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THE PROJECTION MAPPING AND OTHER
CONTINUOUS FUNCTIONS ON A PRODUCT SPACE?)

W. W.COMFORT?) and ANTHONY W. HAGER

The theme of this note is that a number of conditions — eighteen, in
fact — which the product of two topological spaces might satisfy are in
fact equivalent. The conditions are stated in 1.1, 1.2, and 2.1 below.
They have been considered by many authors in connection with diverse
projects (some of which are described in § 3); several of the implications
connecting them already appear in print, and surely others are known
to various people. Our contribution is to furnish proofs for the new
implications required to establish equivalence, and to add a few new
and natural conditions to the list; our main purpose, however, is ex-
position and systematization.

In this collection of ideas are the theorem of Glicksberg on the Stone—
Cech compactification of a product, and a theorem of Tamano on pseudo-
compactness of a product. In § 4, we give a new proof of Tamano’s
result and from it derive quickly Glicksberg’s.

1. Mappings into the real line.

The statements of the results require the assumption that the topo-
logical spaces involved be completely regular and Hausdorff (uniformiz-
able). We shall make this assumption in §§ 1-4; see § 5 concerning the
possibility of weakening this hypothesis. Some terminology is required;
see Gillman and Jerison [12] and Kelley [18] for details.

C*(X) is the set of bounded, continuous, real-valued functions on the
space X. When a topology on C*(X) is referred to, it is the metric one
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induced by the norm ||f||x =sup{|f(z)| : x € X}, the topology of uniform
convergence on X. In 1.1(8), C(X,C*(Y)) is the space of continuous
functions from X to C*(Y), with the topology of uniform convergence
on X; the subspace of bounded functions is normed by |[¥]=
sup {|¥(z)|ly : * € X}, and becomes a metric space. For fe C*(X) and
ScX, we set

oscg(f) = sup{|f(a)—f(b)| : a,b€S}.

A zero-set in the space X is a set of the form f-1(0), with fe C*(X).
BX denotes the Stone—Cech compactification of X, that compact space
containing X densely such that each function in C*(X) extends con-
tinuously over X. When X and Y and Z are sets and f maps X x Y
into Z, then f, (for y € Y) is defined on X by the rule f,(x)=f(x,y).
Similarly, .f (for € X) is defined on Y by _f(y)=f(z,y).

The equicontinuity condition referred to in 1.1(6) below is of the
usual sort: if fe C*(X x Y), the family {f,:y e Y} is said to be equi-
continuous at the point x, of X provided that for each ¢> 0 there is a
neighborhood U of x, for which

fy(@o) —f(@)] < &

whenever (z,y) e Ux Y.

1.1 TaEorREM. The following conditions in the product space X x Y are
equivalent:

(1) The projection nx from X x Y onto X carries zero-sets onto closed
sets.

(2) If Z i3 a zero-set in X x Y, then

cdZ =U{d(Zn({z}x Y)):ze X},

each closure being taken in X x Y.

(3) Each function in C*(X x Y) can be extended continuously over
XxgY.

(4) If feCXX x Y), then

F(x) = sup{f(x,y) :y € Y}
defines a continuous function F on X (and similarly for inf {f(x,y) : y € Y}).
(6) If feCHX x Y), then
Y(@1, %) = sup{|f(xy,y)—f(xay)l :y e ¥}

defines a continuous pseudometric y for X.
(6) If fe CX(X x Y), then {f, : y € Y} is an equicontinuous family on X.
(7) If fe C¥(X x Y), then
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D(f) (@) = of

defines a continuous mapping D(f) from X into C*(Y).

(8) @ (as defined in (7)) 18 a homeomorphism (indeed, an isometry) of
C*(X x Y) onto the space of bounded functions in C(X,C*(Y)).

(9) If feC*X x Y), g€ X and £>0, then there is a neighborhood U
of x, and g € C*(Y) such that

If (2, 9)—9(y)| < ¢

whenever x € U and ye Y.

(10) If feC*(X x Y) and &> 0, then there is an open cover U of X,
and for each U in U a finite open cover ¥ (U) of Y, such that oscy yp(f) <&
whenever U € U and V € ¥ (U).

Proor. (1) = (2). We denote the set Zn({x}x Y} by the symbol Z,.
If for some (z,,9) in X x Y we have

(xo’q) € CIZ\Ua:eX(CIZz) ’

then in particular (z,,q) ¢ c1Z,, so there is a continuous function f on
X x BY for which f=1on clZ, and f=0 on some neighborhood of (z,q)-

Now let Z’' =Znf-1(0), so that Z' is a zero-set in X x Y and x, ¢ wx(Z’).
Since (x4,9) € ¢lZ’, however, we have from (1) the contradiction

2y € nx(clZ') < clx(nx(Z')) = nx(Z') .

(2) = (3). [12; 6.4] asserts that if 4 is a dense subspace of the com-
pletely regular Hausdorff space B, then each function in C*(4) extends
continuously to B if and only if disjoint zero-sets in A have disjoint
closures in B. We verify this latter condition with A=XxY and
B=XxpBY as follows: if Z, and Z, are zero-sets in X x Y then

clzl n 01Z2 = [Ua:eXCI(ZI)x] n [U:ceXCI(Zz)x]
= U,ex[cl(Zy), 0 cl(Zy),];

now each (Z;), can be viewed as a zero-set in Y, and the characteristic
property of 8Y and [12; 6.4] show that cl(Z,),ncl(Z,),=0.

(3) = (4). Given f in C*(X x Y), define F as in (4) and let f* be the
continuous extension of f over X x 8Y. To check the continuity of F
at a point z, of X, let £¢>0 be given and find for each point g of Y a
rectangular neighborhcod U,x V, of (xy,q) on which f* varies less
than &. The cover {V, },,r admits a finite subcover {V,};.,. It is
easy to see that on N}_, U,,, F varies by less than e.
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(4) = (5). As with any pseudometric, the (joint) continuity of y will
follow from its separate continuity (see 15.G of [12]). To establish
separate continuity, we fix x, and observe that the function

(xl,y) - lf(xl’y) _f(xZ’y)l

is surely continuous on X x Y. According to (4), then, the associated
sup function, whose value at x, is just y(x,,%,), is continuous at each
point 2.

(6) = (6). To check the equicontinuity of the family {f,:ye Y} at a
point z, in X, let ¢ > 0 and use (5) to choose for the desired neighborhood
of x, a neighborhood U of z, for which

sup{|f(2,9)—f(@o,9) :ye Y} < &
whenever z e U.
(6) <= (7). This equivalence is clear, since each of the two conditions
may be stated as follows: for each z, in X and each &> 0 there is a neigh-
borhood U of #, for which

lf(x’y) _f(xmy)l <é&

whenever y€ Y and x € U.

(7) <= (8). That (8) = (7) is obvious. That the map @ does indeed
take O*(X x Y) into C(X,C0*(Y)) is guaranteed by (7) and it is trivial
that each @(f) is bounded. To check that each bounded ¥ in C(X,C*(Y))
has the form ¥=®(f) for some f in C*(X x Y), let ¥ be given and de-
fine fon X x ¥ by

f(@y) = P()(y) .

To see that f is continuous at, say, the point (z4,y,) in X x Y, let ¢>0
and use the continuity of ¥(z,) at y, to find a neighborhood V of y,
for which

[ (20)(y) — F (@) (¥o)| < %e

for ye V. Since ¥ itself is continuous at z,, there is a neighborhood

U of z, for which ||¥(x) — ¥(x,)|| < 4¢ whenever x € U ; it follows that on

UxV, f varies by <e. Thus f is continuous, and evidently &(f)= Y.
Finally, for f and g in O*(X x Y),

If - 9llxxy = sup{lf(=,9)—g(z.9)| : (.y) € X x ¥}
sup {|l.f — glly : € X}

sup {|D(f)(x) - D(g)(x)|ly : x € X}
19() — D@l »

so that @ is an isometry.
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(6)=>(9). Given f,z,, and ¢, as in (9), choose the neighborhood U of x,
so that

1fy(x) _fy(xo)l <é&

whenever (z,y) € Ux Y, and set g(y)=f(2,¥).

(9) == (10). Given f and ¢, as in (10), we are to produce, for a fixed
point z, in X, a neighborhood U of z, and a finite open cover ¥~ of ¥
for which oscy .y (f) <& whenever ¥V € ¥: according to (9) there are U,
a neighborhood of z,, and g in C*(Y), with

If(x,9)—9()| < 3e

whenever (z,y) € U x Y; and since g is bounded there is a finite open
cover ¥~ of Y on each of whose elements g varies by less than ie.

(10 => (1). The trick here is to observe that if Z is a zero-set in X x ¥
and z, ¢ wx(Z), then there is f in C*(X x Y) for which Z=f-1(0) and for
which f=1 on {r,}x Y. Indeed, if Z=g-(0), let

f(x,y) = lg(x,y)/g(xo,?/ﬂ Al

Now let =} and apply (10): there is a neighborhood U of z, for which
f> 3% throughout U x Y; thus U is a neighborhood of x, missing = (%),
so that z, ¢ clxmw ¢ (Z).

The proof of Theorem 1.1 is now complete.

In precisely two of the conditions which appeared in 1.1 — specifi-
cally, in (2) and (3) — did the Stone-Cech compactification fY play a
role. While no other compactification will do in (3), any compactifica-
tion can serve in place of $Y in (2). The first assertion is obvious; we
formalize the second.

1.2 ProrosiTiON. The following conditions on the product space X x ¥
are equivalent :
(2) If Z is a zero-set in X x Y, then

Z = Ufl(Zn ({z}x Y)):xe X},

each closure being taken tn X x Y.
(2), If ¢Y 1is a space containing Y, and Z is a zero-set in X x Y, then
clZ=U{cl(Zn({z}x Y)) : ® € X}, each closure being taken in X xcY.

(2), There is a compactification cY of Y such that if Z is a zero-set in
X x7Y, then

cZ = Uf{el(Zn ({z}x Y)):ze X},
each closure being taken in X xcY.

Math. 8cand. 28 - 6
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Proor. The implications (2); = (2) = (2), are clear, and the implica-
tion (1) => (2), can be proved precisely as was the implication (1) = (2)
of Theorem 1.2. Thus it suffices to prove that (2), = (1). To do this, we
recall the easily-proved fact that if B is any compact space, then the
projection from Bx A onto A takes closed sets to closed sets. In the
present case, taking B=cY and 4 =X, denoting by &y the projecticn
from X xcY onto X and assuming (2),, we have nx(Z)=ax(clZ) for
each zero-set Z.

2. Mappings into arbitrary spaces.

While each of the conditions of 1.1 and 1.2 refers explicitly or implicitly
to real-valued continuous functions, some of the more interesting uses
of these conditions involve functions mapping into arbitrary topological
and uniform spaces. We shall formulate and sketch the proof of a
general analogue of Theorem 1.1. Some terminology is required first,
details of which are available in [17].

A uniform space 4 is called fine if the uniformity is the finest (largest)
compatible with the uniform topology. Among all uniformities inducing
a given topology, the fine uniformity is characterized by this statement
about functions: each function from A4 to a uniform space which is
continuous (relative to the uniform topologies on 4 and B) is uniformly
continuous; and by this about pseudometrics: each continuous pseudo-
metric on A is uniformly continuous; and by this about covers: each
normal cover of 4 is uniform.

If A and B are topological spaces, C(4,B) denotes the set of all con-
tinuous functions from A4 into B equipped with the topology of uniform
convergence on A (relative to the fine uniformities on 4 and B); speci-

fically, then, for each continuous pseudometric ¢ on B and each func-
tion f in C(4,B) the set

N(f,¢) = {g € C(4,B) : sup{p(f(a),9(a)): a € A} < 1}

is a neighborhood of f, and the collection of all such open sets is basic
for C(A4,B).
When ¢ is a pseudometric for B, fe C(4,B), and S< A4, we write

g-os05(f) = sup {p(f(2),/()) : z € 8 and ye S} .

A subset & of C(4,B) is called equicontinuous if it is equiuniformly
continuous when 4 and B are equipped with their fine uniformities.
This means, specifically, that if ¢ is continuous pseudometric on B and
a, € A, then there is a neighborhood U of a, such that
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¢(f(a).f(ao)) < 1

whenever fe % and a e U.

When 4 and B are uniform spaces, the semi-uniform product 4*B
is the set 4 x B with the uniformity whose uniformly continuous func-
tions (to arbitrary uniform spaces) are the so-called ‘‘semi-uniform”
functions, i.e., those functions f for which ,f is uniformly continuous
for each a € 4, and the family {f, : b € B} is equi-uniformly continuous.
This uniformity is, in general, larger than the usual product uniformity,
and it is compatible with the product topology.

When X and Y are topological spaces, we say “X*Y is fine” if upon
equipping X and Y with their fine uniformities, the uniformity of X*¥
coincides with the fine uniformity on the topological product. According
to the preceeding discussion, this means that if Z is a topological space
and fe C(X x Y,Z), then {f,:ye Y} is equi-continuous. (This is part
of [17,VII, exercise 7 (a)].)

Finally, specializing immediately to fine spaces: if X and Y are
topological spaces, a cover of X x Y is ‘“‘semi-uniform” if it has the form
{U,x V*},, where {U,}, is a normal cover of X and for each «, {V*},
is normal cover of Y.

2.1. TEEOREM. The following conditions on the product space X x Y are
equivalent, and equivalent to the conditions of 1.1.

(8") If Z is a topological space, ¢ is a continuous pseudometric for Z,
and fe C(X x Y,Z), then

Y(®1,%,) = sup{p(f(2,¥), f(2e9)) 1y Y}

defines a continuous pseudometrict y for X.
(6') X*Y is fine.
(7') If Z is a topological space and fe C(X x Y,Z), then

D(f)(@) = of

defines a continuous mapping D(f) from X into C(Y,Z).

(8") If Z s a topological space, then @ (defined in (7')) i8 @ homeomor-
phism of C(X x Y,Z) onto C(X,0(Y,Z)).

(9') If Z is a topological space, ¢ a continuous pseudometric for Z,
feCXxY,Z), and xy€ X, then there is a meighborhood U of z, and
g € C(Y,Z) such that ¢(f(x,y), 9(y)) <1 whenever xc U and ye Y.

1 » might take the value -+ o0, so ‘“‘continuous” in (5’) is meant as a map of X x X
into [0, 4+ oc]. The point is ancillary: the statement obtained by requiring in (5’) that
the ¢’s be bounded (so the y’s take only real values) is equivalent to (5), as is readily seen
by a device such as is used in the proof that 1.1(4)=> (5’).
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(10") If Z s a topological space and ¢ is a continuous pseudometric for
Z, and if fe C(X x Y,Z), then there is a semi-uniform cover W of X x Y
such that @-oscy (f) <& whenever WeH .

Proor. The implications (5) = (6’) = (7’) = (8') = (9’) = (10’) are
proved by modifying the corresponding proofs in Theorem 1.1, while
the implication (10’) = (5’) follows from the form of the cover of (10').
Since evidently (5') = (5), it suffices to establish the implication
1.1(4) = (5"). To do this, suppose (5') fails: for some Z, fin C(X x Y, Z),
and continuous pseudometric ¢ on Z, the pseudometric y defined on
X x X as in (5') is not continuous. As before, then, according to 15.G
of [12], we may suppose that y is not continuous in the first variable
(say at the point x,) when the second variable is fixed at the point x,.

For s € [0, +o0), let h(s)=8/(1+3s), set h(+oc0)=1, and define g(z,y)=
h(tp(f(x,y),f(xz, y))) Then ¢ is bounded, and violates 1.1(4) (at «,).

Concerning the relation between the conditions of 2.1 and those of 1.1:
the statements obtained in 2.1 by replacing, where appropriate, Z by the
real line and ¢ by the usual metric are superficially stronger than the
corresponding statements in 1.1, exactly because the functions in 2.1
are not required to be bounded. In addition to this, (10’) is stronger than
(10) because no normality property is required of the cover of (10).

"Conditions on X x Y analogous to (5’) and (7')-(10") can be formulated
for mappings into uniform spaces. The changes to be made are these:

Z and ¢, where appearing, become respectively: a uniform space and
a uniformly continuous pseudometric. C(X x Y,Z) becomes the set of
uniformly continuous functions from X x Y to Z, X x Y being given
the fine uniformity; where appropriate, C(X x Y, Z) is to have the uni-
formity of uniform convergence on X x Y. Similar remarks apply to
C(Y,Z) and to C(X,C(Y,Z)). In (5'), y is to be uniformly continuous
where X is given its fine uniformity (that is, y is just continuous). In
(7), D(f) is to be uniformly continuous, and in (8'), @ is to be a uniform
isomorphism.

These changes having been made, the statements which result are all
equivalent, and equivalent to (6’). The proofs are very similar to those
above. The resulting theorem is stronger than 2.1, because 2.1 treats the
special case of fine spaces Z.

3. Origins of the conditions.

We now review some occurrences in the literature of the conditions of
the theorems. Many of these involve pseudocompactness (the condition
on a space that each real-valued continuous function is bounded). In
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particular, in perhaps the first paper, [10], where the conditions play a
serious (albeit technical) réle, Glicksberg has shown in connection with
a theorem which we reprove below that pseudocompactness of X x ¥
implies (6), and that (6) = (7) = (3). The relation of pseudocompact-
ness with, say, the conditions of 1.1, goes further; see the theorem of
Tamano and Lemma 4.2 below.

Among other things in [6], Frolik has given a more direct proof of
Glicksberg’s theorem, and shown that the pseudocompactness of X x ¥
implies (4), (5) and (7). He has noted also that (5) => (4). ((4) was
considered earlier by Mréwka, in showing that a product is pseudo-
compact if both spaces are, and one is compact [20].) Frolik also has
shown in [6] that for infinite spaces X and Y, pseudocompactness of
X x Y is equivalent to the condition: given fe C*(X x Y) and >0,
there are finitely many open rectangles covering X x Y on each of which
osc(f)<e. In [13], it is noted that this condition characterizes func-
tions extendable over fX x Y. Condition (10) is, of course, a ‘“‘one-
directional analogue” of this covering condition (and characterizes
functions extendable over X x 8Y, as do (6), (7) and (9)).

Condition (9) has a similar source. Using Glickberg’s Theorem,
Tamano [29] has shown that for infinite spaces X and Y, pseudocompact-
ness of X x Y is equivalent to: the functions of the form 37 _,f;(%)g,(y)
are uniformly dense in C*(X x Y). It is noted in [13] that the property
of being uniformly approximable by such functions characterizes ex-
tendability over pX x Y. Here, (9) is the “one-directional analogue.”

Condition (1) is one of the more simple and tractable of the ten condi-
tions. Perhaps the first occurrence is in [29] (see 4.1 below). The condi-
tion is mentioned by Stephenson in [25], in connection with a generali-
zation of this theorem of Tamano, and it is used in [26] in connection
with the question of when ‘“the Stone-Weierstrass theorem holds in
X x Y”’; a generalization of (4) appears in [26].

Other uses of (1) involve conditions (6') and (8'), and the uniform
space version of (8’) mentioned after 2.1. Now, the semi-uniform product
seems to have been invented exactly so conditions like (8’) hold [17;
I11.26]. Isbell has pointed out in [17; VII.39] that (6’) and (3) are
equivalent. [14] concerns the question of what topological properties
of X and Y make (6') hold; this is approached via (1): it is shown that
(1) = (3), and hence that (1) <= (6’). In [21], Noble has shown rather
neatly that (1), (3), (6'), (8), and (8’) are equivalent; his primary con-
cerns are general ‘“‘exponential laws” (e.g., (8) and (8’)) and applications
to theorems of Ascoli type (this last being carried out in [22]). In [23],
(1) = (4) is noted.
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In {21], Noble also shows the equivalence of these three conditions:
(i) #x and =y both carry zero-sets to closed sets;

(ii) the uniform product of the fine spaces X and Y is fine;

(iii) each fe C*(X x ¥) extends over both X x 8Y and X x Y .

Combining this with other results, Noble reproved a rather remarkable
theorem of Isbell (and Glicksberg-Frolik—Onucic) (cf. [17; Ch. VII])
completely classifying the circumstances under which (ii) holds. ([14]
is an attempt at a similar classification for X*Y.) The property (iii)
was earlier considered in [5], where a weak form of (1) = (3) was shown,
together with the fact that (3) implies that the Hewitt realcompactifica-
tion »(X x Y) is vX xvY if ¥ has nonmeasurable power.

The cozero-set analogue of (2), and the trick used in the proof
(2) = (3), originated in [15]; this has been exploited in [4]. A condition
bearing roughly the same relation to (3) that (2), bears to (2) appears
in Lemma 1.4 of [6].

There is, of course, a relation between, say, (1) and the condition
that nyx be closed. We won’t go into this at all, except to note that
Noble has related the condition to exponential laws. A reasonably com-
plete discussion can be found in [14] and [21].

In addition to the preceding remarks, we want to emphasize the fact
that Theorem 2.1 (in particular) does not represent much of an original
contribution on our part. Its formulation, based on 1.1 and results in
[17] and [21], is not difficult; the equivalence (6) <= (10’) is clear from
the definition and [17; II1.23].

4. Theorems of Tamano and Glicksberg.

The fact that the product of two pseudocompact spaces need not be
pseudocompact, and the question of what extra conditions on the fac-
tors make it so, have been discussed frequently from various points of
view: see for example [12; Chapter 9], [10], [16], [1], [6], [29], [3], [7],
[8], [17; Chapter VII], [28], [25], [24]. One of the better results in this
vein is due to Tamano [29; Proposition 2]: the product of two spaces
is pseudocompact if each is, and one is a k-space. This generalizes
simultaneously the observations that for a product of two pseudocom-
pact spaces to be pseudocompact it suffices that one of the spaces be
locally compact [10; Theorem 3] or first-countable [16]. Tamano derived
his theorem quite quickly from Theorem 4.1 below, which he proved in
turn by invoking Glicksberg’s theorem (4.5 below). We shall prove 4.1
directly, and derive 4.5 from it.
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In the proofs which follow we shall use without mention the equiv-
alence of these three conditions:

(a) X is pseudocompact;

(b) if fe C*(X), then f assumes its supremum and infimum;

(c) each sequence of nonvoid open sets in X has a cluster point.

These equivalences are easily proved (and are used in most of the
papers on pseudocompactness mentioned above); see [1] and [19].

4.1. TEEOREM (Tamano). The following are equivalent:
(a) X x Y is pseudocompact;
(b) X and Y are pseudocompact, and mx carries zero-sets onto closed sets.

Proor. (a) => (b). Assume (a). Then X and Y are pseudocompact,
as continuous images of X x Y. Now, if x, € cl(nx(Z)) \7x(Z), where
Z=f-1(0), we may suppose (as in the proof (10) = (1) of 1.2) that
f(xg,y)=1 whenever y€ Y. Arguing inductively, we define for each
integer n a point (z,,y,) in Z, a neighborhood W,=U,x V, of (z,,¥,)
throughout which f < }, a neighborhood W,'=U,’ x V, of (x,,¥,) through-
out which f> %, all with U,,,uU,,,<U,’. Since X x Y is pseudocom-
pact, there is a cluster point (Z,7) of the sequence {W,}>_;, and by
continuity, f(Z,y)<4%. If a rectangular neighborhood of (z,y) meets
each of the sets {W,, }7_; then, because

Upy,<Up,<...cU,

ng—1 Ng—1 ?

this neighborhood meets each of the sets {W, },. Thus (Z,7) is a
cluster point of the sequence {W,'}> ,, so that f(Z,7)= %.

(b) = (a). To show that X x Y is pseudocompact, it suffices to show
that if fe C*(X x Y) and f(x,y) > 0 for each (z,y), then

inf {f(z,y): (x,y) e Xx Y}>0.

Set F(x)=inf{f(x,y): y € Y}; assuming (b), F e C*X), from 1.1 (4).
For each z € X, F(x)>0, because f(x,y)>0, for each y, and {}x Y is
pseudocompact. Since X is pseudocompact, inf{F(x):zec X}>0. We
have, then,

inf{f(x,y): (x,y) e Xx Y} = inf{F(z):xe X} > 0,

which was to be shown.

The proof above that (a) = (b) is almost exactly that used by Frolik
in [6; 1.3] to prove (a) = 1.1(4). The argument is similar to, though
simpler than, Glicksberg’s proof in [10; Lemma 1] that (a) = 1.1(6).
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The technique has been exploited further in [17; VII.34]. The proof
above that (b) = (a) follows [25; 4.8].

For our proof of Glicksberg’s theorem, we require a lemma. For
present purposes, we shall say that a (completely regular Hausdorff)
space X is a P-space provided that each function in C*(X) is locally
constant, that is, provided that whenever xe X and f(x)=r and
f e C*X), there is a neighborhood U of x throughout which f assumes
only the value . We recall that no infinite P-space is pseudocompact
[12; 4K.2]. (A proof: if X is infinite then there is f in C*(X) with in-
finite range; if X is a P-space, each member of the cover {f-1(r) : r € R}
is open; these sets are all disjoint and infinitely many of them are non-
void, and it is easy to construct an unbounded continuous function.)

4.2 LEMMA. Let myx : X x Y — X carry zero-sets onto closed sets. Then
either X 18 a P-space or Y is pseudocompact.

Proor. If X is not a P-space then there is a function f in C*(X) and
a point x, in X for which f(x,)=0 but f is identically 0 on no neighbor-
hood of z,. If Y is not pseudocompact then there is an everywhere
positive g in C*(Y) with inf{g(y):ye Y}=0. Define he C*X x Y)
by h(z,y)=g(y)®. With H(x)=inf{h(z,y):y € Y}, we have H(x,) =1,
while each neighborhood of =z, contains, say, a point z for which
H(x)<$%. Thus 1.1(4) fails, so that (1) does also.

(4.2) is stated and proved (differently) in [5; 2.1], and was noticed
independently by one of us and S. G. Mréwka (see [14; 2.1]); 4.2 has
been generalized by Noble [21; 3.1]. The proof above is due to Nathan
J. Fine, and is used in another connection in [13; Prop. 7].)

We observe in passing that Lemma 4.2 permits the formulation of a
result closely akin to Theorem 4.1.

4.3 TaEoREM. For X infinite, the following are equivalent.

(a) X x Y 18 pseudocompact;

(b) X is pseudocompact and nx: X x Y — X carries zero-sets onto closed
sels.

Proor. In view of 4.1, we need only show that Y is pseudocompact
whenever (b) holds. Since the (infinite) space X cannot be a P-space,
this follows from 4.2.

While the theorem we are about to prove is generally considered the
major result of [10], it is, in fact, a special case: Glicksberg shows that
for infinite spaces {X,},. 4, the space IT,.,X, is pseudocompact if and

Only if HaeAﬁXa = ﬂ(naeA Xa)’
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4.4 TrEOREM (Glicksberg). For infinite X and Y the following are
equivalent.

(a) X x Y 18 pseudocompact;

(b) Each function in C*(X x Y) extends continuously over BX x fY,
that is, B(X x Y)=BX x BY.

Proor. (a) = (b). According to 4.1 and the implication (1) => (3) of
1.1, each function in C*(X x Y) extends continuously over X xpgY.
Since this latter space contains X x Y densely, it is itself pseudocompact.
Again applying 4.1 and 1.1 (with §Y and X playing the roles of X and
Y respectively) we see that each function in C*(X x 8Y) extends con-
tinuously over fX x Y.

(b) = (a). It follows from (b) that each function in C*(X x Y¥) extends
continuously over the (intermediate) spaces X x 8Y and fX x Y. From
Theorem 1.1, both ny and =y carry zero-sets in X x Y to closed sets,
so from Lemma 4.2: X is pseudocompact or X is a P-space. Since
neither $X nor fY is a P-space (being infinite and compact), both X
and Y are pseudocompact. By 4.1, then, X x Y is pseudocompact.

REFERENCES

1. R. W. Bagley, E. H. Connell, and J.D. McKnight, Jr., On properties characterizing
pseudocompact spaces, Proc. Amer. Math. Soc. 9 (1958), 500-506.

2. W. W. Comfort, On the Hewitlt realcompactification of a product space, Trans. Amer.
Math. Soc. 131 (1968), 107-118.

3. W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudo-
compact, Math. Ann. 170 (1967), 41-44.

4. W. W. Comfort, N. Hindman, and 8. Negrepontis, F’-spaces and their product with
P-spaces, Pacific J. Math. 28 (1969), 489-502.

5. W.W. Comfort and 8. Negrepontis, Extending continuous function on X x Y to sub-
sets of fX x fY, Fund. Math. 59 (1966), 1-12.

6. Z. Frolik, The topological product of two pseudocompact spaces, Czechoslovak. Math. J.
10 (85) (1960), 339-349.

7. Z. Frolik, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.

8. Z. Frolik, On two problems of W. W. Comfort, Comment. Math. Univ. Carolinae 8
(1967), 139-144.

9. I. Fleischer and S. P. Franklin, On compactness and projections, Proceedings Kanpur
1970 Topological Conference, to appear.

10. I. Glicksberg, Stone-Cech compactifications of products, Trans. Amer. Math. Soc. 90
(1959), 369-382.

11. 1. Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1952),
253-261.

12. L. Gillman and M. Jerison, Rings of continuous functions (Univ. Series in Higher
Math.), D.Van Nostrand Company, Inc., Princeton, N.J. - Toronto - London - New
York, 1960.



90
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28

29.

W.W.COMFORT AND ANTHONY W.HAGER

A. W. Hager, Some remarks on the tensor product of function rings, Math. Z. 92 (1966),
210-224.

A. W. Hager, Projections of zero-sets (and the fine uniformity on a product space),
Trans. Amer. Math. Soc. 140 (1969), 87-94.

N. Hindman, On P-like spaces and their product with P-spaces, Doctoral Dissertation,
Wesleyan University, 1969.

M. Henriksen and J. R. Isbell, On the Stone—~Cech compactification of a product of two
spaces, Bull. Amer. Math. Soc. 63 (1957), 145-146.

J. R. Isbell, Uniform spaces (Math. Surveys 12), American Mathematica | Society,
Providence, R.I., 1964.

J. L. Kelley, General topology (Univ. Series in Higher Math.), D. Van Nostrand Com-
pany, Inc., Princeton, 1965.

S. Mardesi¢ and S. Kasahara, Sur les espaces dont tout transformation réelle continue
est bornée, Hrvatsko Prirod. Drustvo. Glasnik Mat.-Fiz. Astr. Ser. II 10 (1955),
225-232.

S. Mréwka, Compactness and product spaces, Colloq. Math. 7 (1959), 19-22.

N.Noble, Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381-391.

N.Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969),
393-411.

N. Noble, A note on z-closed projections, Proc. Amer. Math. Soc. 23 (1969), 73—76.

N. Noble, Countably compact and pseudocompact products, Czechoslovak Math. J. 19
(94) (1969), 390-397.

R. M. Stephenson, Jr., Pseudocompact spaces, Trans. Amer. Math. Soc. 134 (1968),
437-448.

R. M. Stephenson, Jr., Product spaces for which the Stone—Weierstrass theorem holds,
Proc. Amer. Math. Soc. 21 (1969), 284-288.

C. T. Scarborough, Closed graphs and closed projections, Proc. Amer. Math. Soc. 20
(1969), 465-70.

C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer.
Math. Soc. 124 (1966), 131-147.

H. Tamano, 4 note on the pseudo-compactness of the product of two spaces, Memoirs
Coll. Sci. Univ. Kyoto Ser. A 33 (1960), 225-230.

WESLEYAN UNIVERSITY, MIDDLETOWN, CONNECTICUT, U.S.A.



