the results being the
potential representation of the C,,,-capacitary distribution.
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THEOREM 16. Let A be an analytic set. Then

(i) (c,;p(4))~t=inf, sup,k(y,gu)=sup,inf, k(y,gu), where ge L}, with
9ll;p=1 and y € L1+, is concentrated on A, |yl;=1 and k(y,y) € L, .

(ii) 4 has a c,;,-capacitary distribution different from zero if and only if
the functional k(y,gu), where y and g vary over the sets defined in (i), has a
‘saddle point’ (y',g’) (that is, k(y',g'n) S k(y,g'n) and k(y',g'n) 2 k(y’,gu)),
where k(y',9’'u) > 0. In this case

(cp;p(A))_l = (7",9'.11), v = c,u;p(A) 7,9 f = cy;p(A) g,:
where v and f are the respective capacitary distributions.
(iii) If A has capacitary distributions v and f, then

(f@)P = (c,p(A))P 2 k(v,y) p-a.e.

Furthermore v 1is concentrated on the set B={x| k(z,fu)=1}nA4 and
c,..(B)=c,. (4).

“p (374

Proor. By Theorem 15, c,.,(4)=(0,,,(4))'/?. Hence
((;M,(A))—1 = inf sup, k(y,gu) = sup,inf, k(y,gu) ,

where g€ L., l19ll,,=1, ¥y € £+, is concentrated on 4 and |jy|,=1.
If ¢,,,(4)>0, then inf sup,k(y,gu) < oo, and it thus does no harm to
demand that k(y,y) € Z,.,. If ¢, ,(4)=0, then k(y,y) ¢ Z,., if y#0
and again (i) must hold.

We now turn to the proof of (ii). Suppose 4 has non-zero capacitary
distributions » and f. Put »'=(c,,,(4))'» and ¢’ =(c,,,(4))*f. From
Lemma 5 it follows that k(y,g'u)2(c,.,(4))~*. On the other hand

k(y',gu) < 16 Pllusp = (Cusn(4))

Hence (y',g’) is a saddle point and k(y’,9'u)=(c,,,(4))*. We now prove
the converse. Since (y’,g’) is a saddle point it is easily shown from (i)
that k(y',g'u)=(c,,n(4))"t. Hence k(y,g'u)Z(c,,,(4))~!. From this it
follows that

k(z,g'u) = (c,,p(4))2 on A O, -ae.;

for if this is not true then k(x,g'u) <(c,,,(4))~ on some compact subset
K, of non-zero capacity. We may then take y equal to (c,,,(K))™!x
(a c,,p-capacitary distribution of K) and derive a contradiction. It now
follows easily that f=c, ,(4) g’. On the other hand

k(y',gu) = k(y',g'u) = (c,;p(4)).
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Hence |[k(',4)|l,;p = (¢,;5(4))~* from which we have v=y'c,.,(4), com-
pleting the proof of (ii).

If ¢,,,(4)=0, then (iii) obviously holds so we consider the case
¢,;p(4)>0. From (ii)

(17) k(.fu) = cu;p(4) = fllup -

Since [[k(v,y)ll,,,»=1 we must have

k@y) = (F@/Ifllyp?*  p-ae.

which gives the potential representation. Further, since » is concentrated
on the set where k(x,fu)=1 and has total variation c,,,(4), it follows
from (17) that » is concentrated on B. Since B<A we then have
cu;p(B) = cu;p(A ).

Our next task is to extend the potential representation to all capacitary
distributions, f.

CorOLLARY. Let 2 be a dense subset of 5., and let k(x,y) be such that
@ € D implies k(x,pu) ts continuous and tends to zero at infinity. Under
this condition, if 0< C,,.,(A) < oo and A has the C,,,-capacity distribution f,
then there exists v € £+ such that |p|l;=c¥ ,(4), suppr< A and

(f@))P-t = (chp(A)P1k(r,y) wp-a.e.

Proor. There exists a G,-set H where AcH< A and C,,,,,(H) =0, ,(4).
In turn there exists a K,-set, S, where ScH and C,,,(8)=C,,,(H).

It is easy to see that f is the capacitary distribution of §. Let K;t S
and let {»;} be a sequence of c, ,-capacitary distributions of the K.
Further let f; be the C,,,-capacitary distribution of K;. Then

(fi@)Pt = (¢, p(Kp))P 2 k(vy,y)  p-a.e.

Since the », form a bounded sequence in .#,, a subsequence converges
weakly in %, to a measure ». Without loss of generality we assume it is
the full sequence. Then, if ¢ € 2,

f k(x, pp) dvy(x) ~ f k(x, pu) dv(z).
Thus
[ ¥00) 90) dute) > [ 10,9 9t0) dsw).-

On the other hand f; - f strongly in % ;p and hence f;7-1 — fP-1 weakly
in Z,... Also c,,(K;) 1c¥,(4). It then follows that
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[ G@P= o) duty) = (ohp( )~ [ 0,9) 90) duty)

which implies the representation. That suppy<A is obvious, so it re-
mains only to evaluate |j]l,. To this end let Z € suppw. Since »; converges
to » weakly, there must exist a sequence of points z;, where z, € supp»,
and z; > Z as ¢ - co. From Theorem 16, k(x;,f,u) <1, and hence Lemma 1
implies k(Z,fu) <1 or

k(x,fu) =1 everywhere on supp» .

From the representation formula we conclude |, 2=cy,(4); but from
the weak convergence the opposite inequality also holds and hence
equality.

REMARKS. The kernel k& will satisfy the conditions of the above Co-
rollary if for each K and «,

ka(x,y) du(y) < o and tends to 0 as |z| — oo

and
lim, ,., [ _[k(z,9) - k@y)] du(y) = 0.

If A is a bounded set, then we can dispense with the condition

lim oo [, ke9) duty) = 0,

and in the general statement, with the condition lim,_, . k(x,pu) =0.
For kernels which satisfy the conditions of the above Corollary and
the additional condition

(18) k(v,y) = 0 p-ae., ve L, implies »=0

this gives a simple and natural extension of the concept of ¢, ,-capacitary
distribution. Given any set A with 0=_<_c,:p(A)<oo we can define its
capacitary distribution to be the unique measure » such that

(f@)P = (ctp(A)P 1 k(v,y) p-ae.

In the case of analytic sets this agrees with the c,.,-capacitary distribu-
tion if the latter exists. (18) is satisfied in many cases of interest. If
k satisfies (18) and the conditions of the Corollary, we get the following
convergence result for the capacitary distributions ».

Let Ay, 1=1,2,..., and A be sets with capacitary distributions v; and v
respectively. If A<liminfA, and limey},(4;)=c},(4), then v, > v weakly
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tn #,. In particular this conclusion holds if A;+ A or the A; are compact
and A; | A.

7. Bessel potentials.

We now turn to the potentials which are of principal interest in this
paper. As references for the following formulas see [2] and [13].
The kernels k(z,y)=g,(x—v) (g9, also depends on n) where

(19) g (@) = 274+ Ba=in [({x) 1 ol Ky o(|a]),  «>0.

I’ stands for the Gamma function and K, stands for the modified Bessel
function of the third kind of order », where g,(z) is an analytic func-
tion of z except at =0 and g, (x) > 0. Obviously g, is in %, and has a
Fourier transform given by

(20) 9.(8) = (2m)7¥n(1+|€2) =,
where
$(E) = (2m)-in f o(x) & dz  for g e L, .
From (20) it is obvious that
(21) ga*gﬂ = goH-ﬂ .

The behaviors of g, at =0 and x=oc are of particular interest. We
have as z - 0

(22) gu(@) = 27277 I($(n— o)) I'(3e) 7 f|*~™ + o(|a|*~™) ,

O<ax<n;

(23) gn(@) = 2" I (dn) 2 logla| =t + O(1);
(24) d,(x) is finite and continuous at x = 0, a>n.
As # - o0 we have
(25) g (x) ~ 2-¥4a-Da-in-D [(x)-1 [g[He-n-D ¢-lol
Letting r = |z|, we have

0g, 2 X

o & = —(2)HnteAgin [(fa) 71 [ Ky, ,9)(]2]) < O

for r>0.
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In general the asymptotic behavior of the derivatives of g, is given by
the crude but adequate estimate

(26) | (3)q9,<x)

< conste-tl  for |x|>1,
or

where the constant depends on ¢ and «.

Let & be the space of rapidly decreasing infinitely continuously
differentiable functions and &’ the space of tempered distributions.
If Te%’, then

PN
gu*x T = (2n)in g, T

from which it follows that g,, under the convolution, maps & and &’
onto themselves in a one-to-one manner.

DeriniTION 16. We now introduce the capacities corresponding to
the kernels g,. We set

Ba;v = Oﬂa;mm and ba;p = Cgusm;p > l<p<oo;
we set
Buy = Cppn and by =5

THEOREM 17. The kernels g, satisfy all the assumptions concerning
kernels made in Sections 1-6 and therefore all the previous results apply
to their potentials and their corresponding capacities B,,, and b,.,,, 1 < p < co.

TuroreM 18. If fe L, 1 <p, then given >0 there exists G such tha
B,.,(G) <& and the restriction of gf to E"—G is continuous.

Proor. There exists a sequence {y,} such that y;e % and y; > f
strongly in #,. Since g,*y; is a continuous function the rest follows
from (iii) of Theorem 4.

We now prove a regularity theorem for capacitary distributions and
capacitary potentials.
TureorEM 19. If 1<p and 0< B, (A4), then

(i) the capacitary distribution f is a strictly positive, lower semi-con-
tinuous function,

(i) f ¢s finite B, -a.e.,
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(iii) f is @ C®-function in E™— A and has an exponential order of decrease
at infinity of A is bounded,

(iv) of a<n, then fe £, for all g,
max(l, p—1) £ ¢ < max(p, (p—1)n(n—«)?)

and we can replace max (1, p—1) by 1 if A is bounded.
If a>mn, then fe Z,, where g=max(1l, p—1) and we may take g=1
tf A is bounded; furthermore f is continuous and tends to zero at infinity.

Proor. The basis of the proof is the Corollary to Theorem 16 from
which

(27) (f@)P-t = gxv(2),
where » € £+ with
suppr < 4 and ||, = B, ,(4).

Since g, is strictly positive f is strictly positive and since g, *v is lower
semi-continuous so is f. From Section 3 we have g, v finite B, ;-a.e.
and hence the same is true for f. This completes (i) and (ii). If xe B~ A4
of more generally x e E®—suppv, it follows from the continuity of

(0Jox)g,(x) for x#0 and the estimate (26) that
(0/0)P (guxv)(x) = ((0f0x)Pg,)*¥(x) .

Continuity of the right side will now follow from the same facts. Thus
g,*v is a C®-function on E"— A4 and f must also be since it is strictly
positive. To complete the proof of (iii) we note that if 4 is a bounded
set, then (25) implies

f(x) < conste-i@-D7'el  for || sufficiently large.
If o <n, then Young’s Inequality shows
(28) gxveZL,, 1sr<n(n—o)-t.

From (28), f € £,_, if p2=2; on the other hand if 1<p<2, since fe L,
and from (28), fr-1 e .#,, Holder’s Inequality gives fe #,. The upper
bound on g follows immediately from f € ., and (28). Note that the upper
bound gives us mew information only in the case xp>n. Finally if 4 is
bounded, we easily see from (iii) and fe.#, that fe &,.

If x >n, then g xv=g,_*(g,*») for 0<e<x—n. gxve £, while g,_,
is a bounded (continuous) function. It is well known that in such a
case the convolution is continuous and tends to zero at infinity. There-
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fore f has the same properties. That f e .Z, follows just as before, which
completes the proof.

ReMmarKs. Theorem 19 can be strengthened in several respects. Firstly
f is actually an analytic function on E"»— 4. Secondly in the case & >n,
f is Holder continuous and if « >n+k, k=0,1,2,..., f will have Holder
continuous derivatives up to the order k. All the results in Theorem 16
can be used to improve the regularity of the capacitary potential g, xf.
Thus from (iii), g +f is a C*-function (in fact analytic) on E»—4 and
has exponential order of decrease at infinity if 4 is bounded. For
example the latter statement is a consequence of

gurf(2) = SuP{|y[<}|z|)9a(-’”—?/) ff(i'/)d?/+SUP(|y|>§|x|)f(?/) fga(?/)dy .

The increased smoothness in f which we have from (iv) will be reflected
in increased smoothness of g xf but we will not go into details.

It is worth noting that when ap=<n it is not generally possible to
increase the Lebesgue exponent of f beyond p. For if fe L, ¢>p,
then g,xv€ %, ;. But then for 4 closed this implies B,.,-1v(4)>0.
Since (g¢/p—1)’<p, later considerations will show this is not always
possible.

8. The relation between measure and capacity.

The rest of the paper is devoted to working out the relation between
Hausdorff measure and capacity. We begin with the case of n-dimen-
sional or Lebesgue measure. This case is only of passing interest but the
relations take a particularly simple form.

Lemma 6. B,,,(4) and b,,,(A) are invariant under orthogonal trans-
formations and translations of the set A.

This is obvious.

THEOREM 20. Let 1 <p. The following relations hold :
(i) If ap<n, then B, ,(A)2x(m*(4))m-erm,

(ii) If ap=mn, then B, ,(A)Zx%(m*(4))® for 0<e=<1.
(iii) If ap>mn, then B, ,(A)Z%>0 for A#0.

In each case x is a strictly positive constant independent of the set A
but dependent on the numerical parameters present.
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Proor. It is easy to show that we need prove (i) only in case 4 is a
bounded, open, non-empty set. In this case it is obvious that B,,,(4) < co.
Let f be a test function for B, ,(4); then

m(Ad) = fA g.xf do .

Setting p*=np(n—ap)~' we have

[ 92742 < (m(A))2* Ig.af e
and from the Sobolev Inequality

gafllpx < ISl -
Therefore
m(A) < w(m(A)V2*" |fll,

and (i) now follows easily. Assertion (ii) follows in a similar way from
the inequality
lgaxfllg < %lfll,,  PSg<oco.

As for (iii), we note that g, € Z,. in this case; therefore

9.4f(0) = |lgallp If1lp -
Hence

Ba;p({o}) g ”ga”p’—p )
and the rest follows easily from Lemma 6.

DeriviTion 17. For ¢ >0, g,(x,) =0, will denote the open solid sphere
with center z, and radius p.

"LemMA 7. If 1 < p and xp <n, then there exists a finite positive constant x,
independent of o, such that

x1g"n? < B, (d,) £ %" P for 0<g=s1.
Proor. The first inequality follows immediately from Theorem 20 (i).

To prove the second inequality let f be a test function for B, ,(a,);
then

[oe-nfwayz1 on g,

This means that

(29) fga(a—:—gj) o™ f (-Z-) dz21 on gg.
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From (22) and (25) there must exist a finite positive constant x, such
that

(30) " lre—me~?r < g (r) S ayreme¥, g (1) = g,(r,0,...,0) .
Therefore
(31) gu(rfe) = nyon-rra-meire

1
%y 9"—“r°‘-”e‘2'

IIA - TIA

#2o" g (r) for 0<p=<1}.
(29) and (31) yield

J‘g“(x—z) x129—af(§)dz 21 onog, O0<pst.

f(”le_“f(':‘>)pdz = %, Qn~“pf(f(?/))p dy ,

it easily follows that

Since

Ba;p(a4o) é xlzp en_upBa;p(o'«l)’ 0< 4 § }y

and if we replace ¢ by }o, we get the desired inequality.

We now consider the case ap=n.

Lemma 8. If 1<p, ap=nand 0<g <1, then there exists a finite positive
constant », independent of o, such that
(32) x~(log ¢7!)1~? < B,,,(0,) < x(loge=*)-?
for 0<p=p<l.

Proor. Let », be the b, ,-capacitary distribution of &,. Then

g92*v,ll,;pr=1, and (22) then implies the existence of a constant x, indepen-
dent of g, such that

f(|x|§1) (f |z —y|==" d”e(?/))p'dx Sx.

(= simply denotes a constant, not necessarily the same constant in two
different formulas. We shall continue this practice later without further
mention.) For |z| = ¢ we have |x—y| < 2|z|, so that

z|~rdx | ||P < %,
f{eslxlsnl ! Il

from which we easily conclude

B, p(0,) < x(loge=)'~*.
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We now derive the lower bound on B,,,(s,). To this end let m,=m|g,.
Now, again from (22),
g xm,(x) < xf le—yl*dy for |x|<1.
{lylse)
It is easy to prove

z—yl*"rdy £ x> for |z| £ 0
Llyl O)l yl Y = xQ l | = 9/9
and

[ la—ylrdy s wgrlel= for ofg < Jal = 1.
{lyl<e}
This gives us a bound on g,*m,(x) for x| <1. From (25) we then bound
g.+m,(x) for the remaining « by

garmy(x) < xore-l2l  for |x|>1.
Integration of these upper bounds yields

lgaxmyll, < e(logo-1ys’,

from which the lower bound for B, ,(c,) follows.

LemMA 9. Let k(r), 0=Sr<oo, be strictly positive, decreasing and conti-
nuous from the right. Let y e M+ and

[Hiz—y) du) € £,,  1<p.
Then there exists a function k(r), 0 <r < oo, where
(i) k(r) is strictly positive, decreasing and continuous from the right,

i) [ Ela—yl) duy) € 2,
(iii) &(r) 2 k(r) and lim,_ o k(r)k(r)1= +oco.

Proor. Define

wie) = [ k(e—y) duty)
and

vy(x) = k(la—y|) du(y), 1=1,2,....

f {2 i<|o—y| <2ty
Note that vy(z) =0 as a function in %, because the set of points on which
u concentrates non-zero mass is at most countable.

We will now prove the existence of a sequence {a,} of finite real
numbers such that
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(33) a’{ g 1, aiTooy
and
(34) Sie10v(x) € L, .

First notice that
Siiv; >0 strongly in &, as | - oo .

Therefore there exists a subsequence of the positive integers, {I;}, I, =1,

where
Sz vill, < oo

But then there must exist a sequence of finite real numbers {b,} such that
b,' 2 1, bj too,
2}'11%”2?;1,%”1, < o0,

Define a;=b, for [;<¢<l;,;. Then

and

I+1-1
232100l < 2;:1” ;3, @l £ Z}“ﬂbjllzgix,”i”p < .

This completes the proof of (33) and (34). Now define k(r) by

k(0) = +o0,
k(r) = a;k(r) for 2-t<r<2-i+l; §=12, ...,
k(r) = k(r) for 1=sr.

It is easy to verify that k(r) has properties (i)—(iii).
LemMA 10. Let 1<p and ap<n. Suppose that k(r), 0Sr< + o, is a
positive, decreasing function, continuous from the right, such that
k(r) Z g(r) and  lim, o k(r)g(r)™ = +oo.

Defining B =Cg,,,, we then have

lima_,(,]?(ao) B, ,(0)1 =0.

Proor. Note that B is invariant under translation so that the center
of ¢, is of no consequence and we may take it to be 0.

Let f be a test function for B, ,(c,) such that
(35) Ifllp? = 2B,;,(q,) -

For the moment let 6 be a finite constant greater than one. Then we
have
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J.(Iy|<eo)g“(x_y)f(y) dy + f(lylzeo)g"‘(x_y)f(y) dy 21, weo,.

We now consider the second integral and try to make it small on g,.

o) [ ee-niwday s ([ @e-p )i,

and

1/p’

(37) ( f{lylgm(ga(w -y dy) < ( fﬂwzm_m(ya(y))"' dy) v,

xeao.

We now handle the cases ap <n and ap=mn separately. In case ap<mn,
(22) implies

([ o @0 )™ 5 afel0— 1™,
Thus from (35)—(37) and Lemma 8
[ iyiow &= W) dy S (8 =1)=5™, weo,.
So for the proper choice of 0
@y [ ee-nf@dy s i, zeo, ap<n.
In case ap=mn, (22) implies
([ oy 00 2™ 5 #loge20 -1, 0<e(6-1si.
Thus from (35)—(37)

f 9.2 —y) f(y) dy < x(loge=1(0—1)"2)1/%" (B,,,(c,))""",
{lyl=eb}
O<p(0-1)<%.

If we now define 6 as a function of g by the equation

e(0—1) = exp (—(B,,;(5,))?), O<y<p' -1,

it follows that lim,_,,00=0, and the inequality (38) holds for sufficiently
small values of p. Therefore in both cases one can determine 6 as a
function of g so that

lim,_,,00 = 0
and
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- dy £ %, €o,, 0<p=Zp,.
[ @@= 0@ Ay s 3, zeo,, 0<ese
In both cases we have
[ a-Df@dyz 4, zeq, 0<oser.
{ly|<eb}

Now define
(e(@)) = info<r<¢»(e+1)]?’(7') galr)t.
Hence

[He-y) 2@ f@)dy 2 1, weo,, 0<esar,
so that from (35)
B(Gq) é ”(8(9))1) an;p(ao), 0 <Q g 91 ’

and the proof is finished.

DeriniTiON 18. Let ¢(p) be a positive, increasing function in some
interval 0 <p<p; and let lim,_,,¢(¢)=0. If 4 is an arbitrary set, then
the Hausdorff g-measure of 4 is given by

Hq:(o)(A) = 1imr~—>0 {lnfz:iﬂp(Qz)} s

where the above infimum is taken over all countable coverings of 4
by spheres o,(z;) such that g;<r.

Note that H, is a capacity and while it is clearly not in general
an outer capacity it has the property

(39) H,(4) = Hyp(D),
where D is a G4-set containing A.

We now give the principal result of this section relating Hausdorff
measure and capacity. We state the result in the case p>1 for two
reasons: first it is already known for p=1 and second the case p=1
is contained in the case p=2 since B,,.,(4)=0, if and only if B, ,(4)=0.

TaEOREM 21. If 1<p and ap<mn, then H,,(A)<oo, ¢(o)=B,,,(d,)
implies B, ,(4)=0.

If ap<m, then @(o) can be replaced by "~°P; and if ap=mn, then ¢(g)
can be replaced by (log p~1)1->.

Proor. The second statement is an obvious consequence of the first
and Lemmas (7), (8).
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Turning to the proof of the first statement we see that in view of (39)
and Theorems 8 and 17 it is sufficient to consider the case 4=K. To
derive a contradiction assume that B, ,(K)>0. Then from Theorems
14 and 17 there exists u € 4+ such that

u # 0, suppu < K and g *ueZ,.

According to Lemma 9, with p’ and g, replacing p and % respectively,
a kernel k exists with properties (i)—(iii). If we set B=Cg,,,.,, we must
have

(40) B(K) > 0

by Theorems 14 and 17. Lemmas 9 and 10 imply that
lim,_, ¢ B(o,)/B,;,(0,) = 0.
Now let {o,(x;)} be a countable covering of K by solid spheres; then

B(O'M(x,i))

B(K) B, p(04(:))

IIA

Z?—)—-IE(UQ;(xi)) =3y B p(0g(®1) -

Since the ratios E(ooi(xi))/Ba;p(aoi(xi)) can be made as small as we wish
while 322, B, ,(0,,(%;)) remains bounded, we must have B(K)=0 which
contradicts (40).

DeriniTION 20. Given a capacity B=2B,,, we call «, p and ap the
order, the degree, and the weight of B respectively and denote them by
ord B, deg B and weiB.

Fuglede and du-Plessis and others have investigated the sets on which
the Riesz potential of an element in £, can be infinite (see [5] and [8]).
Whether one deals with a Riesz potential or a Bessel potential is ir-
relevent to the validity of their results. The following is a compact
statement of their results in our language and shows the importance
of the weight.

THEOREM (du-Plessis, Fuglede). Let B and B’ be Bessel capacities.
If B(A)=0, then B'(4)=0, provided weiB' <weiB; if in addition
deg B<2, then B'(A)=0, provided weiB' =weiB and degB’'z 2.

The above proposition can be easily visualized by means of the fol-
lowing figures where the cross indicates B and the shaded regions indicate
the possible B’. Of course, wei B <n except in the trivial case of 4 =0.

Math. Scand. 26 -— 19
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P
i op = const. < n
1 2 P
o
)
! ap = const. £ n
1 2 P

TrEOREM 22. If H ((4) > 0, p(0) = 0" P+, where £ > 0, then B, (4)> 0.

Proor. It is sufficient to assume that 4 = K. The result now follows
from known relations between Hausdorff measure and the classical
capacity (see [3, Theorem 1, p. 28]) and the foregoing theorem.

We end the paper with an interesting consequence of the work of
du-Plessis and Fuglede which elaborates Theorems 17 and 5.

THEOREM 23. Suppose that {f;} is a bounded sequence of elements in £,
for some p2 1. Then for each x> 0 there exists a subsequence {f;'} such that
fi = f weakly in &£,

and
9ot (@) > g,xf(x) B-a.e.
Sor all B with weiB < «p.

Proor. There is clearly no loss of generality in assuming that f; € £, +.
A weakly convergent subsequence exists; call this subsequence {f;} and
the limit f. Now let ! be a fixed integer greater than x-1; then

Gi1xf4(®) > graxf(x)  strongly in £, locally.

This is a known result for Bessel potentials the proof of which is based
on the Riesz compactness criterion. Now let y, be the characteristic
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function of the ball {[x|<k}; k=1,2,... . Since ;- (9-1*f5;) = xx* (Gr-1*f)
strongly in &, as j — oo, a subsequence of j must exist such that the
(x—171)-potentials converge B, ;. ,-a.e. By diagonalization we may
choose the subsequence independent of k. So as not to complicate
matters we use the same notation for the subsequence as for the full
sequence. Let Z be any point such that

Gat-1* (X" (G1-2%F1)) @) > Jar* (2" (91-2%f))(F) a8 j - oo, for all k.
Since ||g;-1*f; lp» 1191-1%fll, = M independent of j and since

L (F—=y)?P dy < for 1<
f{ii—ylznlg"‘ RE=y)Fdy < oo g
while

lim|u|_,wg“_x—1(55"y) =0 ’
we see that

ga-—l"'l* [(1 _Xk).(gl—l* (fi,' +f))](‘%) -0 as k — oo ) uniformly in .7 .

Hence
9u*fiZ) > g+ (@)
and
(41) ga*fii(x) g ga:*f(x) B,,_;_l;p-a..e.

Again by diagonalization we choose a further subsequence so that (41)
will hold independent of I. The required result can now be inferred
from the theorem of du-Plessis and Fuglede.
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