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VECTOR MEASURES

J. HOFFMANN-JORGENSEN

1. Introduction.

In this paper we shall deal with the properties of vector valued finitely
additive set functions defined on an algebra.

If m is a finitely additive set function taking values in a locally con-
vex Hausdorff space £, then (',m(-)) is a scalar valued finitely additive
set function for every continuous linear functional ' on E. So the set
function m gives us a certain set of scalar valued finitely additive set
functions. This set reflects many properties of m. Hence as a prepara-
tion we discuss in Section 3 some properties of sets of scalar valued set
functions. In particular we shall characterize the weakly compact sets
in certain spaces of scalar valued set functions (see Theorems 1, 2, and 3).
Theorem 1 is a slight modification of a theorem due to Grothendieck, see
Theorem 2, p. 146-147, in [6].

In Section 4 we show that weak o-additivity (or weak* g-additivity)
under certain restrictions implies ¢-additivity (see Theorem 4).

In Section 5 we discuss the atomic structure of vector valued set func-
tions. In particular, we prove that under mild conditions (see Theorem 6)
every vector measure can be decomposed uniquely in an atomic part and
an atomless part.

In Section 6 we study the range of vector valued finitely additive set
functions. First we give necessary and sufficient conditions for the range
to be weakly conditionally compact (see Theorems 7 and 8). Secondly
we give necessary and sufficient conditions for the range to be (condi-
tionally) compact (see Theorems 9 and 10). Thirdly we prove an ana-
logue to a theorem of Liapounov. Liapounov’s theorem (see [13]) states
that the range of a finite dimensional atomless vector measure is closed
and convex. In [13] it is also shown that this is not true in general for
infinite dimensional vector measures. We shall prove, however, that the
range of an atomless vector measure is weakly dense in its convex hull
(see Theorem 11).

In Section 7 we give eight examples (or rather counter-examples) of
vector measures, each of them disproving a natural conjecture.
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2. Definitions and notation.

In all that follows S denotes a nonempty set, X, an algebra of subsets of S,
2 the g-abgebra generated by 2, E a locally convex Hausdorff space, and
E' the dual of E, that is, E’ i3 the space of all continuous scalar valued linear
Sfunctions on E.

As far as the notations of special spaces are concerned, such as
ba(8,2,), ca(8,2), B(S,2,), Ly(S,Z2,a), , 1, c, et cetera, we follow
[4, Chapter IV].

Let & be a class of subsets of S, m a map from & into E, and M a
family of maps from & into Z. We then define:

(1) m is s-bounded, if and only if for every sequence {4,} of mutually
disjoint sets from &, we have lim,_,  m(4,)=0.
(2) M is uniformly s-bounded, if and only if lim,, . m(4,)=0 uniformly

for m € M, whenever A,,4,,... are disjoint subsets of &.

The notion of s-boundedness was introduced by Rickart in [10].

If a is a scalar valued finitely additive set function, then |a| denotes
the total variation of a (see for example Definition 4 of Chapter III
in [4]).

Let m, M and & be as above. If a is a map from & into R, =[0, ),
we define:

(3) m<a, if and only if for any neighbourhood U of zero in Z, there is
a d>0 such that m(4) € U whenever a(4)<d, A € &.

(4) M <a, if and only if for any neighbourhood U of zero in E, there is
a d >0 such that m(4) € U whenever me M, 4 € &, and a(4) <d.

An E-valued map m on X is called finitely additive, if
m(4AuB) = m(4)+m(B),

whenever A,B are disjoint sets in ;. The map m is called o-addstive,
if
m(Un.14,) = Z5.1m(4,)

whenever A,,4,,... are mutually disjoint sets from X, such that
Uy ,4,€Z,.

An E-valued o-additive set function, m, defined on a oc-algebra is
called a vector measure, or an E-valued measure.

Let m be a finitely additive set function defined on X taking values

in E; then we define:

(5) N(m) = {AeZ,|mAnB)=0VBeZX;}.
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(6) A €Z,is an m-afom, if and only if for all B € 2, either AnB € N(m)
or A\ Be N(m).

(7) AeZ, is a proper m-atom, if and only if 4 is an m-atom and
A & N(m).

(8) m is called atomless, if and only if m has no proper atoms.

(9) m is called atomic, if and only if there exists a sequence {4,} of
m-atoms, such that S=U>_. 4

n=1<"n*

Let m be an E-valued measure on 2. Then m is called absolutely con-
tinuwous, if there exists a positive finite measure, @, on X, such that
N(a)c N(m), or equivalently such that m <a. Notice that

N(m) = N pN@x'm).

So by Exercise 23, p. 141, in [14] we find that, if m is absolutely continu-
ous, then there exists a positive finite measure a on X, such that
N(a)=N(m).

Let m be an E-valued finitely additive set function on %, and let ¢
be a seminorm defined on K. Then the g-variation |m|, is defined by

(10) Im|o(4) = sup{37_,q(m(4,))}, AeZ,,

where the supremum is taken over all disjoint sets 4,,...,4, from X,
with A=4,U...U4,. The g-semivariation q(m) is defined by

(11) q(m)(4) = sup{g(Z}.,Z;m(4,))}, AeZ,,

where the supremum is taken over all disjoint sets 4,,...,4, from X,
such that 4=4,u...u4,, and all scalars Z,,...,Z,, with |Z; <1
Vi=1,...,n.

Let A<E. Then co(4), co(4), I'(4) and I'(4) denote the convex
hull of A4, the closed convex hull of 4, the convex balanced hull of A4,
and the closed convex balanced hull of 4, respectively. The polar of A
is denoted by A4°, and is defined by

A° = {&'eB'||(z,2")| =1V e d}.

A locally convex space, E, is said to be (sequentially) complete if every
(ordinary Cauchy sequence) generalized Cauchy sequence is convergent.

3. Weak compactness in ca(S, ) and ba(S, ) .

In this section we give a charcterization of the weakly conditionally
compact sets in ba(8,X) and ca(S,2). We prove that the weakly con-
ditionally compact subsets of ba(S,2;) are exactly the subsets, which
are uniformly s-bounded on Z,. Further we prove that this criterion also



8 J. HOFFMANN-JORGENSEN

holds in ca(8,%), still with 2,. The importance of the last criterion lies
in the fact that weak conditional compactness in ca(8,2) is determined
by the values of the measures on an algebra generating X.

First we prove a slight modification of a theorem due to Grothendieck
(see [6, Theorem 2, p. 146-147]).

THEOREM 1. Let T be a compact Hausdorff space, and % a base for the
topology in T with the property:

@) If U,U,e, then U,uU, €.

If M is a bounded subset of rea(T'), then M is weakly conditionally com-
pact, if and only if M is uniformly s-bounded on %.

Proor. Let ¥~ be the family of all open subsets of 7. Then Theorem 2,
p. 146-147, in [6] states that the theorem holds if ¥ '=%. Hence it
suffices to prove that if M is s-bounded on %, then M is s-bounded on ¥".

Suppose that M is not s-bounded on ¥". Then there exist disjoint
{V,.}=7", and measures {a,}< M, such that for some number d >0, we

have
e (V) >d V¥n2x1.

By regularity of |a,| we can find a compact set K,<V,, such that
Ia/nl(Vn_Kn) < Ia’n(vn)l_d Vrzl.

Since % is a base for the topology, which is closed under formations of
finite unions, we can find U, € %, such that

K,cU,cV, Vn2l.
Hence

|a’n(Un)| 2 |a'n(Vn)|—"lan[(V'n_Kn) >d Ynzl.

But U,,U,,. .. are mutually disjoint, and we see that M is not s-bounded
on %. Hence the theorem is proved.

We shall now deduce the criterions for weak conditional compactness
in ba(8,2;) and in ca(S,X) from this theorem by constructing some
isometries between certain spaces of set functions.

Levma 1. Let a be a complex valued finitely additive set function on X,
and let X, be a subalgebra of X, such that

(a) Ve>0VAelX, 3Be X, such that |a|(A4B) < ¢.
If a, ts the restriction of a to X\, then |ay|(4)=|a|(4) for all 4 € Z;.
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Proor. Let 4 €2,. Then |ay|/(4)=]|a|(4) for obvious reasons. Let
d<|a|(4). Then we can find disjoint sets 4,,...,4, from X,, such
that 4;c A4 for all j=1,...,n, and

;’=1|a(Aj)| >d.
Let e=37_,|a(4;)|—d>0. Then from (a) we can find B; e X, with
la|(4;4B;) < n%¢ Vj=1,...,n.
Since 4 € X; we may assume that B;c4 for all j=1,...,n. Let
Cj = B]\U{J;lle Vj=1,...,’n.
Then C,,...,C, are disjoint sets in 2 all contained in 4, and obviously
we have
la|(4,40;) £ 3%_,l|al(4,4B,) £ nte Vj=1,...,n.
Hence for each j=1,...,n we find
|a(Cy)] 2 |a(4;)| —|al(4;4C;) 2 |a(4;)]|—nte.
Summing over j we find
laol(4) 2 3j.q1a(Cy)| 2 Zjyla(dy)|—e =d.
Since this holds for any d < |a|(4), we find that |ay|(4) = |a|(4). And the

Lemma 1 is proved.

LeMMA 2. Let P be the restriction map from ca(8,X) to ca(8,2,), that
18, Pa is the restriction of a to X, for all a € ca(S,2). Then P is an isome-
try from ca(S,2) onto ca(S,Z,), and |Pa|=Pl|a| for all a € ca(S,2).

Proor. P is obviously linear, and from the extension theorem for
bounded complex valued measures we find that P maps ca(S,ZX) onto
ca(8S,X,).

From Theorem D, § 13, in [7] and Lemma 1 it follows that |Pa|=Pja|
for all @ € ca(8,2), and so P is an isometry.

Lemma 3. Let T be a compact Hausdorff space, # the Borel o-algebra
and %, the Baire o-algebra. Let R be the restriction map from rca(T') into
ca(T,%,). Then R is an tsometry from rca(T) onto ca(T,%,), and |Ra|=
Rla| for all a € rca(T).

Proor. From Theorem D, § 54, in [7] it follows that R maps rca(7')
onto ca(7,%,). From Theorem H, §52, in [7] and Lemma 1 it follows
that |Ra|= R|a| for all a e rca(T'), and so R is an isometry.
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LeMMA 4. Let T be a compact totally disconnected Hausdorff space, and
let € be the algebra of all open-closed sets in T'. Let Q be the restriction map
from rca(T) into ba(T,¥). Then Q is an ssometry from rca(T') onto
ba(T,%), and |@Qa|=Q|a| for all a € rca(T).

Proor. If {C,} is a sequence in ¥ which decreases to &, then neces-
sarily there exists an integer k=1, such that C,=0 for all n>%.

This argument shows that ba(7,%)=ca(T,%). Let P be defined as
in Lemma 2 with §=7T, 2Y=4%, and X,=%. From Theorem C, § 51, in
[7] it follows that X' is the o-algebra generated by 2, hence P is an iso-
metry from ca(7,%,) onto ba(7,%). Let R be defined as in Lemma 3.
Then @=RP, hence @ is an isometry from rca(7') onto ba(7,%), and
|Qa| =@|a| for all a € rca(T).

THEOREM 2. If M is a bounded subset of ba(S,2,), then the following
Jour statements are equivalent.
(i) M is weakly conditionally compact.
(ii) M ¢s uniformly s-bounded on Z,.
(iii) 3@ € ba*(8,Z,), such that M <a.
(iv) My={la| | @ € M} is weakly conditionally compact.

Proor. By Theorem 12, IV.9, in [4] (i) and (iii) are equivalent. Ob-
viously (iii) implies (ii). If M <a, then necessarily M,<a and conversely.
Hence (iii) and (iv) are equivalent. So the only implication, which is
missing, is (ii) implies (i).

Suppose that M satisfies (ii). By a theorem of Kakutani (see for ex-
ample Theorems 10 and 11, IV.9, in [4]) there exists a totally disconnected
Hausdorff space 7' and a bijection from € onto X, satisfying

t(CuD) = ¢C)utD) VC,De¥,
HT\C) = S\¢(C) vCe€?,
Wry==S8,

where ¥ is the family of all open-closed subsets of 7. Let V be defined by
(Va)(C) = a(t(C)) VCe¥ Vaehba(s8,2,).

Then V is an isometry from ba(S,Z,) onto ba(7,%). Let @ be defined
as in Lemma 4. Then L=@Q-'V is an isometry from ba(S8,Z;) onto
rca(Y), such that

(La)(C) = a(t(C)) VCe¥ Yaeha(S,X).
Since M is bounded, L(M) is bounded. And the equation above shows
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that L(M) is uniformly s-bounded on €. So by Theorem 1, L(M) is
weakly conditionally compact, and since L is a surjective isometry, M
is weakly conditionally compact.

THEOREM 3. Let M be a bounded subset of ca(S,X), and let P be the re-
striction map from ca(S,2) into ba(S,2,). Then the following 7 state-
ments are equivalent.

(i) M is weakly conditionally compact.

(ii) M 28 uniformly s-bounded on X.

(iii) da € cat(S,2) such that M <La.

(iv) PM is weakly conditionally compact in ba (S,2).
(v) M ¢s uniformly s-bounded on .

(vi) Ja ebat(S,2,) such that PM <La.

(vil) My={la| | a € M} is weakly conditionally compact.

Proor. Theorems 2 and 1, IV.9, in [4] show that (i), (ii), (ili) and
(vii) are equivalent, and (iv), (v) and (vi) are equivalent.

Since P is an isometry from ca(S,Z) onto ca(S,Z,) (see Lemma 2)
and ca(S,2,) is weakly closed in ba(8,%,), we find that (i) and (iv) are
equivalent.

4. Weak o-additivity.

Let m be a finitely additive set function on (S,2;). We shall then
deal with the following question: Knowing that z'm is c-additive for =’
in a certain subspace F of E’, can we then conclude that m itself is o-
additive ?

A theorem of Pettis (see for example Theorem 1, IV.10, in [4]) states
that, if X, is a o-algebra, £ is a Banach space, and F =E', then our
question has a positive answer. This theorem has an immediate ex-
tension to general locally convex spaces which is due to Metivier [8].
In Example 7 we show that this does not hold if X, is not a o-algebra.

LemwmaA 5. Let q be a continuous seminorm on E and m a finitely addi-
tive set fumction on (S,Z,). Let U be the q-umit ball, that is, U=
{xeE |qx)<1}. If F is a subspace of B’ satisfying

(a) q(x) = sup{|(z,2") | |z’ e U° n F},
then the g-semivariation is given by

g(m)(A4) = sup{|z'm|(4) |x'e U°nF} VAelZ,.
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REMARK. (a) is satisfied, if and only if U is o(Z,F)-closed. Hence
if F'=E', then (a) holds for any continuous seminorm ¢ on E.

For suppose that U is o(Z,F)-closed. Then U°NF is the polar of U
in F, and since U is convex and balanced, we find from Theorem 4,
p. 35, in [10] that U=(U°nF)°. But from this (a) follows immediately.

Now suppose that (a) holds. Then obviously U=(U°nF)°, which
shows that U is o(Z, F)-closed.

Proor or LEMMA 5. If a € ba(S,2,), then it is well known that
la|(4) = sup{Z}.t;a(4;)|} VAeZ,,

where the supremum is taken over all X -partitions 4,,4,,...,4, of 4
and over all scalars ¢,,...,t, with |£;/ <1 for all j=1,...,n.

Hence the lemma is an immediate consequence of (a) and the defini-
tion of g(m).

ProprosiTION 1. Let m be a bounded finitely additive set function on
(S,25). Then the following four statements are equivalent.

(i) m ¢s s-bounded on 2.
(ii) {x'm |2 € U°} s uniformly s-bounded on X, for every neighbourhood

U of zero in K.

(iii) g(m) ¢s s-bounded for all q € P.
(iv) Yge Z#da € bat(8,2,) such that g(m)<La.

Here &P is a family of continuous seminorms on K, which generates the
topology in E.

REMARK. From Corollary 1, p. 507, in [15] it then follows that, if m
is g-additive on 2, and ¥ is sequentially complete, then m has a ¢-addi-
tive extension to 2, if and only if m is s-bounded.

Proor or ProposiTION 1. Let ¢ € . Then by Lemma 5 we have

g(m(4)) = sup{|z'm(4)| |z’ e U°} VAeZ,
g(m)(A4) = sup{lz'm|(4) |2’ € U’} VAelX,

where U is the g-unit ball. Hence Proposition 1 follows easily from
Theorem 2.

ProprosITION 2. Let m be a s-bounded finitely additive E-valued set
function on (8,2,). Let q be a continuous seminorm on E whose unit ball
is o(&,F)-closed, where F is a given subspace of E'.
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If 'm is o-additive on 2 for all ' € F, then q(m) is continuous at @.

Proor. By Proposition 1 and Theorem 3, the family
M = {|'m| |2’ € F n U}

is weakly conditionally compact in ca(S,2). Hence by Theorem 3 there
exists a € cat+(8,2,) such that M <a. Now let {4,} be a sequence in X,
which decreases to J. Then lim, . a(4,)=0, and so

|#'m|(4,) - 0 uniformly for '€ U°NF as n - .

Hence lim,,_, ,q(m)(4,)=0 by Lemma 5. Which proves Proposition 2.

ProrosiTioN 3. Let m be a finitely additive s-bounded set function on
(8,2,) taking values in E. If E is metrizable, then there exists a € ba+(8,%,)
such that q(m)<a for every continuous seminorm q on E.

Proor. Since E is metrizable there exist continuous seminorms ¢, <
g2 =< ... such that {g, | » = 1} generates the topology of E. By Proposi-
tion 1 we can find a, € bat(S,2,) such that g,(m)<a,. Now let

a(d) = Z2_,2-" a,(4)[a,(S), AeZ,.

Then a € bat(S8,2,), and ¢,(m)<a Vn = 1.

If ¢ is a continuous seminorm on E, then there exist an integer k
and a number M >0, such that ¢ < Mq,. Hence g(m)=< Mgq,(m), and so
q(m) <a.

PRroPOSITION 4. Let m be an E-valued measure on (S,X). If there exists
a metrizable locally convex Hausdorff topology on E which is weaker than
the original topology, then m is absolutely continuous.

ReMARK. The hypothesis of the proposition is particularly satisfied,
if there exists a countable subset of E’ which is o(E’, E)-dense in £,
or equivalently, which separates points in E.

Proor or ProrosiTioN 4. By hypothesis there exist continuous semi-
norms ¢; <¢,=< ... such that ¢,(x)=0Vn =1 implies x=0. By Proposi-
tion 1 and Theorem 3, there exist a, € ca*(S,Z), such that g,(m)<a,
Vn=1. Now let

a(4) = 55,277 a,(A)fan(S) VAEZ.



14 J. HOFFMANN-JORGENSEN

Then a € cat(S,2) and ¢q,(m)<aVn=1.

If A e N(a), then g,(m(B))<q,(m)(B)=0 for all =1 and all Be X
with Bc 4. Hence m(B)=0 for Be X with B A, that is, 4 € N(m),
and so N(a)c N(m).

THEOREM 4. Let m be an E-valued s-bounded finitely additive set func-
tion on (8,Z2,), and let F be a linear subspace of B', such that
(a) 2'm s o-additive on X, Va' € F,
(b) E has a base at zero, consisting of o(H,F)-closed convex balanced sets.
Then m is o-additive on X,.

Proor. (b) states that there exists a family & of continuous semi-
norms such that the g-unit ball U(g)={x € E | ¢(x) £ 1} is o(E, F)-closed
for all g€ &, and such that & generates the topology of E. Hence
Theorem 4 is a consequence of Proposition 2.

CoROLLARY 1. Let E be the dual space of the locally convex space F,
and suppose that the topology v in E is the topology of uniform convergence
on A, Aesf, where 18 a class of bounded subsets of F with
U{d|dex}=F.

If m is an E-valued s-bounded finitely additive set function on (S,Z),
such that (y,m(-)) ts o-additive for all y € F, then m is o-additive.

Proor. Let o/* denote the family of all subsets of sets of the form

r\r_,4,) with 4,,...,4, € . Since F may be considered a subset of
E', and since {4° | 4 € &/*} is a base for the topology in ¥ at zero con-
sisting of o(Z,F)-closed convex balanced sets, Corollary 1 follows from
Theorem 4.

5. The atomic structure of vector measures.

In this section we shall study the atoms of vector measures. The
main result states that, under mild restriction, every vector measure m
can be decomposed uniquely as the sum of an atomic and an atomless
vector measure; and this decomposition arises from a decomposition of S
into two complementary sets such that m is atomic on the one and atom-
less on the other.

First we need some preparatory lemmas.

LeMMA 6. Let m, and m, be two E-valued measures on (8,2). If
N(my) < N(m,), then every my-atom 8 an m,-atom.
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Let a, and a, be two complex valued measures on (S,2). If N(a,)c
N(a,), then every proper a,-atom contains a proper a,-atom.

Proor. The first statement follows immediately from the definition.
Now let 4 be a proper a,-atom. By the Radon-Nikodym theorem
there exists a nonnegative |a,|-integrable function f such that

al(B) = [fdiasl  VBeX.
B

Let A(t)={se€ A |f(s)2t} for t20. Then A(0)=A and
lim, o ay|(A(5) = 0.
Since A is a proper a,-atom, we find that if
to = sup{t=0 | |a|(4()) >0},
then 0 <#,<co. Now |a,|(A4(¢))=0 if ¢>¢,. Then
lagl(s € A | f(s)>1) = 0.

By definition of A(f) we see that |a,|(4()) is left continuous. Hence
la,|(4 N\ A(t,)) =0, and so

lagl(se A | 0<f(s)<ty) = 0.

Now |a,|(4) >0, so f is not zero a.e. in 4 with respect to |a,|. Hence the
set

Ay = {s€ A |f(s)=ty}
must have positive |a,|-measure, and since
la |(B) = tylay|(B) VYBel suchthat B¢ 4,,

we see that A4, is a proper a,-atom.

CorROLLARY 2. Let m, and m, be two E-valued measures such that
N(my) = N(m,). If m, is atomic, then so is m,.

If a, and a, are two complex-valued measures such that N(a,)< N(a,)
and a, 18 atomless, then a, ts atomless.

ProrosrTioN 5. If m is an E-valued measure on (S,X), then A€ is an
m-atom, if and only if A is an &' m-atom for all 2’ € E'.

If A is a proper m-atom, then for some x' € E' the set A i3 a proper
x' m-atom.

If m is absolutely continuous and A is a proper x'm-atom for some
x' € E', then A contains a proper m-atom.
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Proor. Let M ={z'm |2’ € E'}, then M is a convex subset of ca(S,X).
Since N(m)< N(b), every m-atom is a b-atom for all b in M.

Now let 4 be a b-atom for all b € M, and let Be X, B< A, such that
B ¢ N(m). We shall then show, that A\ B € N(m). Suppose this was not
true. Then there exists b, € M, such that 4\ B ¢ N(b;). We know that
B ¢ N(m). Hence B ¢ N(b,) for some b, e M. Let b=b,+b,. Thenbe M.
Since A4 is a b;-atom and a by-atom, B € N(b,) and A\ B e N(b,). Thus

b(C) = by(C) = 0 for 0 < B, CeZX,
BANC) = b(ANC) =0 for C < B, CeX.

But this contradicts the fact that 4 is a b-atom.

Now suppose that 4 is a proper m-atom. Then for some be M,
A ¢ N(b), and since 4 is a b-atom, 4 is a proper b-atom.

Now suppose that A is a proper b-atom and m is absolutely continu-
ous. Then there exists a €cat+(S8,2), such that N(a)=N(m)<N(b).
Hence by Lemma 6, 4 contains a proper a-atom, but this must necessarily
be a proper m-atom, since N(a)=N(m).

CorROLLARY 3. Let m be an E-valued measure on (S,X).

If 'm is atomless for all x' € E', then m is atomless.

If m is atomic, then x'm is atomic for all o' € B'.

If m is absolutely continuous and m is atomless, then x'm is atomless
for all ' € B'.

If m is absolutely continuous and x'm is atomic for all «' € B', then m
s atomic.

REMARE. In Example 1 in Section 7 we shall construct a vector
measure m +0 such that m is atomless and x'm is atomic for all 2’ € £’.
That is, the hypothesis of absolute continuity of m in the last two state-
ments in Corollary 3 cannot be suppressed in general. But it should be
noticed that by Proposition 4 this cannot happen in ‘“nice’” spaces.

THEOREM 5. Let m; and m, be two E-valued measures on (S,X).

If m; and m, are atomic, then m; 4+ my ts atomic.

If m, and m, are absolutely continuous and atomless, then m,+m, ts
atomless.

REMARK. In Example 2 we shall construct two atomless measures,
m, and m,, such that m,;+m,+0 and m,+m, is atomic. Hence the
hypothesis of absolute continuity cannot be suppressed in general. But
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it should be noticed that by Proposition 4 this cannot happen if E is a
‘“nice’’ space.

Proor or THEOREM 5. Let m=m,; +m, and suppose that 4 is an atom
for m,; and for m,. We then show that A is a union of at most two
m-atoms. We divide the discussion in three cases.

Case 1. 3CeZ, CcA4, such that CeN(m;)\N(m,). Then D=
AN C € N(m,), and hence we find

m(B) = my(B) VBgc D, BeX,
m(B) = my(B) VYBcC, BeX.

But this shows that C and D are atoms for m.

Case 2. 3Ce X, CcAd, such that Ce N(m,)\ N(m,). This case is
treated similarly to Case 1.

Case 3. {0|CcA,CeN(m)}={C|Ccd,CeN(my). Let CeZ,
CcA, if C ¢ N(m). Then either C ¢ N(m,) or C ¢ N(m,), so by assump-
tion, C ¢ N(m;)UN(m,). Since 4 is an m,-atom and an m,-atom,

ANC e N(my) nN(my) < N(my+m,) .

That is, A is an m-atom.

Hence we have proved our statement.

Now suppose that m; and m, are atomic. Then we can find disjoint
m,y-atoms 81, 8,,. .., and disjoint my-atoms 7,,7T,,. .., such that

8 = U:)=1Sn = U:’=1Tn°

Since S,NT, is an m,-atom and an my-atom for all n,k =1, the above
argument shows that S, N7, is a disjoint union of two m-atoms, and
since

8§ =Ur Us 8, nT,,

we have proved that m is atomic.

Now let m, and m, be absolutely continuous and atomless. Then
by Corollary 3, «'m,; and «'m, are atomless for all 2’ € E’. So by 5.14
in [12] the sum «'m=a"m;+ x'm, is atomless for all '’ € E’. Hence by
Corollary 3, m is atomless.

THEOREM 6. Let m be an absolutely continuous H-valued measure on
(S,2). Then there exist unique absolutely continuous E-valued measures
m, and m, on (S,%) satisfying:

Math. Scand. 28 - 2
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(i) m, s atomless, m, is atomic.
(il) m=my+m,.

Furthermore there exists SyeX such that S, i3 a countable union of dis-
Jjotnt proper m-atoms and S\ S, contains no proper m-atom. The measures
m, and my are given by
(iii) my(A)=m(A\S,), 4 €2,

(iv) my(4)=m(ANnS,), A €.

REMARK. Examples 2 and 3 in Section 7 show that neither the unique-
ness part nor the existence part is true in general (that is, without the
assumption of absolute continuity of m, m, and m,). But it should be
noticed that by Proposition 4 this cannot happen, when Z is a ‘“nice”
space.

Proor or THEOREM 6. Let a €cat(8,2), such that N(a)=N(m).
From 5.4.55 in [12] we deduce that there exists S, € 2" such that S, is
a countable union of disjoint proper a-atoms and S\ 8, contains no
proper a-atoms. Since @ and m have the same atoms and the same null-
sets, the last part of Theorem 6 is proved.

Let m, and m, be defined by (iii) and (iv) and define a, and a, simil-
arly, that is,

a,(4) = a(d\8,), 4deX,
ay(A) =a(dn8,), AelX.

Then obviously N(a,)=N(m,) and N(a,)=N(m,). Hence m, and m, are
absolutely continuous. Since a, is atomless and a, is atomic, m, is atom-
less and m, is atomic. Obviously, m=m,+m,, so the existence of the
decomposition is proved.

If a vector measure is atomic and atomless at the same time, then it
necessarily must vanish identically. Hence the uniqueness follows from
Theorem 5.

6. The range of a vector measure.

Let m be a finitely additive set function on (S,2,). If m is bounded,
then the range m(Z;) of m is bounded. If ¥ is finite-dimensional, then
m(Z,) is conditionally compact. In this section we shall study the proper-
ties of the range of m. In particular we shall prove that m(X,) is weakly
conditionally compact under fairly mild restrictions on m and E.

In order tostudy the range of m, we consider the integral operator going
along with m. Let & (8,2,) be the space of all Z-simple scalar valued func-
tions on 8, and let B(S,2,) be the closure of &(8,Z,) under the norm



VECTOR MEASURES 19

IfIl = sup{|f(s)| [s € S}.
If f=37 1414 i8 a Zysimple function, we define the integral in the
usual way, that is

[ fam = 1) = 53, tym(4y).
8

There is no difficulty in proving that I, is well-defined (that is, I,,(f)
is independent of the particular representation of f).

Then I,, is a linear map from #(8,2%,) into E. If q is a continuous
seminorm on K, then by the very definition of g(m),

02 qemd) = supo( [ fam) | 7€ S50 f151)-

Hence if m is bounded, then I,, is continuous. If £ is sequentially com-
plete and m is bounded, then I,, has a unique extension to B(S,Z,) since
F(8,2,) is dense in B(8S,2,) and I, is continuous. This extension will
still be denoted by I,,.

The dual space of &(S,2,) is ba(8,%,) (see for example Theorem 1,

1V.5, in [4]). If m is bounded, then 2'm € ba(S,2,) for 2’ € E’, and the
transposed I,,” of I,, is given by

I,/ =ax'm Va'ek.

LemMmA 7. Let Bt be the positive part of the unit ball in F(8S,X), that is,
B+ = {fe #(8,Z) | f20,Ifll 1} .
If m is a finitely additive sct function on (S,2,), then
I,(B*) = co(m(Zy)) .

Proovr. Let f € B+, then we can find disjoint nonempty sets 4,,...,4,
in X, and numbers 0=Za,=Sa, = <a,=1 such that

f = z?———la’lei .
Now let b;=a;—a;_; for j=1,...,n+ 1, where a,=0 and a,,,, =1, and let

.B]- = U:}=jAv,j=l,...,n+l, Bn+1=0.
Then
f = z;l:ib]'lB, ’
and so we find

L(f) = Z;‘:%bjm(Bj) € co(m(Zy))
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since b;20 and 37*1b,=1. This means that I,(B+)<co(m(Z,)), and

since the converse inclusion is obvious, the lemma is proved.

ProPOSITION 6. Let m be an E-valued finitely additive set function on
(8,Z,) such that co(m(Z,)) is weakly conditionally compact. Then m is
s-bounded, and 1, is a weakly compact linear operator.

Proor. From Lemma 7 it follows immediately that I,, is weakly com-
pact.

From Lemma 7, p. 153, in [10] it follows that I,,'(U°) is weakly com-
pact in ba(8,Z%,) for every neighbourhood, U, of zero in £. Hence from
Proposition 1 and Theorem 2 we deduce that m is s-bounded.

THEOREM 7. Let m be a bounded E-valued finitely additive set function.
If E is quasicomplete (that is every bounded closed set in I is complete),
then the following three statements are equivalent.

(i) m s s-bounded.
(il) m(Z,) is weakly conditionally compact.
(iii) 1, ¢s a weakly compact operator.

Remark. Example 4 in Section 7 shows that, even if E is weakly
sequentially complete, then m(X,) may not be weakly conditionally
compact. Hence the assumption of quasicompleteness of £ cannot be
suppressed in general.

Proor. Suppose that m is s-bounded. Let F=(%(8,2Z),|-]), F'=
(ba (S,Zy),[-1]), and F”’ the dual of F’ equipped with the (¥, F’)-topo-
logy. Let G'=(E')*, that is, G is the algebraic dual of £’, and let £ be the
topology on G of uniform convergence on equicontinuous subsets of Z'.
Then F is a subspace of F'’, and the transposed of I,,’, I,,”, is an ex-
tension of I,, to F''; and I,/ maps F'' into G.

Let A’ be an equicontinuous subset of E’. If A'0 is the polar of 4’
taken in G, then

(L") HA™) = (I,/(4)°

where the polar on the right side is taken in F"'. By Proposition 1,
I,'(A’) is contained in a convex o(F',F'’)-compact set. Hence (Z,,’')~!
(4’°) is a 7(F",F') neighbourhood in F"’. That is, I,,’" is a continuous
linear map from (F",z(F",F’)) into (G,§).

Let B be the unit ball in F and B’ the unit ball in F''. Then B is
o(F",F')-dense in B'' (see for example Theorem 5, V.4, in [4]). Since
B is convex, B is also ©(F"',F')-dense in B”. So if 2'’ € B"', then we can
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find a generalized sequence {z,}< B which converges to 2" in =(F",F’).
Hence {I,(z,)} converges to I,''(z"") in &.

Let U be a closed convex balanced neighbourhood of zero in £. Then
U° is equicontinuous, and so by definition of £ we can find «,, such that

‘(Im(za)_lm(zp),x’)l <1 V2'elU° Yo,fZaq.

Hence I,,(2,)—1,,(2,) € UVYx,f=x,. This shows that {I,(z,)} is a gen-
eralized Cauchy sequence in X, and it is bounded since I,,(B) is bounded.
So by quasicompleteness of E, there exists x,€ E such that z,=
lim I,(z,)=1,"(z").

This shows that I,,”(B")< E, and since F”'=U;_ nB", we find that
I, (F")< E. Hence by Lemma 7, p. 153, in [10], I,, is weakly compact.

So we have proved that (i) implies (iii). Since m(X,) < I,,(B), we find
that (iii) implies (ii). If m(ZX,) is weakly conditionally compact, then so
is co(m(Z,)) (see for example (4'), p. 328, in [11]), and so by Proposition
6, m is s-bounded. That is, (ii) implies (i), and the theorem is proved.

THEOREM 8. Let m be an absolutely continuous E-valued measure on
(8,%). If E is sequentially complete, then co(m(X)) is weakly compact.

Proor. Let aecat(8,X), such that N(a)sN(m). If f and g are
Z-simple function such that f=g a.e. with respect to a, then obviously
L(f) = I(g) -

Since £ is sequentially complete, 7, is defined on all of B(S,2), and
by the argument above we find that I,,(f)=1,,(g9) whenever f and g are
functions in B(8,%) such that f=g a.e. with respect to a.

This means that we can consider I,, as defined on L(S,2,a).

Let x, € E'. Then N(a)c N(x,’m), and so by the Radon-Nikodym
theorem there exists g, € L,(S,Z,a), such that

[fazym = [faoda = (2. Ln(f)  VIeLofS.Z0).
S S

Hence I, is a continuous map from (L, (S,Z,a),6(Ls,L,)) into
(E,0(E,E")).

The unit ball B in L(S,2,a) is o(L,L,)-compact. Hence I,(B) is
weakly compact, and so the theorem follows from Lemma 7.

THEOREM 9. Let m be a bounded finitely additive set function on (8,2,).
If E is quasicomplete, the following five statements are equivalent.
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(i) m(Zy) v8 conditionally compact.
(ii) co(m(Zy)) s compact.
(iii) I, 48 @ compact linear operator.
(iv) For any q € P, there exist a € bat(S,%,), and a sequence {f,} of E-
valued Xy-simple functions, such that uniformly for B € X,

Q(ffnda"_m(B)) -0 as n—>oco.
B

(v) {&'m |2’ € U°} is conditionally compact in ba(S,Z,).
Above, P is a family of continuous seminorms on E generating the
topology of K.

REMARK. It is easily seen that (iv) implies that the total g-variation
|m|,(8) is finite for every continuous seminorm ¢ on E.

In Example 6 we shall see that even if Z is a separable Banach space,
m is o-additive on X, and the total variation of m is finite, we cannot
conclude that m(2) is conditionally compact.

Proor or THEOREM 9. By the quasicompleteness of Z and Lemma 7
one finds immediately that (i), (ii) and (iii) are equivalent (see also (4),
p- 328, in [11]). By Lemma 7, p. 153, in [10] one finds that (iii) implies
(v).

Now let us prove that (v) implies (iv). Let g€ & and let U be the
g-unit ball. Then

{@'m|2’eU°} =M

is conditionally compact in ba(S,2;). So by Exercise 19, IV.13, in [4]
there exist a € ba*(S,2y) and Z\-partitions 4,%,. .., 4}, of 8, such that
a(4,)>0, and

|20’ m(A") a(BnAM[a(A") — a(B)| < n-1
Vo' e U°, YBe X, and Vr=1. The function
fo = ZI0a(4;M)71 10 m(4,")

is an E-valued X -simple function, such that

f fuda = ZE0 m(A) a(BnA") a(4;) " VBeZ,.
B

Hence we find for all n=1
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’ (x'> J-fnda—m(B)) ’ =nl VBelX, V2'eU°,
B
and so

q(Jﬁﬂa—muﬂ)§7r1 VBeY, Vn21,

which proves (iv).
Finally we prove that (iv) implies (i). Let ¢ € & and let a € ba+(S,2,)
and {f,} be chosen according to (iv). Then we define

nmm=fhm,3e%.
B

Then m, is bounded and m,(Z,) is finite dimensional. Hence m,(X,)
is conditionally compact. If ¢>0 we can choose an integer k=1, such
that

g(my(B)—m(B)) < 3¢ VBeZ,.
Since m,;(2,) is conditionally compact we can find w,,...,z, € £ such
that
mk(zo) s U£=1(xv+f}55U) ’

where U is the g-unit ball. But this obviously implies that
m(Zy) < Ul (@, +eU).

Since & generates the topology of E, this shows that m(Z,) is precom-
pact in . But I is quasicomplete, and so m(X,) is conditionally com-
pact.

THEOREM 10. Let m be an atomic E-valued measure on (8,X), then
m(X) is compact.

If B is sequentially complete, then ©o(m(ZX)) is compact.

Proor. Let 8,,8,,... be proper disjoint m-atoms in S, such that
S=Uy_,8,, and let z,=m(S,). Let C={0,1} be the Cantor set. If
&=(&,) € O, we define

f(&) = Z:;I‘Enxn = m(UneBSn) ’

where B={n | £,=1}. Then f is a map from C into m(X). Let 4eX
and define

g, =1 if AnS,&Nm),
=0 if AnS, eNm).

Then f(&)=m(4), and so f(C)=m(X).
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Let &7 €C, such that &=u; for j=1,...,k, and let ¢ be a continu-
ous seminorm on E. If we put B;={n | £,=1} and By={n | 9, =1}, then

where 4, =U7_;., 8, since BiAB,c{k+1,k+2,...}. By Proposition 2,
lim;,_,,q(m)(4,) = 0.

Hence f is a continuous map from C onto m(Z). But this implies that
m(Z) is compact.

Now suppose that Z is sequentially complete. Let D=[0,1]* be the
infinite dimensional cube equipped with the product topology. If
&=(&,) € D and q is a continuous seminorm, then

q( ;’:z+1§jxj) é Q(m)(An) )
so {372}, is a Cauchy sequence in £ by Proposition 2. Therefore
g(§) = X2, &5,

exists for all £€D. Let &, n€D and let ¢ be a continuous seminorm on E.
Then

9(g(&)—g(n)) = Z7_11&—nsla(x;) + 29(m)(4,) Vnzl.

Since lim,,_,  gq(m)(4,) =0 by Proposition 2, this shows that ¢ is continu-
ous. Hence g(D) is compact, and since ¢ is an extension of f and g(D)
is convex, we find that co(m(ZX)) is compact.

A theorem of Liapounov (see [13]), states that an atomless finite-
dimensional vector measure has a compact convex range. Liapounov
also shows in [13] that this is not true in general. We shall here show
an analogue theorem, which states that the weak closure of the range of
an atomless vector measure is convex.

THEOREM 11. Let m be a bounded finitely additive set function on X,
such that x'm is o-additive on X, for all ' € E'. Let 2’m be the unique
extension of ’'m to X. If x'm is atomless for all x’' in E', then the weak
closure of m(Z,) is equal to co(m(X,)).

ReMARK. In Example 5 we construct a vector measure m taking
values in a separable Hilbert space such that m has finite total varia-
tion, m is atomless, the range of m is conditionally compact, but m(X)
is not convex and not closed.

Notice that if m(Z,) is conditionally compact and m satisfies the
hypothesis of the theorem, then the closure of m(Z}) is equal to co(m(Z,)).
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In Example 6 we construct a vector measure m taking values in a
separable Banach space, such that m is atomless, m has finite total varia-
tion, the range of m is closed, but not convex and not weakly closed.

Proor or THEOREM 1l. It suffices to prove that m(X,) is weakly
dense in co(m(Z;)). So let z, € co(m(Z,)) and let z,',...,x, € B'. We
can then define the measure ¢ by

o(d) = (m/m(A),...,zym(d)), AeZ.

Then ¢ is atomless and ((z,’,2,),...,(®,",%,)) € co(c(X)), so by Liapou-
nov’s theorem (see [13]) there exists A € 2, such that

W(A) = (v/,29) Vj=1,...,n.
By Theorem D, § 13, in [7] there exist B; € 2;, such that
|z, m|(A4B;) £ nt Vj=1,...,n.
If B=U}_,B;, then Be X, and AABcU}_; A4B;. Hence
|z;/m|(A4B) £ 1 Vj=1,...,n.
But from this we find that
) sm(B)—ao)| = a7 m(B)~z;m(A)| < |&7m|(44B) 5 1

Vj=1,...,n, which shows that z, belongs to the weak closure of m(X).

7. Counter examples.

In this section we shall give some examples of additive vector valued
set functions, which disprove many natural conjectures.

ExampLE 1. We shall construct an atomless vector measure m #0,
such that a'm is atomic for all 2’ € E’.

If S is a set, a 0-1 measure, a, on 8 is a g-additive probability mea-
sure defined on the power set, Z(8), satisfying
(i) a({s})=0 Vses,
(ii) @ takes only the values O or 1.
The existence of a 0-1 measure on S clearly depends only of the cardinal
of 8. A cardinal number £ is called measurable if there exists a 0-1
measure on a set (and henceforth on every set) with cardinal number
equal to &.

It is not known whether there exist measurable cardinals, or rather
whether it is consistent with the axioms of set theory to assume the



26 J. HOFFMANN-JORGENSEN

existence of a measurable cardinal. It is known that it is consistent to
assume the nonexistence of measurable cardinals, and it is generally
believed that it is consistent to assume the existence of measurable
cardinals too.

We shall here assume that there exist measurable cardinals.

Let £ be the first measurable cardinal, and let S be a set, whose cardi-
nal number is equal to & Let X'=2(8), and let M be the class of all 0-1
measures on 8. If 4 € X, we define

m(4) = (a(8))gers -

Then m is a set function on X, which takes values in E=RM, 1If F is
equipped with the product topology, then obviously m is an E-valued
measure on (8,2).

Every a in M is atomic (S is an a-atom for all @ € M), and since z'm
is a finite linear combination of elements from M for all 2’ € E’, we find
that 2'm is atomic for all 2’ € £'.

Let A € X, if the cardinal of A4 is less than & Then a(4)=0Vae M,
by the minimality of & Hence

AeN(m) VAcS with k(4)<é&

where k(A) is the cardinal number of 4.

If AeZ, k(A4)=¢, then since £ is measurable there exists an a e M
with a(4)=1. Hence we find that

N(m) = {A<8 | kA)<E}.

So if 4 ¢ N(m), then k(A)=¢&, and since £ is infinite we can find a subset
B of A such that k(B)=Fk(4\ B)=¢. Hence B ¢ N(m) and 4\ B ¢ N(m),
that is, m has no proper atoms, and so m is atomless.

I strongly believe that such an example as the one above does depend
on the existence of measurable cardinals. In Example 3 however we
give an example of a vector measure m, such that a'm is atomic for all
z' € E', but m is not atomic, without assuming the existence of measu-
rable cardinals.

ExampLE 2. We shall now construct two atomless vector measures m,
and m,, such that m,+m, is atomic and nonzero.

Let (8,Z,m) be the vector measure space defined in Example 1. Let
a, be an arbitrary 0-1 measure on S, and let

my(4) = (a’o(A))aeM’ AeZ.
That is, all the coordinates of my(4) are constantly equal to ay(4).
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Then clearly my, is atomic, since § is an a,-atom. Now one can show
exactly as in Example 1 that my+m is atomless. So putting m,;=m,+m
and my= —m, both m, and m, are atomless, and m, + m,=m, is atomic.

ExampLE 3. We construct a vector measure m, which cannot be de-
composed as a sum of an atomic vector measure and an atomless vector
measure.

Let S be an uncountable set and X' a o-algebra in S such that all
singletons {s}, s € S, belong to 2. Let

md)=1,, AeX.

Then m is a finitely additive set function taking values in £ =RS. If &
is equipped with the product topology, then m becomes g-additive.

Now suppose that m=m,+m, with m, atomless. Since {s} is an m,-
atom for all s € S, we have m{s}=0 Yse 8. Hence

my{s} = m{s} =0 VseS.

Since 8 is uncountable m, cannot be atomic.

ExamprLE 4. We construct an F-valued measure m, where E is se-
quentially complete, but the range of m is not weakly conditionally
compact, nor is the range of m weakly sequentially compact.

Let §=[0,1], 2 the Borel subsets of S, and define m by

mAd) =1, VAeZX.

Then m is a finitely additive set function on (8,2) taking values in
E=M(S,2), where M(S,X) denotes the space of all real Borel functions
on 8. If E is equipped with the product topology, then m becomes
o-additive, and ¥ is sequentially complete.

Let A be a subset of S, such that 4 ¢ X, and let P be the family of
all finite subsets of A directed by inclusion. Then the generalized se-
quence {m(xn) |m € P} converges in RS to 1, ¢ E, hence {m(rn) | = € P}
can have no convergent generalized subsequences in £. So m(X) is not
conditionally compact, and henceforth not weakly conditionally com-
pact, since the topology in # is the weak topology o(Z,E’).

Let I» = (j2™,(j+1)2] for 0=j<2"—1, and put

An = U_?:—lllgj—l’ fn = lA,, = m(An) .

If 4 is an interval whose endpoints are dyadic rationals, then clearly

ffndx»fidx as n —> oo,
4 4
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So from Exercise 6, IV.13, in [4] we conclude that f, - 4 as n — oo in
the o(L,,L;)-topology. Here L is the L -space of the Lebesgue meas-
ure on S, and L, is the L;-space of the Lebesgue measure on S.

So if {f,} has a subsequence which converges pointwise, then the
limit function must necessarily be equal to } almost everywhere with
respect to the Lebesgue measure. But this is clearly impossible since f,
only takes the values 0 or 1. Hence {m(4,)} has no weakly convergent
subsequences, and so m(X) is not weakly sequentially compact.

ExampLE 5. We construct an I,-valued vector measure m, such that
m has finite total variation, m is atomless, m(X) is conditionally com-
pact, but m(X) is not convex and not closed.

Let §=[0,1], 2 the Borel subsets of S, and ! the Lebesgue measure
on (8,2). Then there exists an orthonormal base {I,}?° for Ly(S,Z2,l),
such that |l (z)|<1VxeS8VYn=1. Let f,=n"1l, and define

my(4) = ffndx for 4 e,
A

m(d) = (m,(4))7 for AeX.

Then m is an l,-valued vector measure. This may be seen in the follow-
ing way. Let
f@) = (fu@)P for zesS.

Then f is a measurable map from § into 7, and
If @)l = {Zaein 2l @)FF = (Z5on P < .

So f becomes I-integrable and

ffdx —m(d) VAeZX.
A

See for example [4, IT1.2.19 and III1.2.22]. Hence m is g-additive and the
total variation, |m|, of m is given by

mi(4) = [ 1@l de
A

So m has finite total variation.
We note also that m(X) is conditionally compact in I,, since

|m,(4)] £ n! ¥Vn21 VAeZ.
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Further we show that im(S) ¢ m(X) for any ¢ € (0,1). Suppose this
was not true. Then for some ¢ € (0,1) and some 4 € X,

my(4) = tm,(S) Vn=12,....

Let g=t1A—ls. Then
1
[ 9@ fule) 4w = tmp( ) =my(8) = 0 vn.
0

But {f,} is an orthogonal base in L,(S,2,l), and so g=0 a.e. in S. But
this contradicts the fact that g only takes the values £ =0 and {—1 0.

We have now proved that tm(S) +=m(X) for any ¢ € (0,1). Since 0 and
m(S) belong to m(X), this means that m(X) is not convex.

If m(X) is closed, then m(X) is compact and so m(2) is weakly closed,
but this is not possible by Theorem 11. Hence m(ZX) is not closed.

This example is due to Liapounov (see [13]).

ExampLE 6. We construct an E-valued vector measure m, such that
E=L,[0,1], m has finite total variation, m is atomless, m(X) is closed,
but m(2) is not convex, not compact, and not weakly closed.

Let 8=[0,1], 2 the Borel subsets of S, and I the Lebesgue measure
on (S,2). If we define

then m is an L,[0,1]-valued measure on (8,2), such that
m|(4) = i(4) VAelX.

Hence m has finite total variation and m is atomless. It is easily seen
that m(X) is closed, but

Im(0) +3m(S) = 315 ¢ m(Z).

That is, m(ZX) is not convex, so by Theorem 11, m(ZX) is neither compact
nor weakly closed.

ExampLE 7. We construct a bounded finitely additive c,-valued set
function, m, on an algebra, such that z'm is ¢-additive Vo' €¢y' =1,
but m is not s-bounded and not g-additive.

Let S=(0,1], let X, be the algebra generated by the intervals (a,b],
0=<Za<bg£l, and define for n=1,2,...
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An = (0, %n—l]’ Bn = (%n—l,n_l] ’

fn = 2n1An—2nan,

m(A) = ffndx Vdex,
A

where X' is the Borel subsets of S. Let F, be the function defined by

2nx if 0<z=<in1,
F, (x) =4{1—(2nx—1) if n-1z2x<n?,
0 if n 121,
Then
my(a,b] = F,(b)—F,(a) V0=<a=b=1,
and so if

m(d) = (my(4))7? VAeZ,,

then m is a finitely additive c,-valued set function on (S,ZX), since
lim, , F,(x)=0 for all ze 8. If 4 € X, then

1
Ima(4)] < flf,,l dz = 2.
0

Hence m is bounded. Let z'=(x,)ec,’=[;. Then
x'm(4) = X x,m,(4) VYAeZ,.

So by Corollary 4, IIL.7, in [4], 2'm is o-additive for all 2’ €,.
Now 4, € X, for all », and {4,} decreases to . But m,(4,)=1 for
all n, and so
m(d)ll 21 Vrzl,

which shows that m is not g-additive on 2. So by Theorem 4, m is not
s-bounded on 2.

ExawvpLE 8. We construct a c,-valued bounded o-additive set func-
tion, m, on an algebra, X, which is not s-bounded, and which has no
g-additive extension to the c-algebra generated by 2.

First we notice the following simple fact. Let % be a ring of subsets
of 8, such that S ¢ %, that is, Z is not an algebra, and let m be a fi-
nitely additive set function on # taking values in . Then

Z,={AcS|Ade® or S\AecR}

is the least algebra containing Z.
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Let z, be an arbitrary point in £. Since S ¢ £, it follows that 4 € #

implies S\ A4 ¢ #Z, and S\ 4 € # implies 4 ¢ #. Hence we may define
a set function m, by

 (m(4) it Adea,
Mo(A) =\ p —m(S\A) if S\AeR.

If A and B belong to 2, and 4 nB =g, then either 4 or B belongs to Z.
From this it follows easily that

(13)  my, is finitely additive on X, and m, is an extension of m.
(14) If m is bounded, then so is m,.
(15) If m is s-bounded, then so is m,.

(16) If m is o-additive, then so is m,.

Now let us turn to the example. Let S=[0,1], 2 the Borel subsets of
S, and define for n=1,2,...

4, =[0,1/n!],
fo=nll, ,

mn(A)=ffnda: vdeZ,
A

% ={AeZX|3a>0 such that 4<[a,1]}.

Then £ is a ring of subsets of 8. Let 4 € #Z. Then we can find an inte-
ger k, such that AnA4,=0. Hence

my(4) = m,(And,) =0 VYnxk.
This shows that the set function
m(d) = (m,(4)P, AeZ,

is finitely additive and takes values in ¢,. Suppose that {4,} is a se-

quence in %, which decreases to J. Then we can find an integer %, such
that 4,c4,<(1/k!,1]¥n 21, hence

m(d,) = (my(4,),...,m(4,),0,0...) Vnzl.

This shows that lim,_, m(4,)=0 in ¢,. That is, m is ¢g-additive on Z.
Now let

if AeZ,

m
m4d) = { —m(S\4) if S\NAeZ.
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Then by (14) and (16) 7z is a ¢,-valued o-additive bounded set function
on X,, where 2 is the algebra

Zy={A<cS|AcR or S\AecZX}.

Finally let B,=4,\A4,,,; for n=1,2,.... Then B, € Z for all n,
and {B,}{° are mutually disjoint. By definition of m, we find

ma(By) = n! ((1nl)=1fn+1))) = 1=1/(n+1) .
Hence
lm(By)ll 2 1=1/(n+1) ¥n 2 1,

and so m is not s-bounded, and a priori m is not s-bounded.
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