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THE GENERAL RIESZ DECOMPOSITION AND
THE SPECIFIC ORDER OF EXCESSIVE FUNCTIONS

TAKESI WATANABE

Introduction.

P. A. Meyer [4, p. 162], [5, pp. 165-170] has proved that the class of
all excessive functions with respect to a resolvent forms a lattice in the
specific order, under a certain hypothesis on the resolvent (=‘hypo-
thesis of absolute continuity [5; p. 159]’). In the case of excessive
measures (since they are o-finite by definition), Meyer’s proof does
work without any hypothesis. We also mention that R.M. Hervé
[1; p. 89] has proved the same result for the class of positive super-
harmonic functions in the axiomatic potential theory. This lattice
property is useful: For example, it enables us to obtain the unique
decomposition of excessive functions or measures into extreme elements
under very mild conditions (see Hervé [2], Meyer [6], the author [7]).

In this note we will use another method to prove that Meyer’s theorem
is valid “without any hypothesis” for the class of excessive functions with
respect to a single kernel or a resolvent. The key result is that for a single
kernel ; the case of a resolvent is proved by a routine argument of ‘“passage
to the limits”. (Actually, Meyer proved that, under his hypothesis, the
class of excessive functions is a complete lattice in the specific order. But
the completeness probably breaks down, in general.)

Let N be a submarkov kernel over a measurable space, G the potential
kernel of N and & the set of all excessive functions. The specific order
u>v (u,v € &) is defined by the relation u=v+w for some we &. The
problem is to find the join uVv and the meet uAv of excessive functions
u and v for the specific order > . Suppose that u and v are finite (or more
generally, N®u=1lim, ,  N"u<oo, N°v<oo). Consider the Riesz de-
composition of u and v:

= Gf+ N°u, v=0Gg+ N°v
Then it is not difficult to see that
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uvv = G(fvg) + N°[(N®u) v (N*)],
uAv = G(fag) + NO[(NPu) A (N*®)] .

8

This proof is not applied to the general case as it stands. For example,
the function N®u may no longer be an invariant function, and the
function N®[(N*®u)v(N*v)] may not even be well-defined. To cover
these points we will introduce the notions of general invariant function
and anti-excessive function, and then prove a generalization of the
Riesz decomposition. Using this general Riesz decomposition we can
prove the existence of uvv and wupv for arbitrary excessive functions
u,v by means of the same basic idea as in the case of finite excessive
functions.

1. Excessive functions with respect to a single kernel. The general
Riesz decamposition.

All terms and notations are taken from the book of Meyer [3; chap. 9]
without reference, except the notions of “general invariant function” and
“anti-excessive function”.

Let E be a measurable space N, a kernel over E, and @ the potential
kernel of NV,

G = anoNn ’

where N» (N°=1I) is the m-composite kernel of N. (It is not assumed
that N is proper or submarkov, and the kernel G may not be proper or
finite.) Throughout the following, a positive function will stand for a
nonnegative measurable function, finite or not. An excessive function
(with respect to N) and a potential are defined as usual. A positive func-
tion u, finite or not, is said to be a general invariant function if it satisfies

(1.1) u = Nu.

We here drop the usual finiteness assumption on an invariant function.
A positive function % is said to be anti-excessive (or submedian) if

(1.2) u £ Nu.

The infinity support of a positive function « is the set { | u(x)=oc} and
is denoted by E*[u]. For a given positive function u, if N™u con-
verges in each point of E, this limit function is denoted by N*u. As
usual, uvo(x) =max (u(z),v(z)). We often write &, N for N (x,*).

LemMa 1. Let wu,v be anti-excessive. Then N™uvv) increases to a
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general invariant function N®(uvv). This function is the smallest general
tnvariant majorant of w and v.

The proof is easy.

LemMmA 2. Let u,v be general invariant functions and let w=v. Then
there exists a general invariant function w such that

(1.3) U =v+w.

Proor. Define

]

u(x)—v(x) if v(z) < o,
=0 otherwise (that is, on E*[v]).

wo(x)

One claims that w, is anti-excessive. Suppose that v(x)<oco. Since
v(x) = Nv(x) = (¢, V,v) < 0, it follows that ¢, N(E[v])=0. Hence one has

wo@) = u@)—v@) = [ N(e,dy)u)- o)
{v(y)< oo}

]

N(w,dy) wo(y) = [ Niz,dy) wfy) = Nuy@).
B

{v(y)<oo}

If x € E*[v], obviously Nwy(x) = 0=wqy(x). Therefore, N™w, increases to
a general invariant function w= N*w,. But since u=v+w,, one has

u = N°u = N°v+N%wy, = v+w.

Let u be excessive. One defines

(1.4) N*®y = lim,_, , N™u ,
(1.5) () = N®u(x) if N®u(x)<oo,
=0 otherwise (that is, on E®°[N®u]) .

Since ., is anti-excessive by the subsequent lemma, the function

(1.6) u, .= lim

(=] n-éooNnuco
is well-defined and a general invariant function. This function u,, is cal-

led the general invariant part of w.

LemMA 3. The function i, 18 anti-excessive. The general tnvariant
Junction u, satisfies
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(1.7) Uy = N®u,
(1.8) U = N®u  on the set {N®u < oo} .

Moreover it is the smallest general invariant function among those which
dominate N®°u on the set {N®u < oo}.

Proor. It is obvious that N (x) = 0=1_(x), x € E°[N* u]. Suppose
that N®u(x)<oo. Take k so that N*u(x)<oco. Then the function
N*-14 is integrable for the measure ¢, N. Since N*u decreases to
N*u, by the dominated convergence theorem, one has

N(N®u)(z) = N(lim,_,  N"u)(x) = lim,,_, , N**u(z) = N®u(r) < co.

In particular, ¢, N(E[N®u]) = 0. Similarly to Lemma 2, one has

(1.9) Hoo(x) = NPu(x) = N(NPu(r)) = Niy,(z) .
Since N*®u is excessive and i, is anti-excessive,
(1.10) @y, < Uy, = N®f@i, < N°[N®u] £ N®u,

which proves (1.7) and (1.8).
The proof of the last statement is quite easy. Define

(1.11)  fu(x) = w(x)—Nu(x) if w(x)<oo,
= o0 otherwise (that is, on E*[u]) .

THEOREM 1 (General Riesz decomposition). (a) 4 decomposition of w
into the sum of a potential and a general invariant function is given by

(1.12) uw = Gf, + uy -

(b) Consider any decomposition of the form

(1.13) w = Gg+h,

where g is a positive function and h, a general invariant function. Then
(1.14) g=f, Uy =h =N,

(1.15) g=foon{u<oo}, h=uy,on {N°u<oo}.

DerFINITION. The formula (1.12) is called the (Riesz) canonical de-
composition of u.

Proor or THEOREM 1. (a) It is easy to see that

(1.16) w = Sy<n N¥f, + Nrtly,
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8o that
(1.17) w = Gf,+ N®u.
If wu(r)<oo, then N®u(r)<oo. Hence N%u(x)=wuy(r). If u(z)=oo,

then Gf,(x)2f,(x)=oc0. Hence one has (1.12).
Suppose that one has a decomposition (1.13). Then

(1.18) N©u = N®[Gg] + h .

If N®u(x) < oo, N°[Ggl(x)=0 by a theorem of Doob [3; p. 180, T 18].
Hence N®°u=~h on the set {N*u < c}. By Lemma 3, h>u,. It is ob-
vious that h=wu, on {N*u < co}.

Suppose that u(x) <oco. Since

uw(x) = g(x) + N Gg(x) + h(x)
= g(z) + N[Gg+h](x) = g(x) + Nu(x),
one has

9(@) = u(x) — Nu(z) = fy() .
Then the inequality g <f, is also proved.

DreriniTION. Let & be the set of all excessive functions (with respect
to N). The specific (or intrinsic, or strong) order “>’’ in the cone (or
rather, wedge) & is defined by

(1.19) (u>v) <> (u=v+w for some we &) for u,veé.

THEOREM 2. The set & of all excessive functions for the kernel N is a
lattice in the specific order.

Proor. (a) Existence of the specific join. Let u,v be excessive. Consider
their canonical decompositions

(1.20) u=0f,+u, v=0Gf+v,.
Define an excessive function w, by
(1.21) wo = G(fuVfy) + Nte, V0] -

We will prove that w, is the specific join uvv of % and v.
Since N*[u,vv,]=u,, there is a general invariant function A’ such
that
Nouvo,] = u, + 2.

Choose a positive function f' such that f,vf,=f,+f'. It then is obvious
that
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(1.22) wo = u+u with w=Gf+Weé,

so that wy>w. By the same reason, wy>wv.
Let w be an excessive function which majorizes both % and v in the
specific order. Consider the canonical decomposition of w,

w=Gf,+w, .
On the other hand, there is a %' € & such that

w=ut+w = Gf,+u+Gf o+ u
= G(fu+fu’)+(uoo+u;o) s

and a v’ € & such that
w=v+0" = Q(fy+1)+ Ve +05) .
Define a general invariant function % by
b = N[(Ugg+ o) V (Voo + V)] -

By Theorem 1 it follows that

w, = h = N°w.
Hence
w=Gf,+h.
Again, by Theorem 1, f,=f,+fu, fw2fs+fy. Hence,
fw g f“ va M

It is obvious that A= N*[uvv,]. Choose f'20 and a general invariant
function A’ such that

fw =fuva +f’9 h = Nm[uoovvoo] +h.
Then
w=wy+w with w'=Gf+hef,

which proves w> wy.

(b) Existence of the specific meet. If uw and v are finite excessive func-
tions, it is easy to see that the function
(1.23) wy = u+v— (Uvo)

is the specific meet uAv, as in the proof of the general relation in a
vector lattice
(1.24) U+ =UVO+UAD.

However, since % and v are not finite in general, such a proof breaks down.
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Consider the canonical decompositions (1.20) of » and ». Then, con-

sider the canonical decomposition of the excessive function ¢=
(N®u)A (N*v),

(1.25) ¢ = Gfy+ P -
We will prove that the excessive function
(1.26) wy = A(furfo) + Poo

is the specific meet wAv.
To prove u>w;, define the general invariant function 2 by

h = NCTug, v ¢sl 2 Poo -
Since %, V@, < N®u, h < N®u. By u,<h, one has
uw=0Gf,+h.
Then, take f'=0 and a general invariant function 4’ such that
Ju=Ffurfo+f's h=go+h".
It is obvious that
w=w+w with w=Gf"+heéf.

In the same way, v>w,.
Let w be an excessive function which is majorized by both » and v
in the specific order. Consider the canonical decomposition of w,

w=Gf, +w,.
On the other hand, there is a w’ € & such that
u=wtw = Q(f,+fr) + We+wy),
and a w'’ € & such that
v =wtw" = Gfy+fur) + (Wet+wy) .

Therefore, f,2f,+ s fo2fw+fuw, so that

(1.27) Jurfo 2 fo -
On the other hand,
(1.28) w, < N%g,

since wy, < (N®u)A(N®v)=¢ by Theorem 1. Define a general invariant
function % by

(1.29) h=NPw,V @s] 2 Wes -
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By (1.28) it follows that

(1.30) P = h = N%p.
One claims that
(1.31) wy = G(f,af,)+h.

This is obvious if z e E®[u]nE®[v]. Suppose that wu(x)<oo. Then,
since @(x) < oo, it follows by Theorem 1 that ¢ (x)=N%¢(z). By (1.30),
one has

(1.32) Foo(@) = (@)

In the same way, (1.32) is true also if v(x) <oo. One has proved (1.31).
By (1.27) and (1.29). there are f'> 0 and a general invariant function
k' such that
qufv=fw+f" h=w°°+k’.
Hence, by (1.31),

w, = w+w with w'=Gf"+h' e,

which proves that w;>w.

REMARK. We are not sure if the formula (1.24) is a quite general fact
or not, after knowing that a cone (or wedge) forms a lattice in the speci-
fic order. Note that the difference of two excessive functions is not
defined in general and hence & cannot be extended to a vector lattice
containing & as the positive cone. Hence the usual proof of (1.24) in a
vector lattice is not applicable.

However, we note that the formula (1.24) is valid for the general case
where % and v are not finite. In fact, that formula is obviously true if
x € E*[u]uE>~[v]. Suppose that u(x)< oo and v(z) < oc. Then, for each n,

e NME®[u] U E*[v]) = 0.

Hence, by Theorem 1, N®u=u,, N°v=1v,, almost everywhere for the
measure &, N*. Therefore, one has

Poo(®) = N¥g(x) = lim,,_,  N"[(N™u) A (N*)](x)
= lim,_, o N[ty A V,0]() .

By the definitions (1.21) and (1.26) of wy=uVv and w,=u4v, it follows
that
wo(@) +wy(x) = G(fu v fo+fu ML) (@) + N[t V 050](2) + Po(®)
= G(fut+fo) (@) + lim, o N*[tteq V Voo + Uoo A V50](%)
= G(fu +fo)() + Nm[uoo +%0](®)
Gf () + U () + Gf (%) + voo(®)
u(x) + v(x) .

I
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2. Excessive functions with respect to a resolvent.

Let {V,},<o be a submarkov resolvent. (The condition ‘‘submarkov”
can be replaced by the condition ‘“proper”’. See Remark at the end of this
section.) Excessive functions and supermedian functions with respect
to {V,} are defined as usual.

Let & be the set of all supermedian functions and &, the set of all
excessive functions. The specific orders “>” in & and & are defined
as in (1.19). More precisely, the specific order in & is defined by

(2.1) (w>v) < (u=v+w for some w € &)
for u,v € &, and the one in &, by

(2.2) (u>v) < (u=v+w for some w € &)

for w,v e &.
THEOREM 3. Both & and & are lattices in their specific orders.

Proor. (a) Case of &. Write N, for a submarkov kernel 8V, and &;,
for the class of all excessive functions with respect to the single kernel
N;. By Theorem 2, each &, forms a lattice in its specific order “>ﬁ”.
One claims that
(2.3) &> &y for B<p,

(2.4) S =N,6,.

Suppose that w € &4 is bounded. Then

Veuw =L+ (B =B)VaVeu
ST+ (B =BV,
whence it follows that
(2.5) BVeu < u.

Then it follows that (2.5) is valid for every w € &. The relation (2.4) is
obvious.

Let u,v e &. Since both  and v are in &}, there is the specific join
wy of w and v in &;. By (2.3) and (2.4), w, increases to a function w, € &.
One claims that w, is the specific join «vv in &, that is,

(2.6) wy=uvy in&.

In fact, since
— ’ ’
wp = utuy, U eé,,
one has
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(2.7 wo = u+u’, where u'=liminfu; € &,
Bn—>0 "
which proves that wy>u. In the same way, w,>v.
Next take any specific majorant we & of  and v. Obviously, w speci-
fically majorizes w; in &, that is,

w = wst+wy, wye&,.
Therefore,
(2.8) w = wy+w, with wy’=liminfwy € &,
Bp—>0
which proves that w> w,.

In the same way, the specific meet wAv in & is obtained as the (de-
creasing) limit w, of the specific meets of » and v in &;. The details are
omitted.

The formula (1.24) is also valid; this is a simple consequence of the
passage to the limits.

(b) Case of &. Let u,v € & Consider the regularization of w,, denoted
by reg[w,]. One claims that

(2.9) regw,] = uVvv iné&.

In fact, taking the regularization on both sides in (2.7), one has
(2.10) reg[wy] = u + reg[u’] ,

so that reg[w,]>w% in &. In the same way, if w>wu,v in &, by (2.8),
(2.11) w = reg[w,] + reg[w,’],

so that w>reg[w,] in &.

Similarly, the specific meet wpv in & is obtained as the regularization
of w; in (a). Note that w,=reg[w,], since reg[wy]>u,v (in &) and
therefore reg[wy]>w, in &. This is not the case of w;.

RemaArK. We will note that Theorem 3 is valid for any proper resolvent.
In fact, Theorem 2 is valid for any single kernel. Then, only the relation
(2.3) is not obvious if the submarkov resolvent is replaced by a proper
resolvent; the rest of the proof of Theorem 3 needs no change.

Suppose first that {V,},., is closed, i.e., the potential kernel V of {V,}
is also a proper kernel. Let G, be the potential kernel of N,. Recall the
resolvent identity [3; p. 193, T 55];

I+BV = 3,50[BVp]" = ZnaolNg" = G4

Since G, is proper, any excessive function with respect to N, is the limit
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of an increasing sequence of finite G4-potentials. Therefore, to prove
(2.3) it is enough to show that (2.5) is valid for any finite Gs-potential.
If u=Gpf=[1+pV]f<oo, it follows that

Vof 2 Vf < oo, VeVf =BV f-Vf] < 0,

so that V,u=V,[I+pV]f<oco. Then, (2.5) follows from the preceding
inequality V,us[I+(8' —B)Vulp).

Next consider the case of a general proper resolvent. Then the above
result is applied to the closed resolvent {V,,,}5., for each x> 0. There-
fore, one sees that, for f<p’, the relation 'V, ,,u<w implies that
BV.ipuw=u. Suppose that u € & . Obviously,

B'Vasrpw S B'Vpu < u  for every a>0.

Therefore, fV,,;u<w for every «>0, which implies that gV u<u.
Thus the relation (2.3) has been proved for any proper resolvent.

3. Excessive measures.

Let N be a kernel and {V,},.,, a proper resolvent. Let .#+ be the
set of all o-finite measures over . A measure v € 4+ is said to be
excessive with respect to N (resp. supermedian with respect to {V,}), if

(3.1) vyN Z»,
(3.2) [resp. »(«V,) = » for every «>0].

The measure v is said to be excessive with respect to {V,}, if it satisfies
(3.2) and
(3.3) lim,_ vV, =7,

where convergence in .+ is defined as follows. A sequence {u,} of meas-
ures in #+* is said to converge to ue £+ if every u, is dominated by a
measure v € .4+ and if, for every measurable set 4 such that »(4) < oo,

lim,,_, o pun(4) = u(4).

Actually, since »(xV,) is increasing, one has lim _  v(«V, )(4)=7»(4)
for every measurable set 4.

Consider the case of the single kernel N. A measure of the form
v=uG e M+, uc . #+, is called a potential of u. An excessive measure
v is a potential if and only if vN*°=0. An excessive measure v is said to
be invariant if YN =v.

It is not difficult to show that the “usual” Riesz decomposition is
valid for excessive measures: Every excessive measure » is written
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uniquely as the sum of a potential 4G and an invariant measure A with
u=I—N) and A=vN>,

THEOREM 4. The cone of all excessive measures with respect to N is a
lattice under the specific order.

This is proved similarly to Theorem 2, using the Riesz decomposition.
(Actually, the proof is much simpler than for Theorem 2, since every
excessive measure is o-finite.)

THEOREM 5. Let F* be the cone of all supermedian measures with
respect to {V,} and &*, the cone of all excessive measures with respect to
{V,}. Then, S* and &* are lattices in their specific orders.

The proof is the same as that of Theorem 3. (Use the argument of the
remark at the end of Section 2, to prove the fact corresponding to (2.3).)
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