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THE CONTRACTIBILITY OF THE
HOMEOMORPHISM GROUP OF SOME PRODUCT
SPACES BY WONG’S METHOD

PETER L.RENZ

Let X be a Hausdorff topological space. Let o be the set of non-
negative integers, and let ¥ =X®. Let H be the homeomorphism group
of Y provided with the compact open topology. Let the map p of ¥
onto Y be defined by p(xg,,, s, %5, . . . )= (¥1, %y, %2, %5,. . .) and let e be
the identity element in H. If Z is a topological space, an isotopy of Z
will be a continuous map F from Z x[0,1] to Z such that F(-,!) is a
homeomorphism of Z onto Z for each fixed ¢ € [0,1]. Two maps f and g
are tsofopic if there is an isotopy F such that f(:)=F(-,0) and g(-)=
F(-,1).

TaEOREM 1. With p, e and H as above, if p is isotopic to e, then H 1is
contractible.

Raymond Y.T. Wong [3] has shown that the isotopy condition is
satisfied when X =[0,1] (the case of the Hilbert cube) and X =(0,1) and
that it implies the homeomorphism groups of X“ are arcwise connected
in these cases. Our work uses his methods to prove contractibility with-
out Wong’s condition that X be separable and metrizable. A further
remark at the end of this paper indicates that the same theorems are valid
for arbitrary infinite powers of X.

Theorem 1 is not, however, the most direct generalization of Wong’s
result. The following result is more directly related to Wong’s theorem.
This formulation (Theorem 2) is partly suggested by correspondence
with David W. Henderson and conversations with Richard Schori.

Let 4 be a topological space. The cone over A, which we denote by
C(4), is the topological space A4 x [0,1] with 4 and 4 x {0} identified in
the natural way and A4 x {1} identified to a point. The point 4 x {1} is
called the summit of C(A). We define a generalized isotopy of Y over A
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to be a continuous map F: A x Y — Y such that F(a,-) is a homeomor-
phism of Y for each a e 4.

THEOREM 2. Let Y, p, and e be as above, let p be isotopic to e, and let A
be a topological space. Then any generalized isotopy of Y over A may be
extended to a generalized isotopy of Y over C(4).

The construction for both of these results is identical but neither result
implies the other except in some special cases.

Definitions of the maps.

Subscripts denote coordinates and our maps are defined by specifying
the coordinates of the images as follows: For n € w define a™ by

(2(s)),, = Sm if m<n,

Spmi1 if mzn
for all se Y. Define a map o™: C(Y;Y) > C(Y;Y) by

(f8)m if m<mn,
(«™f(8))m = 3 S if m=n,
(fSNmy i m>n
for all se Y.

The map #™ on Y is easily seen to be continuous, since its coordinate
projections are continuous. If Z and W are topological spaces, we use the
notation C(Z, W) for the continuous functions from Z to W. The same
argument shows that fe C(Y;Y) implies a®™fe C(Y;Y). Furthermore,
it is easily shown that the map k — hoa®™ is a continuous map of H into
C(Y;Y) in the compact open topology. We show that «™ is a continu-
ous map. Sets of the form {h € H | i(K)<= U}, where K ranges over the
compact subsets of ¥ and U ranges over the basic open subsets of Y,
form a sub-basis for the compact open topology of C(Y; Y), so it suffices
to show that if x™h(K)< U with K and U as above, then there is some
neighborhood W of & such that 2" € W implies «™h'(K)<U.

Since U is a basic open set in a product space, U= X {U™ | m € w},
where X denotes the Cartesian product of a family and where the U™
for m € w are open subsets of X almost all of which are equal to X.
Define an open set U’ as follows:

gm if m<n,

U =X{U™|mew} where U™ = Umil i mam

Then by direct computation one has that
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eV=1{hecH|WK)<<U}
implies
o™h'(K) < U .

Define h(n) as follows: A™ = a®™(hon™). The above shows that A™ is
continuous on Y and that A — A™ is continuous in the compact open
topology. If ke H, then (™)~ may be easily seen to be (A~1)®™. Thus
k™ is one to one and (h~1)™ is onto and since (A~1)-1=h, it follows that
h® is onto and thus a homeomorphism. That is, & - A® is a map of H
into H.

The first shrinking of H.

We show that the identity map on H is homotopic to the maph — A®
of H into HO={h e H | h(s)y=5,}. To do this we define a family of
isotopies g™, for n € w, of Y with the following properties:

(@) o™ : Y x[n,n+1] > Y,

(b) ¢"(s,m)=s,

(c) ¢(n)(s’n+ ]') = (80’81! e 7811,——]_’ 8n+1, sn, 8n+2, ... ),

(d) ¢™ leaves the first » coordinates pointwise fixed.

Let ¢' be the isotopy connecting e with p which exists by hypothesis.
For se Y define T,(s) to be the sequence (s;,8;11,Sk+425++>Sktjre-+)-
We may define the ¢™ by specifying the coordinates of ¢™(s,t) as fol-
lows:

(.00 = {7 N
> m (@' (Ty(s),t—n))pey if m2m.

Define @: H x [0,00) — H as follows:
D(h,t) = gM(-,t)oh™og®(- t) forall he H
if n<t<n+1. Notice that

¢(n)( . ,n+ l)oh(n)o(p(‘n)( . ’n_l_ 1) —_— k’n+1( . )
— (p(n+1)( S+ I)oh("“'l)Otp(”"‘l)( on+1).

This resolves the ambiguities in the definition of @. Since ¢™(-,f) is a
homeomorphism, @(k,t) € H for all h e H and all t € [0,00). We extend
@ to H x [0, 0] by defining D(h,00) =h. In order to show P is a homotopy
connecting kb — A©® with the identity map on H, it is sufficient to show
@ is jointly continuous. To do this it suffices to show (A™,t) — D(h,t) is
continuous, since (h,t) - (h™,¢) is continuous. Thus for ¢+ oo it is useful
to show the following:
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LemmaA. If y: S x[0,1] s a homotopy of a topological space S and h is a
homeomorphism of S onto itself, then (h,t) — w(:,t)oh and (h,t) - hoy(-,t)
are both homotopies of C(S; 8) in the compact open topology.

Proor. First we show (h,t) — hoy(-,t) is continuous.

Given K, compact, and U, open in S, such that A(y(K,t)) = U; notice
that y(K,t)<h-1(U). Since p is jointly continuous, there exist neighbor-
hoods V, x I, of (k,t) such that y(V,,I,)<h-2(U). But since K is com-
pact, there is a finite set K=K such that K<U{V, |ke K,}. Let
I=N{I, | ke K,}. Then let K’ be y(K,I). Notice that h(K')<U. Let
k' be K',U-close to h, that is, A'(K')<U. Then if ¢’ € I and #’ as above,
B (p(K,I))=U. Hence (h,t) - hoy(-,t) is continuous.

Second we show (g,t) — y(-,t)og is continuous. Let K be compact and
U open in S. Suppose y(g(K),t)= U. By the joint continuity of y and the
compactness of g(K) there exists a finite family (V,,I,) of neighborhoods
of (g(k),t) indexed by K,=K such that g(K)=N{V,|ke K,} and
W ViI)<U. Let I=N{I, | ke Ky} and let U'=U{V, | ke K,}. Then
U’ is open in S and ¢g(K)< U’ so that if ¢’ is K, U’-close to g and t' € I,
y(g9'(K),t')<=U. Hence (g,t) - y(+,t)og is continuous.

The proof of the Lemma follows from the first and second assertions
above.

From the lemma and the definition of @ we see that @ consists of a
sequence of homotopies, g™(-,t)ogog®™(-,t), which carry ™ to A+D ag ¢
goes from n to n+ 1. Thus @: H x[0,0) — H is continuous. It remains
to check that @ is continuous at co. We use the notation [t]=greatest
integer less than f, for te B. Let t®@=a®ogl(-,t) for 0<f<oo and
7@ =identity map of Y. Then ®: Y x[0,00] > ¥ may easily be seen
to be a homotopy. Thus

(hyt) = hot® = homogpl(- t)
is jointly continuous. But
D(h,t) = (- ,t)o(a(hoT®)) .

The joint continuity of @ at oo follows from the joint continuity of ko7
and the fact that ¢¥(-,t) and &« eventually leave every finite set of
coordinates fixed and therefore every open set of Y invariant. Thus if
B o7® lies within some neighborhood, K, U-close to k=®(h, o), for suf-
ficiently large t’, then @i)(,t)a®D leaves h’o7®) within the same K,U-
neighborhood of #. Thus @ may be extended to a map &’ so that
@': H x [0, ] is a homotopy between the identity map on H and the map
b — RO,
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Shrinking H to {e}.
Let H-V=H and define

H®™ = {he H | h(s),,=s for all m<m and all se Y}.

We have just shown that the identity map on HY is homotopic to a
map of HV into H®. In an exactly similar manner the identity map
on H™ is homotopic over H™ to a map of H™ into H®+D, Let such
homotopies

O™ H®™ x [n,m+ 1] - H™

be given. Now forhe H-Y=H and n= —1,0,1,2,. .. define by induction
a jointly continuous map y: H x[—1,00) - H and ™ as follows:

R = |
y(h,t) = OWRHOE),  te[n,n+1],
K@) = (R 5 4 1)

Then for ¢t >n, we have y(H,t)= H™, As a consequence for ¢ sufficiently
large y(H,t) falls within any given neighborhood of e. Thus we may
continuously extend y: Hx[—1,00) -~ H to a map ¢': Hx[—1,00] > H
by defining y'(h,o)=e for all » € H, then ¢’ is the desired contraction
of H to {e}. For convenience we will assume that the above construction
has been normalized to yield a contraction y* such that p*: H x [0,1] - H.

The generalized isotopy theorem.

With p* as constructed above and F' a generalized isotopy as in Theo-
rem 2, we define a map F*: 4 x[0,1]x Y — Y as follows:

F*(a,t,?/) = ‘P*(F(“, ')’t)(y) .

We know that for each a € 4 and t € [0, 1], F*(a,t, -) is a homeomorphism
of Y onto itself. Clearly F*(a,0,:)=F(a,-) and F*(a,1,-)=e(-). Since
the cone over A4 is 4 x[0,1] with the base, 4 x {0}, identified with 4
and the top, 4 x {1}, identified with the summit of the cone, and since F*
restricted to 4 x {1} is constantly the identity map on Y, we know that
F* defines an isotopy extending F' to C(A4) if F'* is continuous.

The construction of y involved steps of several types. The first type
was forming @: H x[0,00) -~ H by joining together overlapping arcs of
the form ¢(-,t)ohog(-,t) where @ is an isotopy. Applying this construc-
tion to the generalized isotopy ¥ we have ¢(F(a,9(y,t)),t) which is a com-
position of continuous functions and thus a continuous function of a, ¢,
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and y. Thus we see that the first step in constructing @ leads to a gen-
eralized isotopy on (4 x [0,00)) x Y.

The second step involves extending @ to H x[0,00). This can be
done continuously in the compact open topology because @(-,t) eventually
leaves every coordinate fixed as ¢ - co. This limiting behavior of @ also
insures that the map given by @'(f(a, -),t)(y) of (4 x[0,00])x ¥ to Y is
continuous.

The third step involves joining together overlapping arcs of maps of
the type constructed in the first two steps. This leads to a continuous
map given by y'(F(a, -),t)(y) of (4x[0,00])x ¥ to Y. This extension is
again continuous because y(F(a,-),t) eventually agrees coordinatewise
with the identity map on Y as ¢ tends to infinity. (In fact, this agreement
is uniform on Y as ¢ tends to infinity.) A normalization to the unit
interval will give y* without affecting continuity. Thus Theorem 2 is
proved.

The notion of an snvertible isotopy has been introduced and found
useful. A generalized invertible isotopy is an isotopy F of A x Z into Z
such that the map F” of 4 x Z into Z is also an isotopy where F'(a,z) =
F(a,-)"Y(z). That is, an isotopy is ¢nvertible if its inverse is also an iso-
topy. It is easily seen that if p is invertibly isotopic to e then the con-
struction of @ may be modified by taking

D(h,t) = @™(-,t)"Tohog")(-,1),

where the ¢ are now invertible isotopies. This will insure that the maps
D, D', y, y' and p* constructed as above are group homomorphisms of H.
This construction will also insure that the corresponding isotopies con-
structed in the proof of Theorem 2 are invertible isotopies. These obser-
vations lead to the following corollaries.

CoroLrARY 1. If p is invertibly isotopic to e then H may be contracted
to {e} over itself by a map v*: H x [0,1] -~ H which is for every t € [0,1] a
group homomorphism.

COROLLARY 2. If p is invertibly isotopic to e, then every invertible gener-
alized isotopy of Y over A may be extended to an invertible generalized iso-
topy of Y over C(A).

David W. Henderson has suggested the following observations which
he has found useful. If X is a topological linear space and all of our
isotopies leave the origin of Y =X fixed, then the isotopy extension
obtained in Corollary 2 will also have this property. The same holds for
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the case of invertible isotopies. He has applied results of this sort to the
theory of microbundles on infinite dimensional manifolds. The general
construction given here should be of use in constructing isotopies with
particular properties to solve specific problems.

Isotopy and arcs in H.

It is well known that H need not be a topological group (see for example
Bourbaki [1, Chapter X, Section 4 and associated exercises]). The opera-
tion of composition on H x H to H is in general continuous only on com-
pacta. A topological space A is a k-space (see Kelley [2, pages 230 and
231]) if continuity on 4 is equivalent to continuity on compacta in 4.
In particular locally compact or first countable spaces are k-spaces. If
Y and H are both k-spaces, then the natural mappings of H x H onto H
and H x Y onto Y which are ordinarily only continuous on compacta
are continuous. In this case the notions of an arc in H and an isotopy
of [0,1]x Y onto Y agree. In this situation the two theorems proved are
equivalent. This equivalence may be proved by using the fact that the
valuation map from Hx Y to Y is continuous on compacta for one
direction. The other direction may be proved by using the converse of
Theorem 3 of Bourbaki [1, Chapter X, Section 4, page 302] plus the
fact that one is dealing with k-spaces.

It should be noted that if X satisfies the hypotheses of our theorems,
then X% does as well, where S is any non-empty set. Thus all of the
theorems could be restated for arbitrary infinite powers S x w of X.
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