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STABILITY AND CONVERGENCE RATES IN L,
FOR CERTAIN DIFFERENCE SCHEMES

PHILIP BRENNER and VIDAR THOMEE

1. Introduction.
Let 1<p<ocoand L,=L,(R!) with

o 1/p
||v||p=(f1v<x>1vM) . 1sp<o,

vl = supp|o(2)] .

Consider a finite difference operator

(L1)  Ew() = 3 ao(x—jk), 3;la;] < +oo, kh~'=)=constant,

J=—00

consistent with the initial value problem

u o Ou

(1.2) — = — —, preal constant ,
ot 2m ox

u(x,0) = v(x) .

We shall discuss the question of stability of such an operator in L,,
that is, the question of validity of an estimate of the form

lEzoll, < Clpll,, n=1,2,..., wvel,,

and the related question of estimating the error at t=nk between the
approximate solution E}v and the exact solution
Eitw = ’I)(' +_Q_t_)
2n
of (1.1).
The results will be expressed in terms of the characteristic function of
E,,, namely

(1.3) aly) = 3;a; v
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In the case of L, the necessary and sufficient condition for stability is
la(y)] =1, yreal.

We shall always assume that this condition is satisfied. For L,, p+2,
this condition is still necessary but not sufficient. For simplicity, we
shall consider the case when

(a) la(y)[=1, or
(b) la(y)I <1 for O<Jy|=3.

For small y, we can then write
aly) = exp(—iley+v(y))
where (unless py=0 and E, is exact)
P(y) = poy (1+0(1)), p#0, r>1.
In case (a), p is purely imaginary and in case (b),
Rey(y) = —yy*(1+o(1)). »>0.

Here r —1 and s can be interpreted as the orders of accuracy and dissipa-
tion of the operator, respectively. In the results below case (a) is included
in the statements by setting s= co.

We shall now present the main results of our paper.

THEOREM 1.1. There are constants ¢ and C such that for any n and k,
cnriiPlieT-eh < B3, < COnl—r o1
In particular B, is stable in L, if and only if r=s or p=2.

Here and below ¢ and C will denote small and large positive constants,
respectively, not necessarily the same each time.

To formulate the result on the rate of convergence we need in addition
to L, the homogeneous Besov spaces Bj’?* which are defined as follows
(cf. e.g. [10]). Set

wl,p(t>u) = Suplh]gt”u(' +}")_u”p s
Wy, p(t, %) = sUpP < llu(- +2)—2u+u(- —h)l, .

For x> 0 let x=(x)+ &, where () is the largest integer <« and 0<a<1.
Then B;?* is defined as the completion of & in the (semi-) norm
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o

- ar\'"? )
f(t“"‘wl,p(t,D‘“)u))‘17 , O<a<l,

0
(L4)  [ullpmee =

o0 I\

(f (t g, p(t, D)) 7) , a=1,
0

with the usual interpretations for ¢= oo, and with D=d/dx.

THEOREM 1.2. For 0= x<r and « 7|} —p~1| we have

(B} — B(nk))oll, £ CR¥|lo]g,0000 »
where
B(x) = a(1=7-1) + min(0,(ox—r |} —p~Y)(r-1—s-1)).

In the stable cases, that is, if r=s or p=2, the order of convergence is
B(ax)=0(1—r-1) when 0<« <r. In the opposite case the error is larger;
for small «, f(x) is then negative and for « =0 we recognize the exponent
in Theorem 1.1. We will also prove a corresponding lower estimate for
small 4 in Theorem 5.2 below.

One may ask if by some smoothing device it is possible to curb the
effect of non-stability. We shall indeed construct mean value type
operators @G, depending on parameters x and » such that the following
result holds.

THEOREM 1.3. For 0 <« <min(y,r), x£r|}—p-1|—», we have

(B2 Gr—Emk))ol, < CH o]l 000
where
(1.6)  B(x) = a(1—r-Y) + min(0,(x+v—r|3—p-t)(r-1—s1)).

In particular, if »>r|}—p~1|, we have the full rate of convergence
x(1=7-1) for 0=« <min(y,r).

The standard examples of difference operators which are stable in L,
but not in L,, p=2, are the operators corresponding to
(1.8) a,(y) = 0242 cos(2my) —ipA sin (27y) + 1 — @22,
1— i+ (1+04) exp (2niy)
1404+ (1—p4) exp (2miy)

(1.7) as(y) =

The first operator, the Lax—Wendroff [8] operator, satisfies condition (b)
and r=3, s=4, and the second operator, proposed by Wendroff [17] (cf.
also [15]) satisfies (a) and r=3, s=oc. In these cases we have by Theorem
1.2 convergence for v € B,* with «>}|}—p~!| and «>|4—p~?|, respec-
tively.
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Using a smoothing operator with »=2 and x=3, we get convergence
for 0<x <3 with order $x. Already for »=1 we get convergence for
a> 4|3 —p~!—3} and for « > |} —p~| — 4, respectively. Examples of such
smoothing operators will be discussed in Section 6 below.

In the stable cases the results in Theorems 1.1 and 1.2 were contained
in [15] and [10]. Our main interest here is in the case of non-stability.
For p= oo one can easily see that

1ERlo = Zjlansl ,
where a,; are the Fourier coefficients of a(y)®. Using the saddle point
method for estimating a,;, Serdjukova [11], [12], and Hedstrom [2], [3],
[4] were able to prove the results in Theorem 1.1 for this case, and in [4]

Hedstrom succeded in obtaining the result corresponding to Theorem 1.2.
In our approach we notice that

1B, = Mpya®),

where M (-) denotes the Fourier multiplier norm

M, (p)

sup {[|g#vll,; lvll, < 1}
sup {{|¢?¥ll,; P, <1},

where ¢ is the Fourier transform of ¢. We then apply a number of
known properties of these norms, as described in e.g. Hérmander [5].
The central tool in the estimate will be the Carlson—Beurling inequality

17l = 2lglls | Dellp)? -

This inequality was used for similar purposes by J.-P.Kahane (see [6, p.
103]. In the technical parts of the paper we shall not work with the norm
(1.4) but rather with a Bessel potential type norm, which is computatio-
nally more convenient. By a simple interpolation argument we can then
conclude that the same results hold in the norm (1.4).

The qualitative question of stability in L, was discussed by multi-
plier methods in a paper presented by one of the authors [15] at the
XTIV Congress of Scandinavian mathematicians, Copenhagen 1964. Since
it now appears that the proceedings of that conference will not be pub-
lished we include in Section 2 below the main result of that paper (cf.
also [16]).

The construction of the mean-value operators G, in Theorem 3 is
adapted from [7], where similar operators were used to increase the rate
of convergence for parabolic initial-value problems with non-smooth
initial data.

Throughout the paper we assume analyticity of the characteristic
function a. Except in Theorem 3.1 this is not essential. We will actually
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only use what amounts to a C*-condition in proving the upper estimates,
and a C2-condition in the proofs of the estimates from below. We do not
pursue these questions further here.

2. L,-spaces and Fourier multipliers.

In this section we shall describe some results on Fourier multipliers.
Most of these are found in Hormander [5]; the reader is referred to that
paper for details.

Let & denote the topological space of C*° functions on R! defined by
the seminorms

Pmn(®) = sup,la™(djdx)"u(x)|, m,n=0,1,...,

and let &’ be its dual, the space of tempered distributions. For w e &,
the Fourier transform Fu=4%4 € & is defined by

(Fu) = [ e ulz) de,

—00

and for uw € &', Fu=1 is defined by 4(v)=u»(d) when ve .
Let A be a bounded linear translation invariant operator on L,.
Then there exists a € &', the symbol of 4, such that

(2.1) Au = Flaxu = FlaFu = F 1 aFu), uweS.
Conversely, any a € &’ such that

(2.2) M,(a) = sup{|F Taxull,; u € &, |ul,=1}
sup {|F (av)|l,; v € &, [Pl =1} < oo

defines by (2.1) a bounded linear translation invariant operator 4 on L,
and we have [|4||,=M,(a). The set of a € &’ for which (2.2) holds is
denoted by M,,. Let us collect some of the fundamental facts about M,
in the following two lemmas.

LemMa 2.1. (i) M, is a Banach algebra under pointwise addition and
multeplication, with norm M ,(-).

(i) My=L,, and My(a)=all,-

(ili) M, is the set of Fourier—Stieltjes transforms on R' and

Mya) = [idpl if aly) = [ du.

In particular, a € M, if G € L, and M,(a)= @], .
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(iv) For p714p-1=1 we have M,=M, with equality of norms, and
M,eM,cM,. M,(a)is logarithmically convex in p~*. In particu-
lar, for p22,

My(a) < My(ap-2"" Myfa)e™ .
(v) If a, B, y, 8 are real numbers and d(y) = e’ >+ a(y + dy), then G € M,
if and only if a € M, and M,(d@)=M(a).

Lemma 2.2. (i) Assume that {a,}n.,<DM, is a sequence such that

n=1
sup, M (a,) < and a, -~ a in &’ as n > oco. Then ac M,.
(ii) Let p=+2 and assume that the function fe C? is real and such that
sup, M, (exp(inf)) < co. Then f is linear.

We need the following simple consequence.
Lemma 2.3. If o is real, v> 1, then exp(iay’) & M, for p+2.
Proor. Assuming exp(iay’) € M, we obtain by Lemma 2.1 (v) that
M (exp(inay’)) = M,(exp(ixy’)) = constant ,
and so by Lemma 2.2 (ii) that «y” is linear contrary to our assumptions.
The following lemma is closely related.

LeMmA 2.4. Let ue Cyt and let ye C? be real and |y''|26>0 in an
interval containing the support of w. Then

|# (exp (ip) u)lle = 80 [[u']) .
Proor. Let y, be in the support of u. We have

y
feXP (ip(y) + 2mizy) w(y) dy = f w'(y) ( f exp(ip(y’) + 2nizy’) dy') dy.
Yo
By van der Corput’s lemma (cf. [18, p. 197]) we have
y
[ exp(iv(y) + 2aizy) dy
Yo
which proves the result.

< 851,

The main technical tools below will be the following estimates.

LeMwMA 2.5. 4ssume that a € L,, a’ € L,. Then

() @eL, and
lall, = (2]allzlla’llz)t
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(ii) ae M, and for p=2,
Mya) £ 227" |jafl, 27" [lallyt—27" fla|lpt 27
Proor. The first inequality is the Carlson-Beurling inequality (cf.

e.g. [1]). The second inequality follows from the first and Lemma 2.1 (iv).
We shall also use the following result.

LemMA 2.6, Let ae M,. Then

lim,_, o Mp(@in = [all, -

n—>00

Proor. For p=2 this follows at once from Lemma 2.1 (ii) and for
p=oco it is a result by Beurling [1]. In the general case it follows then
from Lemma 2.1 (iv).

Consider now in particular the translation invariant operator K, in
(1.1). This operator has the symbol a(hy) where a is defined by

a(y) = 3;a; exp(27ijy) .

We assume that a is analytic; in applications to difference schemes a is
always a rational trigonometric function. We have here by Lemma
2.1 (iii),

- VBl = Mnl@) = Sylasl < +o0,

so that a € M, for all p. We shall sometimes use the equivalent norm
to M ,(a) described in the following lemma.

LeMMA 2.7, Let e Cy™ and =1 in an interval of length 1. Then for
any a € M, which is periodic of period 1,

¢M,(a) < My(na) S CM,(a),
where ¢,C are independent of a.
Proor. Trivial consequence of the closed graph theorem.

For real &>0 let x=[x]+x where [«] is the integral part of x and
0= a<1 and set w,(y)=y"|y|2. For u e & we define

(2.3) [ullp, o = IF 0 Full, .

This is well defined since |y|¢ is locally in FL,c M, (cf. [18, p. 241]).
The closure of & in this norm is denoted Lp ,. For « integer we have

”u”;,zx = ”D“u“p .

For 1<p<oo we could have used |y|* instead of w,(y) in (2.3) since
sign (y) € M, for such p.
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In order to describe these spaces we shall compare them with the
spaces By ?*. We shall need the following well-known partition of unity
(cf. [5, p. 121]).

LemMma 2.8. There is a function @ € C;™ with support in {y; } < |y| <2}
such that o
ey =1 y=+0.

j-:—oo
We can now prove the following embedding result (cf. e.g.[14]).
Lemma 2.9. For any >0, By < Ly ,c By™* .
Proor. Let y;(y)=¢(2-7y) where ¢ is the function in Lemma 2.8. By

[9] it is known that an equivalent norm for By " is

Lt 1/q
e = |3 159,y 2]

again with the usual interpretation for ¢=oc. Simple calculations give

”q’jwa”oo é 020‘:’ ’
”ijallz = 02(‘”-”)} ’
ID(y;0 )l = C20-47,

and hence by Lemma 2.5 (ii),
Mp(ija)

In the same way we have

M (pw,t) £ 02729,

024,

A

‘We therefore have

1# s Full,
= |F 0, 0, Full, £ M (p;0,NF o, Ful, = 027l

so that
lallgncor < Clals. -

On the other hand
17 0, Full, = ZyaysllF iy 00) Full,
< Sqa My o WF Yy, Ful, < C3;29\F Wy, Full,,

or
“u“;,a é Cllu”Bp"‘sl" )

which completes the proof.
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The spaces By;?* have the following interpolation property.

Lemma 2.10. Let 0 <oxg<oay, 15¢;S00, j=0,1, and let 0<0<1. Then
there is a constant C such that if the operator A has the property

(2.4) |Aull, < Cillullpajpger G=0,1,
then
ldull, = CCLCI|ullgmoon, x=(1—O)xg+ 0y .

The same conclusion holds if in (2.4) we replace the norm in B)%" by the
Ly ,-norm.

Proor. For the first part see [10]. The second part then follows by
Lemma 2.9.

We shall need the following lemma, which is a trivial consequence of
our definitions.

LemMA 2.11. Let a € M,,. Then
sup {|F aFul,; “’“H:,a§ 1} = M (0, a) .

If the sup is infinite we interpret this to mean o, a & M,,.

We shall make frequent use of the following trivial consequence of
Lemma 2.1 (v); in fact it is this observation together with Lemma 2.11
which makes the L ,-spaces more convenient for our purposes than the
B3 1*-spaces.

LeMMa 2.12. For A >0 we have

My(0, ta(A)) = 2*M (o, a) .

3. Stability.

In this section we shall study the question of stability in L, of opera-
tors of the form (1.1). By the above, stability in L, is equivalent to

(3.1) sup,, M, (a®) < +oo,

where a is the characteristic function (1.3) of #,. By Lemma 2.1 (ii),
we find that E, is stable in L, if and only if

(3.2) la(y)l £ 1, yeR.

For p+ 2 the situation is more complicated. We then have the following
theorem.



14 PHILIP BRENNER AND VIDAR THOMEE

TuEOREM 3.1. Let p+2. Then E, is stable in L, if and only if one of
the following two conditions is satisfied, namely
(i) a(y)=c exp(2nijy), |c|=1, some j,
(i) la(y)| <1 except for at most a finite number of points y,, g=1,...,Q,
in [0,1) where |a(y)|=1. For g=1,...,Q there are constants oy, f,,
v, where «, is real, Ref,> 0, and v, is an even natural number such
that

a(y,+y) = a(y,) exp (i(qu—-ﬂqy"q(l +o(1))) as y—~0.

Proor. The sufficiency of these conditions for stability was estab-
lished for p=oco by Strang [13] (cf. also [16]). By Lemma 2.1, stability
in this case implies stability in L, for 1<p < co.

To prove the necessity of the conditions, we first notice that stability
in L,, and thus (3.2) is a necessary condition. It follows, since a is ana-
lytic, that one of the following two conditions is satisfied, namely

(i) la(y)l=1, yeR,
(i)’ |a(y)| <1 for all but a finite number of points y,, ¢=1,...,Q in
[0,1).
We shall prove that if (3.1) holds, then (i)’ implies (i) and (ii)’ implies (ii).
Assume that this were not so. In both cases it would then have been
possible to find y, € R with |a(y,)|=1 and «, 8, » with «, 8 real, 80,
»> 1, such that
a(yo+y) = a(yo) exp (iay +ify"(1+0(1))) asy—0.

By Lemma 2.1 (v) we then conclude that (3.1) holds with a replaced by

ba(y) = a7X(Yo) alyo +yn~") exp(—iayn="")..
Therefore, since |b,(y)| <1 and

limn»mbn(y)n = €xp (’iﬂy") ’

uniformly on compact sets, it would follow by Lemma 2.2 (i) that
exp (1fy’) € M, which is in contradiction to Lemma 2.3.

4. The rate of growth.

In this section we shall study the growth rate of |[E7]||, in the case
that K, is stable in L, but unstable in L, for p+2. We have then as
above that (3.2) holds and hence that again (1) or (ii)’ is satisfied. Con-
sider first the case (i)’. We then have the following result.

THEOREM 4.1. Assume that (i)', but not (i) is satisfied. Then

enlt-r7M < B3], < Cnlt-271
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Proor. By Lemma 2.1 (iv) we may restrict ourselves to the case p= 2.
Let 5 be as in Lemma 2.7. We then have by Lemmas 2.7 and 2.5
Myam) £ OM,(na") £ C(lnam|s|D(ma®)lp)t-#~" < Cni-»7",

which proves the estimate from above.

To prove the estimate from below we write a(y)=exp(ip(y)), where
by assumption y’'=£0. Let ey, n=0, have support in an interval
where g’ 4 0. We obtain by Parseval’s relation and Holder’s inequality
(4.1) 0 < [Iplly2A#™ = |man||,20-»7

= |F (am)||24-27) £ O F (na)| | F mat) o' 27,

where p’-1+p-1=1. On the other hand,

(4.2) I1# @)l = Mp(a™) [ Flly »
and by Lemma 2.4,
(4.3) # (el = Cnt.

Together, (4.1), (4.2), and (4.3) prove the estimate from below.

We now turn to the case (ii)’. We shall first prove that the growth
rate of M ,(a”) depends only upon the behavior of @ in a neighborhood
of the points y,, g=1,...,Q. Let ¢ be a positive number, smaller than the
distance modulo 1 between the y,. Let n be a C* periodic function with
7l £1 and
1 for |y|£}9,

0 for §6=lyl=},

7(y)

and set 7,(y) =n(y —¥,), a,=7n,a. We then have the following result.
LeMMA 4.1. With the above notation there is a positive ¢ such that

Q
¢ max Mpy(a,*) + o(1) £ M (a") £ 3 My(a,") + o(l) as n—>oo.
g=1,...,Q g=1

Proor. We first prove the estimate from above. We have

Q Q
aly) =3 ay)" = aly) (1—2 n(y-yq)n) = A 1Y) -
g=1 g=1

Since x,(y) vanish in a constant neighborhood of the y, we may change a
in this neighborhood without changing the value of the product. There-
fore, if » satisfies

sup{la(¥)|; xan(y)+0} < % < 1,

we obtain by Lemma 2.6 for large n,
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Q
M, (a™) —qglMp(aq”) < My(any,) £ «"M(x,) < «™(1+QM (1),

and since [5| < 1, one more application of Lemma 2.6 proves that the last
expression is o(1) as n — oo.

Consider now the estimate from below. Let {, € C* be periodic and
equal to 1 near y, and have support where 7,=1. Then

ar = {pa"+(1=Cp)(na)" .
By the same reasoning as above,
lim,_, o M,((1-L)n,a)) = 0,
M,(a) £ M, (L) Mu@™) + o(l) as n—>oo.

and hence

Since ¢ is arbitrary, this proves the estimate from below.

Consider the behavior of a in a neighborhood of y,. Since (ii)’ holds,

we may write .
“(?/q+y) = a(yq) exp (Wq?/'i'%(y)) ’

where «, is real and Rey,(y) <0 for 0<|y|<34. By the analyticity we
have as y - 0,
v(y) = By (1+0(1)), Ba*0, r,>1,
Reyy(y) = —yy'1(1+0(1)), 9,>0, 5,27,.
Setting

(4.4) p4 = max (1 —ﬁ) ,
@
we have the following result.

THEOREM 4.2. Assume that (ii)’ holds. Then
cnlt-27e < \E?

where u is defined by (4.4).

“p < Cnlt-p7 e ,

Proor. Again we can assume p=2. By Lemma 4.1 it is sufficient to
consider the case @=1, and by Lemma 2.1 (v) we can restrict ourselves
to ¥, =0, a(y,)=1, o;=0. Further, for the case r,=s,, the result is con-
tained in Theorem 3.1 so that we may here assume r, <s,. In that case
B, is purely imaginary. Thus, dropping subscripts, let

la(y)l < 1, O<l|y|=4%,

a(y) = exp(y(y)) ,

v(y) = ify"(1+0(1)), B+0 real, r>1,
Rey(y) = —yy*(1+0(1)), »>0, s>r, seven.
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Consider first the estimate from above. Let e (C® with |5 <1 be
equal to 1 on |y| <% and vanish for |y|= . Under these assumptions we
shall estimate M ,(na™). We have in the support of 7,

la(y)| < exp(—clyl®),
|Da(y)| < Cly|™*exp(—clyl®) .
Hence

[man|ls® = f exp(—2¢nly|®) dy £ Cn—5",
ID(ma™lg* < Cn? f ly[27-? exp (—2¢nly|®) dy < On2-Gr-Ds™"
By Lemmas 2.7 and 2.5 this gives
B2, < CM,(nar) < Cné-pHa-rs™h

We now turn to the estimate from below. Let 5 € 0y, 130 be a func-
tion with support not containing 0, and set 7,,(y) =1 (n*"'y). We have

lim [j7,,a"|;* = lim f ()12 la(n="y)[2 dy

n—>00 n—>o00
— [ In(@)? exp (- 2vlgl dy > 0.
Therefore, as in the proof of Theorem 4.1, for large n,

(4.5) ¢c = Ilnna””22(1—p-1) < C|F (nnan)”p,” y(n”an)”wl_gp—l
< O Mpy(a) |[fully [ F (aa®)loot-27" .

A trivial calculation gives
(4.6) il = 1illpe =705
With 2’=n-¢"z we have
1) Fae)e) = v [exp(in'y) ny) a(n-y) dy .
For y in the support of # we have
a(n="y)" = exp (in* "y, (y)) 2a(¥) »

where v, is real and where (y,'’)~! and 4, are bounded, uniformly in n.
Therefore, by (4.7) and Lemma 2.4 we obtain
(4.8) | F (1m0l S CmoisTi-i=rs™
Together, (4.5), (4.6), and (4.8) now complete the proof.
We notice for later use that during the course of the proofs of the esti-

mates from below in Theorems 4.1 and 4.2 we have actually proved the
following stronger result.

Math. Scand. 27 — 2
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LrmMa 4.2, Assume that the assumptions of Theorems 4.1 or 4.2 are
satisfied. Then, if y € Cy™®, x=0, is a function with support not containing
the origin, we have

M (za(n=—"")7) 2 cnli-p7Ha-rs™h

5. The rate of convergence.

In this section we shall prove the L;fa analogue of Theorem 1.2. We
shall assume that condition (a) or (b) in the introduction is satisfied;
r, s and f(x) will have the same meaning as there.

THEOREM 5.1. Under the above assumptions, we have for 0Sa<r, a+
r|i—p,and ve L*

Py

Bz - B@ak)oll, < CH@ol)},, nksT.

In view of Lemmas 2.9 and 2.10 this also proves Theorem 1.2.

Proor. The operator Ej— E(nk) corresponds on the Fourier trans-
form side to multiplication by

a(hy)" —exp(—inkoy) = exp(—inkey) (a(hy)"—1),
where a,(y)=exp(ilgy) a(y). Hence by Lemma 2.11 we have to prove
that M (0,2 (ah )" ~1)) £ OB, nksT,
or, after changing variables and setting o, , ,=,a,(A"")*—1), that

(5'1) 'Mp(o'a,h,'n) S 0hﬂ0(a), nké T ’
where
Bol®) = B(x)— (1 —7r~1) = min(0, (x —r|}—p~)(r'—s71)).

Again it is sufficient to consider p= 2. Let ¢ be the function in Lemma
2.8 and set
9i(y) = ¢(27y), j=L2,...,

Poly) = 1 —f; ?3(9) »
J=
J
D;(y) = @) +2 @iy), J=1,2,....
j=1

By our assumptions we have

|a (R y)n —1
|D(a, (R y)»~1)

¢ min(jy[",1) ,

=
(5.2) < Cly-.

Hence we obtain for 05 x<r
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”‘pjaa,h,n”oo = C2_aj’ .7=>= 0 )
l9;0annlls £ C2-205, j20,
1D(9;00,n,n)lls < C224705, j>0.,

By (5.2) the last inequality still holds for j=0and 0<x<r—1. Forj=0
and r— 1<« <r the function D(g;0, ; ,) has a singularity at y=0, but
not for a =r, as a simple computation proves. Hence by Lemma 2.5 (ii),
we have for j>0, 0=« =r, and for j=0, if 0Sx=<r—1 or if a=r the
estimate,
(5.3) M, (9i04 1,0 S C o—a+rlt—p~j

Forr—l<oa<rwewriter=a+p, 0<f<1. Let y € C;™ be 1 in the sup-
port of g,. We then have gyw,1=x|y/fp,w, 1. But for 0< <1,

1¥)\yfe FL,c M, .

Hence (5.3) is proved for j=0, 0Sx=r.
Together the estimates (5.3) give by addition

C2e+rli-27DT - o< <r|}—p7Y,
(5.4) M (Py0un,0) S {0 e

rl3—pl<asr.

For r|3 —p Y <a<r we may let J tend to infinity to prove (5.1) in this
case. For the case 0 <« <7|}—p~l|, we notice that

M(1-Dj)w,) £ 027,
and consequently, using Theorem 4.1 or 4.2 depending on whether s is
infinite or finite,
(5'5) Mp((l - ¢J) Ga,h,n) é Mp((l - ¢J)wa~l)(Mp(an) + 1)
< 02~ pli-prl-reh

Adding (5.4) and (5.5) with J chosen so that 27 <n''-¢' <27+ now
completes the proof.

We shall also prove that the estimate in Theorem 5.1 is best possible
in the following sense.

TaEOREM 5.2. Under the same assumptions as above, if T>0 and
0= =r, there i3 a positive constant h, such that

sup {[[(E; — E(nk))ollp; 0]l o S 1, nk<T} 2 ch’®, 0<h<h,.
Proor. We shall prove that there are positive constants k, and ¢

svch that for 7> 0,
(5.6) My (w0, (ak )" —1)) 2 ch#®, h=<hy, nk=T.
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In a neighborhood of y=0 we have
oy —~1| z clyl"+O0(A") as h >0,
uniformly in y. Hence there are positive constants %, and ¢ such that
0 < ¢ 2 ownalle S Mp00na)s hShy nk=T.
After a change of variables this proves that
My (w, (ayh -)*~1)) 2 k@D, h<hy, nk=T,

and thus proves (5.6) for r|}—p~!|Sa =7
Let now y € C™, x=0, be a function with support not containing the
origin. Then yw, € M, and hence

M, (x(ar ) ~1)) £ O M?(w, Ha(h " -)n—1)) .
On the other hand, by Lemma 4.2,
M, (y(athet 2 =1)) 2 OR PO h<hy, k=T .
Altogether, after a change of variables this proves

My(w,(a(h -)»—1)) 2 che@--l-p7la—rs™  h<hy, nk=T,

and thus completes the proof of (5.6).

6. Smoothing operators.

In this section we shall prove that in the case 0<x<r[}—p~1 in
Theorem 5.1 where the nonstability of £, effects the rate of convergence,
one can get rid of this nonstable behavior by applying certain averaging
operators to the initial data and thereby obtain the same order of con-

vergence as in the stable case.
Thus let y € M, be analytic on the extended real line and let G, be
the operator with symbol y(h'~""'y) so that

F(Gro)ly) = p(R-""y) B(y) .
We shall assume that for certain natural numbers u and », y satisfies
(6.1) ¥(y) = 1+0(y) as y—0,
(6.2) v(y) =0(y~) asy-—co.

The first of these assumptions means that G, approximates the identity
operator with a certain accuracy; in particular, if u=r this accuracy is
of order r—1 just as for the operator E,. The second assumption is the
one that guarantees the smoothing effect of @,. We shall exhibit at the
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end of this section specific operators satisfying these assumptions for
different ux and ».

With these assumptions about G, and the same assumptions as in
Theorem 5.1 on E; we shall now prove the following L , analogue of
Theorem 1.3. By Lemmas 2.9 and 2.10, Theorem 1.3 is then a conse-
quence of this result.

THEOREM 6.1. Under the above assumptions we have, ﬂ~(oc) defined by (1.5),
(EpGy— E(mk))oll, < CH [ol%,, nksT),
Jor 0L a<min(u,r), a+r|i—pt—v».
Proor. After a change of variables and with
au, hn = wa__l (wae(hr—l .)‘n_ 1)

we want to prove that
M5, S CH,

where for 0 <« < min(u,r),
Bol@) = Blo) = (1 —r-2) = min(0, (x+v—r|}—p~2))(r-1~5-1))..

Let ¢; and &, be as before. Using (6.1) we see as in the proof of (5.3)
that for & <y,
M (@eOupn) = C, nksT.

We then notice that for ¥ bounded away from 0, multiplication by y
has the same effect as to change w, into w,,, and hence as in (5.3) we
get that

Mp(%;,a nn) S O 2irli—p7H—~x+) >0 .

Also, in analogy with (5.5) we obtain
M ((1=D;)5un,0) S C2-J e pd-rsHli-p7 |
and the proof is completed as before.

We shall display some special operators G4, corresponding to different
v and ». Let p, (sinz) be the polynomial in sinz of lowest degree such
that
P,,(8in2) = 22+0(2*+) as z—0.

Then (6.1) and (6.2) are satisfied if we choose for y the function
Vuy) = (79)7 D, , (sinmy) .
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In particular
ve,1(y) = (my) 7 sinqy, v, ,(y) = (7y)~* sin’ny .

The corresponding operators G, are (h,=h1-""")

hr
G2 0(x) = f v@—t)dt
—ihr

hy
t
G»20(@) = b, f (1_~l7') o(x—1) di .

r

For the two operators K, defined by (1.6) and (1.7) we have r=3, and
thus in order to get the full rate of convergence by Theorem 6.1 in the
whole range 0=« =r we have to take =3, v=2. Possible choices of
the function ¢ and the corresponding operator G, are then

va, o(y) = (my)~2(sinny + § sintzy)
Grb2o(@) = 16,2 2(z) — &[Gy 20(@+h,) + Gy 2o(z —h,)] .
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