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SIDON SETS IN R®

N. TH. VAROPOULOS

0. Introduction.

Let A be a locally compact abelian group and let £ <A be a closed
subset of 4, we shall say that Z is a Carleson-Helson set of 4 (C-H set
in short) if for every fe C,y(E) there exists u € M(A) such that f=4|.
We shall say that £ <A, an arbitrary subset of 4, is a Sidon set (S set
in short) if £ is a C-H set of 4,, that is of 4 assigned with the discrete
topology.

Let X;,X,,...,X, be discrete spaces and let Vo= Co(X,)®. ..RC,(X,)
be the Tensor Algebra defined on these spaces. Then we shall say that
FcX=X,x...xX, is a V-Sidon set (V-S set in short) if for every
f € Cy(E) there exists p € ¥V such that f=y|z.

For the above notions we refer the reader to [3, Ch. 11], [4, Ch. 5], [5],
|6, p. 3].

In this paper we shall consider throughout R® as a vector space over
Q (the rationals) and we shall say that a subset #Z <R~ is independent if
it is independent over Q.

Relative to independent subsets of R” the following two results are
well known and will be crucial in what follows.

(R) If E,,E,,...,E,=R" are finitely many independent subsets then
the set E=E,UE,U...UE, is a Sidon set of R* [4, 5.7.5], [6, p. 10].

(H) Let £ <R be such that for every ¥V <R" vector subspace over Q
of R* we have |[EnV|<kdimgV where k denotes a natural integer
[|X|= cardX for any set X]. Then there exist & independent subsets
B, E,,... E,<R"® such that
of. [2], [6]. E=EuUE,u...VE,,

We shall finally adopt the following terminology due to J.-P. Kahane.

DEeriniTioN. We shall say that a certain property ‘P’ that depends
on a parameter z, where x runs through a topological space T' (x € T'),
is verified for gquasiall z € T if there exists <7 a subset of 1st Baire
category such that the property “P” is verified for all x € '\ 2’ (in what
follows 7" will be most of the time a Banach space).
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We shall finally denote by C,(R™), m=1,2,...; 0<» e R, the Banach
space of the real bounded continuous functions on R™ which have bounded
continuous partial derivatives up to the [v]th order and who’s partial
derivatives of order [»] belong to 4, ,;, when [v] <, cf. [8, p. 42].

For any fe Cy(R™), m = 1, we shall denote by I'(f) the set

I(f) = {(y) eR"xR;zeR™, y=f(z)} = Rm+1.
In this paper we shall prove first the following combinatorial
THEOREM 1. For any »20, any m=1,2,. .., and quasiall f € C,(R™) the
set I'(f) can be decomposed into m + 1 independent subsets
EyE,,....,BE, <« R"*l, I'(f)=E,uE,u...UE,,.
An immediate corollary of this theorem and of (R) is the following

THEOREM 2. For any »20, any m=1,2,. .., and quasiall f € C(R™) the
set I'(f) is a Sidon subset of R™+1,

In contrast with theorem 2 we shall also prove

THEOREM 3. Let Q,,Q,,. . ..Q,.€R[u] be arbitrary real polynomials of one
vartable, let

2= {(#,%,. .., Tpy) ERFH; 05,21, 2, =Qu(y), j=1,2,... ,k}

be the algebraic variety they define over the unit interval. Then A is never
a Sidon set of R¥+1,

Theorem 3 shows in particular that if f € C (R™+1) coincides with some
polynomial over some open subset 2 of R™, then f belongs to the excep-
tional set of theorem 1.

The above theorems will be further commented in § 3.

1. Notations.

For the proof of theorem 1 we shall need to introduce a fairly com-
plicated array of notations and remarks which will be enumerated below
with capital letters (A)-(F).

(A) Let us denote for n,s=1,2,...

Zr = {a=(xy,...,&,) € Z™ ; sup;|a;| < s}

and let (j)=(0,0,...,0,1,0,...,0) € Z*, where the 1 lies on the jth place,
be the “basis” vectors. Futher let E=R¥ be some euclidean space, let
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%y, Xy, . . ., ¥, € F be n vectors of E, and let us denote by M the net of order
s defined over the set {z,,x,,...,z,}, that is

n
M = Ms(xl,xz,. . .,xn) = {z(xjw’- 5 (0‘1;0‘2;~ . ',“n) € an} cE.
=1

We shall call » the (formal) dimension of M (dim M =n) and we shall
denote by A,,(E) the set of all nets of dimension n in K.
(B) Let ¢ € Z,» and let us set

n
L (%, %, . . . %) = > o5
J=1

which is a linear form of n variables, let us also set
L= {L,;eeZs}.
We shall identify throughout an element of the m-fold cartesian product
L= (LO,L® . Lmw) e (&Lr)m
with a vector valued form
L:Cmm Cm
defined by
L(u) = (LOuW),. .., Loum)) ¢ Cm,  u=(u®,...,u™)eCrx ... xC".

(C) The substitution w; - x; € E, j=1,...,n, induces a mapping from
ZLron M=M(x,,...,x,). When this mapping is 1-1, we shall say that
the net M is independent.

The thing to observe here is that for an arbitrary net M=
M (xy,2,,. . .,x,) if we choose z,’,...,z," an appropriate basis over Q of
the subspace Vecg {2,,2,,...,2,} < E, then we have

’
McM=M/,...x,), n=n,

for an appropriate s’ = 1 and where now M’ is independent.
(D) Let E,,E, be two euclidean spaces and let ;= (x;V,2,®) € £, x K,
=k, j=1,...,n; we have then trivially

M (21, %y,. . .,2,) © M (O, .., 2,0)x M (2,?,...,2,®) < B, xE,.

(E) Let us denote now by # »< .4, (R) the set of all independent nets
of order s and dimension n of R. We can then find F,,F,,...,F ,<R", a
finite number of hyperplanes (subspaces of co-dimension 1 over R), such
that

(1.1) M (xy,...,2x,)E M < (%,,...,%,) € BUF,
j=1
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The set [:U;,IF, being a K, can be decomposed as a countable union
of closed cubes C;,C,,... of R*, [U;_F;=U;_,C,, and the identifica-
tion (1.1) allows us then to write for any such decomposition

(1.2) A =0,
k=1
(F) It is easy to see that for every =,s,k=1 we can choose a closed
cube C,"*<R™ and a finite family of disjoint compact intervals
(1.3) 2,7 = {w,<R; @ Zy}

such that the cubes ()¢ form a decomposition as in (1.2),

(o]
(1.4) M =J o,
k=1
and such that
M =M (2,,%,,. . .,%,) EC4™® <= x;€0y, 1Zj=n,

M< | o,<R,

acZgn
ke M; x€w,|S1 YaaeZr.

The choice of the cubes (1.4) and of the intervals (1.3) will be done once
and for all here and will be kept fixed throughout the next section.

r;eEwy, 15j<n =

2. Proof of theorem 1.

If we use (H) of the introduction, we see that theorem 1 is an immediate
consequence of the following

THEOREM 1'. Let v,m with 0<veR, 1 =meZ be given. Then for quasiall
feC,(R™) we have

INfynM| £ m+1)n VMe N, (R*H), n2l.

Using (C), (D) and (E) of § 1 we see that theorem 1’ follows from

LrmMa 2.1. Let » and m be as in theorem 1’, let n,8,k,,. . ., k,, be fixed
positive integers, and let us denote by S; = C,(R™) the set of those functions f
for which there exist nets M,eCpl, r=1,...,m, and distinct points
ap€ Myx Myx ... x M, p=1,...,0(m+1)+1, such that

rankq {f(a,) ; p=1,...,0(m+1)+1} < n.
Then 8, 1s a set of the 1st category in C,(R™).
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But using (B) and (F) of § 1 we see that lemma 2.1 in its turn follows
from

LemmA 2.2. Let v and m be as in theorem 1', let n,8,k,,. . ., k,, be positive
integers, let L, e (L ,m)™, p=1,2,..., n(m+1)+1, be distinct forms, and
let

{A;€ Qs 1=12,...,n;j=12,...,nm+1}

be a fized rational matrixz. Let us define then Sy <C,(R™), the set of those
Junctions f e C,(R™) for which there exist vectors

(2.1) u= (u,... 4" eR*x...xR?, 4= (u,",... u,"),
r=1,...,m,
such that

(2.2) u® € wy € %, r=1,...,m,i=1,...,n,
n
leﬁf (Ly(w) = f(Lyy4(w), j=1,2,....nm+1.
=
Then 8, is a closed subset of C,(R™) with an empty interior.

The fact that S, is closed is easy to verify. Indeed, let f,€.S,,
g=1,2,..., be a sequence such that f, - fe C,(R™) uniformly and let
%, € R*™ be the associated sequence of vectors (2.1) that together with
the function f, satisfy (2.2); using then the compactness of the intervals o
we see that we may suppose that u, —u € R"™ as ¢ — oo, and then it is
clear that u satisfies (2.2) with the function f, which function therefore
belongs to 8,.

The rest of this section will be devoted to showing that S, is of
empty interior.

Let P, h2 1, denote the space of real polynomials of m variables and
degree at most %, we shall assign this finite dimensional space with its
natural topology and we shall denote by P,! (¢ = 1) the tth cartesian power
of P, assigned with the product topology. We shall prove then the fol-
lowing two lemmas.

LemMA 2.3. Let m, v, n, 8, L, € (Z "™, and the matriz {1;; € Q} be as
in lemma 2.2. Then for every h =1 there exists an everywhere dense subset
B, < P,rm+D+L gych that for arbitrary
(2.3) (@)l € B,

the system of algebraic equations
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(24) zllij ¢¢(L¢(_?£)) = (pn+j(Ln+j(L¢))1 .7 = 13 2,... , m + 1 s
has no solution u € C* (i.e. 18 incompatible).

Lemma 2.4. Let Fo,F,,... Fe Clx,,x,,...,%] be I+ 1 complex polyno-
maals of | variables, and let

Vix) = {ueC; F(u)=a}, «€C, 1=0,1,...,1,

be the associated algebraic variety. Then for any 2=0,1,...,1 there exists
D, cR*! gn everywhere dense subset such that for every (o, 0q,. . ., ;) € D,

we have
dim (Vo(“o) n Vl(“l) n...nNn Vl(az)) é l""l_ 1 .

Proor or LEMMA 2.4. The proof is done by induction on 4. For 1=0
the result is evident, so suppose that lemma 2.4 holds for A=pu <1 let
a=(xp,...,x,) € D, be some fixed point and let

Vo) N Vi) n...nVy(x,) =V =FVOuP®y...u¥V®

be the decomposition of V into its irreducible components [7, § 94-95].
Let further

X (@) = {reR;dim(VOnV, ;,(r))=l—p-1}
={reR;V, 4>V}, c=1,2,...,0,

cf. [7, § 94-95]. Since now for r, %7,, two distinct real numbers, the two
varieties V,,,(r;) and V,,,(r;) are disjoint we conclude that the set
X (@), 0=1,2,...,p, consists of at most one point and that therefore the

set
E =U{(a,r); acE, reR, ré X (a), 6=1,2,...,0}

is everywhere dense. Also by the definition of D we can set D,.,=D in
our lemma and complete the inductive step.
ProoF oF LEMMA 2.3. Let us suppose that
P,0€P,, p=12,...,nm+1)+1,

is a choice of polynomials for which the system (2.4) is compatible. Using
then lemma 2.4 with A=I=nm we see that there exists an everywhere
dense subset 2 < R*™+1 guch that for every @=(«; ;j=1,2,...,nm+1)e 2
the choice
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@i = ‘Pi(o): 1=1,2,...,n; Pntj = (}75&).‘7'4'0‘3, j= ,2,...,nm+1,

in (2.3) makes the system (2.4) incompatible. This proves lemma 2.3.

o
Proor oF S;=0. To do that we first observe that from the definition
in § 1 (F) it follows that there exist compact disjoint cubes

{K,=R™;p=1,2,... ,n(m+1)+1}
such that if

P ewyey, r=1,...m,i=1,...,n,
as in (2.2), then
L,(u)eK, p=1,...,n(m+1)+1.

Let then E, < P,»m+1+1 be the everywhere dense subset constructed in
lemma 2.3, and let us define

H = {feCRm; Ih21, ()05 ¢ B, such that g, |, =f|x, Y7} -

Now if we use the well known fact that for every compact cube K =R™
the space of restrictions of polynomials is dense in C,(R™)/I(K), where

I(K) = {fe C(R™); f(0)> K},

and if we separate the cubes K,,, p=1,2,...,n(m+1)+1, using well
known techniques of partitions of unity, we see that H is everywhere
dense in C,(R™).

Also from the definition of H it follows that for every f € H the system
(2.2) is incompatible and therefore that HnS,=¢. This proves our as-
sertion and completes the proof of theorem 1’.

3. Applications to harmonic analysis and theorem 2.

As we have already observed in the introduction, theorem 1 implies
at once theorem 2 on the Sidon character of I'(f). The interest of theo-
rem 2 lies in the fact that the sets I'(f) in general are not C-H sets of
Rm+1,

Indeed, using the results in [1] it is easy to see that for any m =1 and
any v =m+ 2 there exists 2 < C,(R™) an open subset such that for every
f e Q we have My(I'(f))=+ {0}, that is, there exists 0+ u € M(I'(f)) some
measure whose Fourier transform tends to zero at infinity (d(z) - 0 as
& — o). But this implies of course [4, Ch. 5] that then I'(f) is not a
C-H set. The following two remarks are relevant on this point.
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REMARKS. (i) We can set »= + o in theorems 1 and 2. More precisely
we can replace C,(R™) by the space of the real functions on R™ that are
bounded and have bounded derivatives of all orders. That space assigned
with the family of seminorms

2

7 @)

P y @ = (o‘lv--:o‘m),

Pa(f) = sup

zeR™

where @ runs through all positive multiindices, is complete and metric.

(ii) Let us consider the space IT)"=(C,(R™))>, the countable cartesian
power of C,(R™) assigned with the product topology, and Bm=
L>(Z+; C,(R™)), the space of bounded sequences b = (f,fs, . « - sfn, - - ) With
the norm |b|| =sup;||f;/l. We have then

THEOREM 1”. For any 0<veR and 1=<m e Z and quasiall (fi.fz-- -,
Jur- ) EILY (resp. € B™) the set I'=UZ, I'(f;) <R™+ admits a decom-
position I'=E UE,U...UE, into m+1 independent subsets Ey,E,,...,
E, cRm+1,

The proofs of the above facts are easy modifications of the ones already
given.

4. V-Sidon sets and theorem 3.
Let us denote by A<R the set of real algebraic numbers, and let us
observe that the set
V= {logz; zeA, >0} < R

is a vector subspace of R over Q.

We shall prove first that theorem 3 is a consequence of

THEOREM 3'. Let Py, P,,...,P; € R[u,v] be real polynomials of two vari-
ables and let

4= {(szz»- - -3 %p49) € RE+2; 2.2, € (0,1) N A,
xj+2=Pj(xl’x2)7 j= 1:2»- . ’k} .

Then A is not a Sidon set of R¥+2,

Indeed, let @,,Q,,...,Q; be the polynomials of theorem 3, let = be
some transcendental number and let us define

Pi(u,v) = Qi(u+), j=1,2,...,k;
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It is immediate that if theorem 3 were false, then theorem 3’ with the
above choice of P; (modulo a rational change of variables to get the range
in [0,1]) would also be false.

The proof of theorem 3’ is based on the following lemma (4.1) that
uses the notions of tensor algebras, and whose proof is trivial and left to
the reader.

LrmmMa 4.1. Let A, B be two discrete abelian groups, let m 2 1 be a positive
integer and let B, E,,. .., E,, be discrete spaces. Let also

gj:Am"‘)Ej, h":Ej*B, j=l,2,...,8,

gla) = (9:(a),....95(a)) € E = Eyx...xEB,, acdA™,
hley,...,e) = D hile;) € B, e ekl j=1,...,8,
j=1

be fixed mappings, and let finally I <A a be fixed subset of A. Let us then
denote

G = {(a,e)e A™x E ;acIm"<A™, e=g(a)},

L = {(a,b)e A®xB;aecIm"cA™ b=hog(a)},
and let us suppose that L is a Sidon set of the discrete group A™ x B. Then
G i3 a V-Sidon set for the algebra

Vo = Co(A)®m @ é’ CO(Ej) s

1sj<s
where CO(A)®"’=CO(A)®. ..®Cy(A) indicates the m-th tensor power of
Co(4).

We shall now apply lemma 4.1 by setting m=2, A=R, B=RF (both
with the discrete topology), I=(0,1)nA4, and by choosing the remaining
parameters in such a way that

L=Ac A*xB = Rk+2,

To do this it suffices to choose each E;=R and each g;: 42°=R? >R an
appropriate monomial mapping

g5(x1,%,) = a;2,2", a;€R, ar,«, positive integers,
and also to choose each %; : E;=R — B=RF¥ of the form
hy(r) = (0,0,...,7,0,...,0) € Rk, reR,

the r being in the ;th place where f; is appropriately chosen and de-
pends on j, and j runs of course through an appropriate set, j=1,2,...,s.
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The integer s 2 1, the monomials g, and the #,’s are of course chosen so
as to “build up the polynomials P,,P,,...,P,” and so as to have L=/
(cf. § 0, theorem 3) as required.

Let us now observe that we can write the above g,’s in the form

g; = a; exp[Ly(logzy, log,)] ,

where L;, j=1,2,...,s, are linear forms of two variables with integer
coefficients. From this we see by performing an obvious change of vari-
ables in the carrier space of the tensor algebra

Vo = Co(R)®™?

that theorem 3 is then an immediate consequence of lemma 4.1 and

Lemma 4.2, Let Lj(u,v)=n;u+myv, j=1,2,...,s, be s linear forms of
two variables with integer coefficients and let

@ = {(xl’wZ" . °’xs+2) € Rs+2; T1,%5 € Vn (—-O0,0),
Xj49=Li(y,25), j=1,2,...,8} < Re+2,

Then @ is not a V-S set of the algebra Co(R)®€+?,

Lemma 4.2 is itself an immediate consequence of the following lemma
(cf. [5], [6, p. 16]).

Lemma 4.3. Let Lyu,v)=n;u+m;v, j=1,2,...,p, be p linear forms of
two variables with integer coefficients. We can then find finite subsets
Z1,2,,. . .,Z,,...<V? such that for all n=1

(4.2) 1Z,) 2 (p+1)"  SuPsgyep L2, S 7

Proor. We shall proceed by induction. The construction of Z, is
trivial, it suffices to fix an arbitrary z,e V2 and then choose points
21,29, . .,2, € V2 distinct among themselves and from z, such that

Ly(z;) = Ly(2), j=12,...,p.

Then we can set Z;={2y,2y,...,2,}.

Let us now suppose that Z,,Z,,...,Z, have been constructed satisfy-
ing (4.2), and let 0<a € Q be so large that for two distinct vectors
2,2,€ 2y, v¥u, v,u=0,1,...,p, we have

(o0z,+Z,) n (xz,+ Z,) = O;



SIDON SETS IN R% 49

we can set then Z,,, =«Z,+Z, and it is trivial to verify that Z, , satis-
fies (4.2).

REMARK. The method used to prove theorem 3 can be generalized so
as to show that for other special types of f e C,(R?) the set I'(f) cannot
be Sidon. For example, if n=2 and

N

(4.3) f@,y) = 3 (@) (v:i(¥))"

=1

where N1, g;,6,€R, ¢;,9,€C(R), i=1,2,...,N, we can deduce that
I'(f) is not Sidon. More general forms than (4.3) can also be treated
in the same way.
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