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INVARIANT PSEUDO-DIFFERENTIAL OPERATORS
HENRIK STETKZR

Introduction.

Let G be a Lie group that acts smoothly and transitively on the
C®-manifold 2. In this paper we study pseudo-differential operators
that are defined on Q2 and are invariant under the action of G. The
term ,,pseudo-differential operator” will denote the operators that L.
Hormander defined in [3].

We show that all G-invariant pseudo-differential operators on a homo-
geneous space G/H, where the closed subgroup H is a product of a com-
pact and a normal subgroup, can be constructed in a way similar to the
usual construction of left-invariant vector fields from a tangent vector.
From that it follows that there are G-invariant pseudo-differential oper-
ators apart from the G-invariant differential operators.

We next examine the special case where G x G acts on G by

(91,92)'9 = 919927 .

An operator is then @ x G-invariant if and only if it is bi-invariant, i.e.
both right and left-invariant. The isotropy group K is here the diagonal
of G x G so it is isomorphic to G. It is easily seen that K is a product of
a compact and a normal subgroup of @ x @ if and only if G is a product
of a compact and a central subgroup of G.

The surprising theorem is that every bi-invariant pseudo-differential
operator on G is a sum of a bi-invariant differential operator and an
operator of order — oo, if G is not a product of a compact and a central
subgroup, e.g., if G is semi-simple. If @ is such a product, then we are
dealing with the homogeneous space case, described above.

Finally we extend the theorem about bi-invariant operators to more
general pseudo-differential operators by working with the distribution
kernels of the operators. The essential property of these general opera-
tors is that they are pseudo-local, i.e. decrease singular support.

The contents of this paper form most of the author’s doctoral disser-
tation, written for Massachusetts Institute of Technology under the
direction of professor V.W. Guillemin and professor I. M. Singer. I
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hereby express my gratitude to them and to professor S. Helgason for
their invaluable help and support. I must also mention that professor
Singer suggested the problem that led to this paper.

1. Standard notations and definitions.
The following notations and definitions are used throughout the paper:

J = (J1,Jg- . .,J,) is a multi-index, that is, J;,J,,...,J, are non-
negative integers;

|J] =Ji+Jet+ ... +Jd,;

02: paracompact C®-manifold with a countable basis for the
topology ;

T,*(2): cotangent space of 2 at x € Q.

DeriniTION 1.1. Let U be an open subset of £2.

C®(U) = set of all infinitely often differentiable complex-valued func-
tions, defined in U, with the topology of uniform convergence
of functions and their derivatives separately on compact sets.

Cy>(U) = set of all functions in C*°(U) which have compact support in
U, with the usual inductive limit topology.

That a function is smooth in U means that it belongs to C*(U).

G: a connected Lie group with identity element e, left Haar
measure du(g) and Lie algebra &.
exp: the exponential mapping of @ into G.

Ad(ad): the adjoint representation of G(®) on @.

DErinITION 1.2. @ is said to act smoothly on Q if there is given a
differentiable mapping (g,2) —~g-z of G'x 2 onto £ such that

(9192)'% = g1°(ge'2) and ez ==z
for all ¢,,9, € G and for all z € Q.
£ is then said to be a @G-manifold.

DrriNtTION 1.3. Suppose that G acts smoothly on 2. If fis a real or
complex valued function on 2 and g € G, then ,f denotes the function
(,f)(x) = f(g-x) forevery xe2,
and is called the translate of f by g. If Q=@ we call ,f the left-translate
of f by g, and we define the right-translate f, of f by g by the formula

(fo)(h) = f(hg) forall he@.
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DEerinITION 1.4. Suppose that G acts smoothly on 2. An operator L
mapping functions on 2 to functions on 2 is said to be G-invariant if

L(,f) = ,(Lf) forallge G and all fin the
domain of definition of L.

In the case 2=(, the operator L is said to be left-invariant if it is
G-invariant; it is said to be right-invariant if

L(f,) = (Lf), forallge @ and all fin the
domain of definition of L;

and it is said to be invariant, if it is both right- and left-invariant.

We reserve the term pseudo-differential operator for the ones that are
defined in Hormander’s paper [3] and use his notation concerning
them.

DerintTION 1.5. A Ssymbol ¢ on the manifold 2 is a smooth mapping
from the cotangent bundle of £ minus the zero-section into R, which is
positively homogeneous, i.e., there exists an s € R such that

a(x,t8) = t*o(x,&) for allzeQ, allt > 0
and all £e T, *(Q)\{0}.

Note. Let P be a pseudo-differential operator with asymptotic ex-
pansion o
e~™ P(eMf) ~ 3 Pi(f,u) A7 as A —>oo.

J=0

It can be shown that Py(f,«) is a product of f and a smooth positively
homogeneous function of degree s, on the co-tangent space (see [3,
p- 512, note after Theorem 4.2]). The homogeneous function will be called
the symbol of P and denoted op or ¢(P). So the symbol of P is defined
by the identity

Py(f,u) = op(x,du(z)) f(x) for all ze 2, fe Cy™(R2) and
u € C*(Q) with du(x) + 0.

It is well known that every symbol is the symbol of a pseudo-differen-
tial operator.

2. G -invariant pseudo-differential operators.

DerinITION 2.1. Let G act smoothly on 2. A symbol o on 2 is said
to be G-invariant if

o(x,du(x)) = o(g-,d(,~1u)(g"))
for all x € 2, g € G and u € C®(2) with du(z) 0.
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Lrmma 2.2. Let G act smoothly on Q. If the pseudo-differential operator
P on Q2 is GQ-invariant, then so 1s its symbol op.

Proor. It follows from the uniqueness of the asymptotic expansion
e~ P(ettuf) ~ 3 Py(f,u) A% as 1 — oo
§=0

and the invariance of P, that

Pj(gf’gu)(x) = Pj(f’u) (g .-

GP(x,du(x))f(x) = Po(f’ w)(x)

Then the formula

yields the result.

Theorem 2.3 shows how G-invariant pseudo-differential operators can
be constructed on the G-manifold 2. The idea is to adapt the usual
method of constructing left-invariant vector fields on the Lie group G:

If & is a tangent vector to G at e, then a left-invariant vector field &
on @, satisfying &,=§, is given by the formula:

E,(f) = &(f) forall feC®(@)andallged .
THEOREM 2.3. Let G act smoothly and transitively on £2, and suppose
that the isotropy group of x, € 2 is a product of a normal subgroup and a
compact subgroup H.

If P is a pseudo-differential operator on 2, we define for every f € Cy>(2)
the function Qf on 2 by

@N(g-20) = [ Ploaf)e) du(h) for every ge @,
H

where du is Haar-measure on H.
Then Q is a G-invariant pseudo-differential operator on Q with

oq(ay du(ay) = [ op(adu)(@) dulh)
H

Sfor every uw e C*(2), du(x,)+0.

COROLLARY 2.4. Let P: Cy®(@) - C*(G) be a pseudo-differential opera-
tor on G. For fe Cy®(Q) we denote by Qf the function defined by

(@ )g) = P(;f)(e) for everyge@.
Then f — Qf is a left-invariant pseudo-differential operator on G, and

60(69 ') = GP(e, ') .
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ReMARK. The ,translation construction” of Theorem 2.3 gives all
G-invariant pseudo-differential operators on £2.

Proor or THEOREM 2.3. The proof is routine work once we use the
following idea here taken in the special case of Corollary 2.4:
We shall show that e-““Q(e?*f) has an asymptotic expansion

Qi(fiw) A% as A—> oo

Inse

J

[e-#Q(ei*f)](g) = e@X P(e¥* f)(e) ,

Since

we see that e~ Q)(e*f) pointwise has an asymptotic expansion, namely
with
Qi(f,u)(9) = Pi(,f,qu)(e) -

Using that the expansion of P is uniform for » in compact subsets of
C*(G) and f in bounded subsets of Cy*(G) (Remark p. 510 in [5]), we find
that e~ @Q(e*“f) has the asymptotic expansion 3;@;(f,u)A" in the C(Q)
topology.

By the same arguments as in [5, p. 510] we finally show that the ex-
pansion actually is in the C°(@) topology.

For details, we refer to [9].

CoroLLARY 2.5. Suppose G acts smoothly and transitively on 2, and
that the isotropy growp H of x, € 2 is compact.

To every G-invariant symbol o on 2 there then exists a G-invariant pseudo-
differential operator on Q2 with symbol o.

Proor. By a standard result there is a pseudo-differential operator P
on 2 with op=0. Let @ be constructed from P as in Theorem 2.3. Then

ol dulw) = [ opladiu)(@) du(h)
= [ oo, A1) (o)) dpa(h)
o(h1-xg, du(h=1-2,)) du(h)

o(xg, du(z,)) du(h) = oz, du(x,)) ,

I
Mo Mo Re_ N

80 o and o agree at x,. By invariance they then agree everywhere.
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Theorem 2.6. describes another way of finding invariant pseudo-
differential operators, namely by averaging over the group. The result
is known, but as far as I know, not written down in the literature.
Atiyah and Singer mention in [1, footnote on p. 517] that the averaging
construction when applied to a pseudo-differential operator, gives an
element of the space 2™, that consists of generalized pseudo-differential
operators. But they do not need the fact that the element is an ordinary
pseudo-differential operator.

The disadvantage of the averaging method is that G' has to be com-
pact. The advantage that G need not act transitively.

Norarions. Let £ be a G-manifold. If P: C,®°(R) > C®(2) is a
continuous linear mapping and g € @, then we denote by g(P) the opera-

tor

u = g(Pyu = a[P(u)] .
It is easily seen that the mapping g — g(P)u is continuous from G to
C=(2) for fixed u € Cy®(2). So for G compact the integral

Av(Pu = f g(P)u dg
64

converges in C°(2). Observe that dg refers to Haar-measure on G.

THEOREM 2.6. Let G be a compact Lie group, acting smoothly on the
manifold Q. Let P be a pseudo-differential operator on Q. Then Av(P)
1s a pseudo-differential operator on £2, invariant under the action of G, and
its symbol is

o(Av (P)) (z,du(z)) = fap(g—l-x,d(gu)(g-l-x)) dg .
@

Proor. The proof is analogous to the proof of Theorem 2.4. Instead
of translating the terms in the expansion of P we integrate them over G.
For details we refer to [9].

3. Invariant pseudo-differential operators on Lie groups.
DerFINITION 3.1. A symbol ¢ on @ is said to be left-invariant, if

o(g,du(g)) = ofe,d(;u)(e))
for all g € @ and all w € C°(@) with du(g)+ 0, and to be right-invariant if
o(g,du(g)) = ole,d(w,)(e))

for all g € G and all u € C°(@) with du(g)+0, and to be tnvariant, if it
is both right- and left-invariant.
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REMARK 3.2. If ¢ is an invariant symbol, then

o(e,&) = o(e,Ad(g)*¢)

for all g€ @ and all £ e T *(@)\ {0}.

Conversely, if p is a smooth, positively homogeneous function on
T *(G)\ {0}, satisfying o(&)=0(Ad(g)*&) for all & e T *(G)\ {0} and all
g € G, then there is exactly one invariant symbol ¢ such that o(e, - ) =p.

ProrosiTioN 3.3. If a pseudo-differential operator is left-invariant,
right-invariant or invariant, then so is its symbol.

Proor. Like the proof of Lemma 2.2.

ProrosiTION 3.4. Let ¢ be an invariant symbol on G. If a(e,*) ts a

polynomial function, then there exists an invariant differential operator D
with op=o.

Proor. This is a well-known result from the theory of the universal
enveloping algebra of a Lie algebra. See e.g. Helgason [2, p. 393].

In this section we will study pseudo-differential operators on G which
are both right- and left-invariant. The main result (Theorem 3.5) states
that on ,,most” groups all these operators are differential operators
(modulo operators of order — oo).

The procedure will be to show that the symbol o, at e € @ of any such
operator P is an invariant polynomial. Then we find D as in Proposition
3.4 and form the difference P — D, which then is an invariant pseudo-
differential operator of strictly lower order than P. By finite induction
we get that there are invariant differential operators D,,...,D, such
that the symbol of P—D,—...—D, has order less than zero. But the
symbol is an invariant polynomial, hence it is zero, so P—D,—...—D,
has order — co.

THEOREM 3.5. a) Every invariant pseudo-differential operator on G is a
sum of an invariant differential operator and an invariant pseudo-differen-
tial operator of order — oo, if & is not a direct sum of a compact and an
abelian Lie algebra.

b) If @ is a direct sum of a compact subalgebra and an abelian subalgebra,
then there is an invariant pseudo-differential operator on G which is not a
differential operator modulo operators of order — .

Part a) is a corollary of the following proposition.

ProposrTION 3.6. If there is a non-trivial nilpotent element w e @, ¢.e.
adw=+ 0 but (adw)"=0 for some n, then every invariant pseudo-differential
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operator on G is a sum of an invariant differential operator and an inva-
riant pseudo-differential operator of order — .

Proor THAT 3.6 1MPLIES 3.5a): We will show that & has a non-trivial
nilpotent element w.

Let rad @ denote the radical of & and Z the center of ¢. Obviously
rad @ 2 Z, the radical being the maximal solvable ideal in &. There are
the following cases:

la) rad @+ Z and rad @ is not commutative. Let

rad@:@oD@:lD e D @n_gD @7;--1D @n={0}

be the derived series of the solvable Lie algebra rad . Then =2 be-
cause rad @ is not commutative.

If there is a we @, _; such that [w, rad @]+ {0}, then adw+0 and
(adw)*(rad @) = {0} so (adw)®=0.

In case [§,,_,, rad &] = {0} we take a w € &, _, such that [w, ®, _,] + {0}.
Then adw4 0 and

(adw)}(rad @) c (adw)¥(,_,) = (adw)(®,_,) = {0},

so (adw)*t=0.

1b) rad @ +Z and rad @ is commutative. Any element w e rad @\ Z
has adw=+0 and (adw)?=0.

2) rad @ =Z. The Levi-decomposition theorem (8, Cor. 1, p. LA 6.10]
says that & can be written as a semi-direct product

G =rad® ®semi gs

of its radical and a semi-simple subalgebra &,. But since rad@ =2,
we see that @ is actually a direct sum

® = 200, .

Here &, is not compact by the assumption of Theorem 3.5a). It is then
well known from the theory of restricted roots that @&, has a non-trivial
nilpotent element: Just take a non-zero vector in a restricted-root space.
But when @, has a non-trivial nilpotent element, then so does

® = 2o, .

We are now going to prove Proposition 3.6. By the remarks right after
Proposition 3.4 it suffices to show that every invariant symbol ¢ on G
is a polynomial. We use Lemma 3.7 below to see that ¢ is a polynomial
in some of its variables, and then this will imply that it is & polynomial
in all of its variables.
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Lemma 3.7. Suppose H € C°(R"), and that there exists an s€R and
strictly positive numbers s,,. . .,s, such that

*) H(t"w,,. .. tnx,) = t H(xy,. . .,5,)

for all t>0 and all (z,,...,z,) € R™,
Then H is a polynomial in x,,. . .,x, of degree <s[(mins,).

Proor. Differentiation of the equation (*) above IV times with respect
to z; gives

N
N (g, t0) =1 —— (%, . .,
3x1N( 1 n) 3271N( 1 n)
80
oNH oNH
. 381 N—8
3x1N(x1" Cox,) =7 —9x1N(t81x1" Cotmz)

Choosing N so big that s, —s> 0 and letting ¢ -~ 0 we obtain
oNH

W(xl,. . .,x,n) =0
for all (xy,...,z,) € R™.

Similar considerations hold for all other derivatives, so all derivatives
of H of a sufficiently high order are identically 0. Hence, H is a poly-
nomial.

Let k be the degree of H. If s<0, we see by letting ¢ - 0 in (*) that
H=0, 50 k= —oo.

Let now s> 0, and assume H is not identically 0, so that we may write

H(x) = 3;-x¢s%’ + lower order terms,
where c¢;+ 0 for some J with |J|=k.
From (*) it follows that

3\7=k Cr o1t +ondn o) 4 Jower order terms

= t* 3 7-xC;%” + lower order terms,
80
8 =8, Jy+8Jy+ ... +8,J, forsome J with |J|=Fk.
Then

k=|J| =J+...4J,

8187 ... +8,J,8,71

(83J1+ ... +8,J,)/mins; = s/mins, .

IA

Proor or PrOPOSITION 3.6. The following proof is communicated to
me by professor L. Carleson, and simplifies the author’s original proof.

Math. Scand. 28 - 8
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By Lemma 3.7 it is enough to show that every invariant symbol o
can be extended so that the extension is C* also at the origin. The
invariance of o,

o(&) = o(Ad(expsw)*&) for all s € Rt and all £ € G*\ {0},
may here be expressed as

o(&) = o(exp(sB)&),

where B=(adw)* is nilpotent, that is, B*=0 for some » > 2.

Let {z,,...,x,} be a basis of @* such that {r;,...,2,} is a basis of
kerB. We will first show that for fixed y ¢ kerB, the function
o(é12;+ ... +§,7,+y) is a polynomial in &;,&,,...,§,.

Let k=1 be so that B¥y <0, but B¥+ly =0, and consider

H(Ey,. .. &) = oléy2,+ ... + &2, +rky) .
Then H is C* except possibly at the origin, and
H(tkg,,. ..tk &, tr) = ths H(E,,. .., E,,T),
where s=the degree of ¢. Furthermore,

H(&,r) = o(e*B (&2, + . . . +&px, +1%Y))
o1y + . . . +Epx, +1* 3K 067(j1)1Bly) .
If r40, we get with s=r-1 that

H(E,r) = o(&y2y4 . .. +Epa, +r%y+ ... + (k)1 Bry) .

By continuity this formula also holds when =0 and |£| is small, because
then
&g+ ...+ &z, + (k) 1By £ 0.

Since the right hand side for £=0 and r=0 is ¢((k!)-*B*y) and B*y 0,
then H can be extended over the origin to a C*-function. According to
lemma 3.7, H(£,r) is a polynomial in & and r of degree

< ks/min(k,1) = ks < ns,
so that
H(,1) = 0§12+ ... + &2, +Y)

is a polynomial in £ of degree <ns. Now consider

o(E+£0,m) = o(ZF (€ +E0)z; + Zp,ami%s) »

which by what we have just proved, is a polynomial in & of degree less
than or equal to ns if 5+ 0, that is,
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G(E+§(o)”7) = Z|J|§nsoJ(§(0)’7})§J
or

o(£,17) = Z715ns0s(EOsn)(E— )7 .

Choosing 90 we get that

as(§%n) = (J)7 D a(§%,7)

which is C*° even when 5=0.
Hence o(&,7) is C* also at the origin.

ProrosiTioN 3.8. To every invariant symbol o on G, there exists an
tnvartant pseudo-differential operator with symbol o.

Proor. In the proof of Theorem 3.5a) and Proposition 3.6 it was
shown that every invariant symbol is a polynomial, if & is not a direct
sum of a compact and an abelian subalgebra. In that case we can apply
Proposition 3.4.

So we may now assume that @ =9PU is a direct sum of a compact
Lie algebra 9 and an abelian Lie algebra . It is easy to see that @
then can be written as G=HA, where H is a compact subgroup of G,
and where A is contained in the center of G.

By Corollary 2.5 there exists a right-invariant pseudo-differential
operator P on G with symbol op=g0.

H is compact and acts smoothly on G by left-multiplication, so Av (P)
makes sense (Theorem 2.6) and is an H-invariant pseudo-differential
operator on (. With dh=Haar measure on H we have that

o(Av(P))(g,du(g)) = | op(h~'g, dyu)(h~'g) dh

H

fo- (hg, d(,u))(h~1g) dh  (since op=o0)
H

Il

= f (e, d(5-14(n)) e)) dh (since ¢ is left-invariant)
24

o(e,d(,u)(e)) d.

m;ﬁ

]

a(e,d(u)(e)) = o(g,du(g)) ,

80 o(Av(P))=0. Furthermore, Av(P) is right-invariant, because



116 HENRIK STETKZAR
[AV(P)u))0) = [ Pl (i) dh
b4
= fP(hu)(h‘lgg') dh  (since P is right-invariant)
i ¢

= [Av(P)ul(gg’) = [AV(P)u]y(g) .

By construction Av(P) is invariant under left-multiplication by H.
But is is also invariant under left-multiplication by 4, because 4 com-
mutes with everything, so that ,u=wu,, which reduces the case to the
right-invariant one.

Hence Av(P) is also left-invariant.

Proor or THEOREM 3.5b). By Proposition 3.8 it suffices to produce
an invariant symbol, which is not a polynomial. Let as there

G = HA,

where H is a compact subgroup and 4 is contained in the center of G.
Since 4 commutes with everything, Ad (a)=1d for all @ € 4, so invariance
under (Ad @)* reduces to invariance under (Ad;H)*. Since H is compact,
there exists on &* a strictly positive definite quadratic form @(-, '),
which is invariant under (Ad,(H))*. Hence

o(é) = (Q&, )

is an invariant symbol on &*, and it is not a polynomial.

4. Invariant pseudo-local operators.

DermviTION 4.1. (See [7, p. 69]). A strictly positive smooth measure
on 2 is a Radon measure y on 2 such that if ¢: 0 — R is a chart in 2,
there is a strictly positive smooth function ¢ on R” such that

[ £1@) dutz) = [ (Fop2)e) e(6) de
2

Rn
for any continuous complex-valued function f on {2, having as support
a compact subset of 0.
ReMARK. A Riemannian structure on £ gives rise to such a measure
with
o(€) = (det(gy(8))) -

Since a paracompact manifold has a Riemannian structure, it also has
a strictly positive smooth measure.
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NoraTions. &'(2)=(C*(R2))’ denotes the set of all distributions on Q
with compact support, while 2'(2)=(Cy*(2)' denotes the set of all
distributions on 2. We give &'(2) and 2'(22) the strong topologies.

Given a strictly positive smooth measure u on 2 we will identify
Cy*(2) with a subspace of &'(2) and C*(R) with a subspace of 2'(2)
by means of u in the usual way.

DErFiNITION 4.2. Let u be a strictly positive smooth measure on 2.
If u e 2'(2) then the singular support of 4, denoted sing suppu, is de-
fined as the set of points in 2, having no neighbourhood where » € C*.

Remark. It is easy to see that singsuppw does not depend on the
choice of the measure u, but only on u.

DErFINITION 4.3. A continuous linear operator P: &'(Q) - 2'(Q) is
said to be pseudo-local, if

sing supp Pu < singsuppwu for all we &'(2).

ReMARK. It is easy to verify that if P is pseudo-local with respect
to u, then P is also pseudo-local with respect to any other strictly posi-
tive smooth measure on £2. So the property of being pseudo-local depends
only on the operator and not on the choice of measure.

ReMARK. It follows from the closed graph theorem that
P|Cy™(Q): Cy™(2) ~C%(Q)
is continuous, when P is pseudo-local.

Remark. J.J.Kohn and L. Nirenberg were apparently the first to
observe that pseudo-differential operators are pseudo-local ([5, p. 293]).
But also more general spaces consist of pseudo-local operators. For
example, operators in L, ,({2) (defined in [4, p. 153]) are pseudo-local.

From now on we restrict ourselves to the case where 2=@ is a con-
nected Lie group. As a strictly positive, smooth measure on G' we take
left Haar measure du. The modular function will be denoted by A4.

AssumpTiON 4.4. Every real-valued function k which is defined and
smooth on G\ {e} and which satisfies

k(aga—t) = A(a)k(g) forall ae @ and g e G\ {e}
can be extended. to a smooth function defined on all of G.

REMARK. Assumption 4.4 is not satisfied for all groups, for example
not for abelian groups. But it is satisfied for large classes of groups, in
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particular for all complex semi-simple groups, as will be shown in the
proof of Corollary 4.6.

THEOREM 4.5. If the assumption 4.4 holds for G, then every invariant
pseudo-local operator on G i3 a swm of an invariant differential operator
and an tnvariant integral operator with smooth kernel.

COROLLARY 4.6. Every invariant pseudo-local operator on @ is a sum of
an invariant differential operator and an invariant integral operator with
smooth kernel, if

@ is not unimodular ,
or if
G 18 complex reductive ,
orif
& has an element x such that dim((adx)(®)) = 1,
or if
G = the connected component of GL(2,R),
orif

@ = SL(2,R).

Remark. If @ is the Heisenberg algebra or more generally a nil-
potent Lie algebra with one-dimensional center, then there is x € @ such
that dim (adz)(®))=1.

REMARK. An inspection of the proof of Theorem 4.5 shows that the
assumption sing supp Pu < sing suppu can be weakened. We only need
that sing supp Pé < {e}, where § is the Dirac d-function with support at e.

Proor or THEOREM 4.5. If ¢ € C°(G) we let ¢ € C;™°(G) denote the
function ¢(g)=p(g-1).
Let P be an invariant pseudo-local operator on ¢. The mapping

T: ¢ - (Pg)(e)
from Cy®(Q) into C is a distribution on G.
(T*¢)(g) = (T, (9,)") = P(@,)e) = (Po)g) ,
because P is right-invariant, so
T*p = Pp forall g € Cy™(Q) .

There is a sequence (p,) < C,®(@) such that ¢, > 4 in &'(G), so going to
the limit we get that
T=T*% =Ps.
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Let k=P§|G\{e}. Then ke C®(G\{e}) because P is pseudo-local.
Furthermore

(Pp)(a) = [ k(g) 9lg7a) dulg) it a ¢ suppg.
G

Since P is left-invariant,

(Pp)a) = Plo)e) = [ o) plag™) du(g) -
G
Changing variables, we find that
(Pe)(@) = [ 4(@) Ma~ga) plg~'a) dulg)
G

80 k must satisfy the identity
k(g) = A(a) k(a—'ga) forall ac @ and ge G\ {e}.

By hypothesis the assumption 4.4 holds for G, so k can be extended to
a smooth function defined on all of G. The extension will also be de-
noted k. We can now define the operator K: Cy®(G@) - C*(Q) by

(Ke)(@) = [ o) plg~a) dulg) .
G

It is easily seen that K is invariant, because k satisfies the identity
k(g) = 4(a) k(a~'ga).
If p e Cy®(@) and e ¢ suppe, then

(Pe)(e)— (Kw)(e) = [ k(g) #lg™) dulg)— [ k(g) #lg™) dulg) = 0
(] G

so the distribution
® > (Po)(e) — (Kg)(e)

has support contained in the single point e. Hence it is a linear combina-
tion of the Dirac d-function and its derivatives, i.e., there is a differential
operator D, such that

(Pg)(e) — (Kg)(e) = (Dyp)(e) forall ¢ eC®(@).

Defining D by (Dg)(g) = D,(,p)(e), we see that D is a left-invariant dif-
ferential operator on @, that agrees with D, at e. Since both P and K
are left-invariant and P~ K =D at e, it follows that P—K=.D every-
where.

Since P and K are invariant, so is D=P —K.

Now P=D+K is the desired decomposition of P into an invariant
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differential operator and an invariant integral operator with smooth
kernel.

Proor or CoroLLARY 4.6. In each of 4 cases we will show that the
assumption 4.4 is valid for the group G.
1. G is not unimodular. Observe that k satisfies the identity

k(aga~') = A(a) k(g) forall ae @ and ge G\ {e}.

In particular k(g)=A4(g)k(g), so that A(g)=1 when k(g) 0.

The modular function 4 is a continuous homomorphism of the Lie
group @ into the Lie group R+. Hence it is an analytic mapping ([2,
Theorem 2.6, p. 107]). If k40 then 4=1 on an open set, so 4=1 every-
where, because it is analytic. But @ is not unimodular, so we conclude,
that £=0.

We may and will assume that the modular function 4=1 in the re-
maining cases. Then k satisfies the identity

k(aga—') = k(g) forall ae@ and ge G\ {e}.

Let U={z € @ |expz+e}. Then U is an open set, and V=Uu{0} is a
neighbourhood of 0 € . The function A, defined by

h(z) = k(expx) for xeU,

is well-defined and smooth in U. Since exp is a diffeomorphism close
to 0 € @, it obviously suffices to show that & can be extended to a smooth
function defined on all of V. To prove that it turns out we only need
to know that

(x) h is smooth in ¥V \ {0}
and
(B) H(Ad(g)x)=h(z) forall ze V\{0} and gegG.

It is easy to prove (8):
h(Ad(g)x) = k(exp(Ad(g)x)) = k(g(expx)g~) = k(expz) = h(x) .

2. @ 18 complex reductive. We will use some results from the paper [6],
80 in this proof the notations will be as in [6]. In particular, an orbit
means an orbit of an element in @ under the action of the adjoint group.

Let u,,...,u; be algebraically independent homogeneous polynomials
generating the ring of invariants. We define the mapping u: & - C* by

w(@) = (uy(),. .., u(x)) .
Let
P¢)={ze® | ulx)=£ for §eCk,
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According to Theorem 3, p. 365 in [6], there exists an orbit O7(£) such
that P(&)=07(). h is constant on O7(£) by (B). Since % is continuous,
it is constant on O7(£)=P(£). So h(z) depends only on the value of u(z).

Next choose a principal nilpotent element e_e @&, (see 4.2.1, p. 370
in [6]) so small that e_e V. By Theorem 7, p. 381 in [6] there exists a
transversal k-plane

v =e_+ @+
such that
t = u|v: v->Ck

is a global coordinate system on v. Furthermore there is a basis (z,,. . .,2;)
of &°+ such that if

x=e_+82,+...+8,2 € e_+ G+,
then for +=1,...,k
uy(x) = 8; + PilS1,- - +584-1)

where p; is a polynomial in ¢—1 variables without constant term. We
gee that u,(e_)=0+p,;(0,...,0)=0, so u(e_)=0.

The mapping = — h(t”l(u(x))) is smooth in a neighbourhood of 0, be-
cause h is smooth close to e_e V. But since k(z) only depends on the
value of u(x), we have

h(t=Y(u(x))) = h(z),

80 h is the restriction of the smooth function h(t—l(u(x))) close to 0 € .
3. & has an element x such that dim[adz(®)]=1. Let y e [x,&] be
non-zero. Then there are two cases:

(a) [z,y]=0,
and

(b) [x,y] = y (normalize x).

(a) Let (x;=y,z,,...,2,_,) be a basis of (adz)-1(0) and choose z,
such that (adz)(z,)=y. Then (z,,...,z,) is a basis for §.

oo tk
Ad(exp(tz)) = 4 = ZE—' (adz)k = I + tadx
k!

has with respect to the basis (x,,...,,) the matrix
10...01¢
Ad(exp(tx)) = 0 1 0 0

00...01
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Therefore
h(Ay,. . s A,) = B(A +10,,2,. . .,4,)

for all teR and (4,,...,4,)+0, so & does not depend on its first argu-
ment:

BAgy Ay « s hg) = B(L,Ay,. .., A,) .

The right hand side — and hence the left hand side — is the restriction
to ¥\ {0} of the function

(3'1" . ")*n) g h(l’lz’- . -:;ln) ’

which is smooth on ¥, because A is smooth outside 0.
(b) In this case we choose a basis (y,,...,2,) of & such that
(adzx)(z;)=0 for i=1,...,n. The operator

o0 tk
Ad (exp (tz)) = 2,‘;‘,(3‘1“’)"
o k!
has with respect to the basis (y,z,...,z,) the matrix
e¢0...0
Ad(exp(tz)) = 0 1 T O
00 1

80
h(A pags. o ospin) = By . ty) «

Letting ¢ - —oco we get
h(}‘h“l:- cesly) = O, pys- s ptn) s

so again h does not depend on its first argument, and we can use the
finishing arguments of case (a).

4. G =the connected component of GL(2,R) or G=8L(2,R). The proofs
are practically the same, so we will only treat the case, where @ is the
connected component of GL(2,R).

If

zr = {xu x“}eG and x4 > 0,
Ty Tag
we let
g = of —wpagt
0 m;l’

Then
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Ad(g)e = gug-t = HO —detx}

1 trx

wa = ({y ~al)

when z,; > 0. Hence % coincides for x,, > 0 with the function f,, defined by

s = ({7 )

and f, is smooth close to 0.

For z,, < 0 we get similarly that & coincides with the function f_, where

e =i 3 %)),

and f_ is smooth close to 0. The situation is illustrated by

[+ Ty > 0

1
h

f- 0 Xy < 0.

Observe that f, and f_ and all their derivatives agree on z,, =0, because
h is smooth. The function

f(@) = fi(x), when zy
= f_(x), when x,

0,
0,

IIA IV

is therefore smooth in a neighbourhood of 0, and extends A.

1

2

This finishes the proof of Corollary 4.6.
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