ON MODELS WITH UNDEFINABLE ELEMENTS

A. EHRENFEUCHT and G. FUHRKEN

The following problem was posed by C. Ryll-Nardzewski (cf. [3]): Is there a complete theory T formulated in a first order language with only finitely many non-logical symbols and which has the following properties:

- (i) T has a model $\mathfrak A$ every element of which is first order definable in $\mathfrak A$; hence $\mathfrak A$ is a prime model of T.
- (ii) For every set \mathfrak{X} of non-principal (dual) prime ideals of $F_1(T)$ —the Boolean algebra of formulas with v_0 as only free variable taken modulo equivalence in T—there is a model \mathfrak{B} of T (which can be taken to be an elementary extension of \mathfrak{A}) such that the non-principal prime ideals of $F_1(T)$ which are realized in \mathfrak{B} are exactly those in \mathfrak{X} ; furthermore those prime ideals are realized by exactly one element each.

This problem is an extension of an earlier problem which had been solved in [2]. We give a partial answer to the extended problem in the following

Theorem. There is a complete extension T of the first order theory of linear orderings such that: (i) holds; and there is a set $\mathfrak Y$ of non-principal prime ideals of $F_1(T)$, $\mathfrak Y$ being of the power of the continuum, such that (ii) holds for subsets of $\mathfrak Y$.

The theory T will be described as the elementary theory of a particular model $\mathfrak A$ which we are now going to describe. Let Q be the set of rational numbers; $\langle r_n \colon n \in \omega \rangle$ be an enumeration (without repetition) of Q; $\langle t_n \colon n \in \omega \rangle$ a family of positive irrational numbers which are linearly independent over the rationals. For $n \in \omega$ put

$$B_n \, = \, \{r_n - t_n \cdot (i+1)^{-1} \colon i \in \omega \} \; .$$

Note: (i) the sets B_n are pairwise disjoint; (ii) each B_n has order type ω ; (iii) $\sup B_n = r_n$; (iv) for any real numbers x and y, if x < y then there are arbitrarily large $n \in \omega$ such that for some $z \in B_n$, x < z < y.

Put $Q' = Q \times \{0\}$, and for $n \in \omega$, $B_n' = B_n \times \{1, \dots, n+2\}$; finally put

 $A=Q'\cup \bigcup\{B_n'\colon n\in\omega\}$ and $\mathfrak{A}=\langle A,\prec\rangle$, where \prec is the lexicographical ordering. Note:

- (1.1) \mathfrak{A} is a linearly ordered system.
- (1.2) The subsystem of \mathfrak{A} determined by Q' is isomorphic to the ordered system of the rationals.
- (1.3) The sets B_n' are pairwise disjoint.
- (1.4) Each B_n has order type ω .
- (1.5) For each $n \in \omega$, $\sup B_n' = \langle r_n, 0 \rangle$.
- (1.6) For any $x,y \in A$, if x < y and if the interval from x to y is not finite, then there are arbitrarily large n such that for some $z \in B_n'$ x < z < y.

By definition $\mathfrak A$ is a model of T. Hence in order to establish part (i) of the theorem it suffices to show that every element of A is first order definable in $\mathfrak A$. This is seen as follows:

- (2.1) For each $n \in \omega$, the set B_{n} is first order definable in \mathfrak{A} , viz. by the property of belonging to a maximal discrete subset of power n+2.
- (2.2) For each $n \in \omega$, each element of $B_{n'}$ is first order definable in \mathfrak{A} ; this follows from (2.1) and (1.4).
- (2.3) For each $n \in \omega$, $\langle r_n, 0 \rangle$ is first order definable in \mathfrak{A} ; this follows from (2.1) and (1.5).

In order to show part (ii) of the theorem we shall proceed as follows: Let I be a set of irrational numbers. Proceed as in the construction of \mathfrak{A} except for taking $Q' = (Q \cup I) \times \{0\}$. Call the resulting model \mathfrak{B} . We shall show:

- 1° \Re is a model of T.
- 2° For each $i \in I$, the prime ideal defined by $\langle i, 0 \rangle$ in $\mathfrak B$ is non-principal.
- 3° For each $i,j \in I$, if $i \neq j$ then the prime ideals defined by $\langle i,0 \rangle$ and by $\langle j,0 \rangle$ are distinct.
- Part (ii) of the theorem will then be proved by taking I the set of all irrational numbers and Y the set of all non-principal prime ideals realized in the corresponding \mathfrak{B} . Note that these are not all non-principal prime ideals of $F_1(T)$; in fact there are continuum many others. Those have the property that if they are realized in a model, then they are realized by infinitely many elements.

Let us recall Fraı̈sse's relation \equiv_n , $n \in \omega$. Let $\mathfrak A$ and $\mathfrak B$ be as above. For $m \in \omega$, $a \in {}^m A$ and $b \in {}^m B$, put

$$\begin{array}{ll} a \equiv_0 b & \text{iff} & \left\{ \left\langle \left\langle a_i, b_i \right\rangle \colon i \in m \right\rangle \text{ establishes an isomorphism between } \mathfrak{U} \upharpoonright \left\{ a_0, \ldots, a_{m-1} \right\} \text{ and } \mathfrak{B} \upharpoonright \left\{ b_0, \ldots, b_{m-1} \right\}; \\ a \equiv_{n+1} b & \text{iff} & \left\{ \begin{array}{ll} \text{for each } x \in A \text{ there is a } y \in B \text{ such that} \\ a \langle x \rangle \equiv_n b \langle y \rangle \text{ and for each } y \in B \text{ there is a} \\ x \in A \text{ such that } a \langle x \rangle \equiv_n b \langle y \rangle. \end{array} \right. \end{array}$$

The two important properties of this relation which we need are (e.g. see [1]):

- (3.1) If for each $n \in \omega$, $\emptyset \equiv_n \emptyset$, then $\mathfrak{A} \equiv \mathfrak{B}$.
- (3.2) For each formula φ in $F_1(T)$ there is a $n \in \omega$ (which is given by the quantifier depth of φ) such that for any $x, y \in A$, if $\langle x \rangle \equiv_n \langle y \rangle$, then x satisfies φ in $\mathfrak A$ if and only if y satisfies φ in $\mathfrak A$.

For the formulation and proof of the next lemma it is convenient to expand the language of T by the following defined symbols:

- (i) $Sv_0v_1 = v_0 \prec v_1 \land \neg \exists v_2[v_0 \prec v_2 \land v_2 \prec v_1],$
- (ii) $S^n v_0 v_1 = \exists v_2 \dots \exists v_n [Sv_0 v_2 \land Sv_2 v_3 \land \dots \land Sv_n v_1], \quad n = 2, 3, \dots,$
- (iii) $L_n v_0 = \exists v_1 S^n v_1 v_0, \quad n = 1, 2, \dots,$
- (iv) $R_n v_0 = \exists v_1 S^n v_0 v_1, \quad n = 1, 2, \dots,$
- $({\bf v}) \ Dv_0v_1 = v_0 \! \prec \! v_1 {\bf \wedge} R_1v_0 {\bf \wedge} L_1v_1 {\bf \wedge} \forall \ v_2[v_0 \! \prec \! v_2 {\bf \wedge} v_2 \! \prec \! v_1 \to L_1v_2 {\bf \wedge} R_1v_2] \ .$

(The intuitive meaning of the latter is that the interval from v_0 to v_1 is discrete; in $\mathfrak A$ or $\mathfrak B$ this implies that the interval is finite.) For $k \in \omega$, put $\mathfrak A_k = (A, S_i^{\mathfrak A}, L_i^{\mathfrak A}, R_i^{\mathfrak A})_{i \in k}$ and define $\mathfrak B_k$ similarly.

LEMMA. Let $n, m \in \omega$, $a \in {}^{m}A$, $b \in {}^{m}B$, $k = 3^{n}$. Assume

- (i) $\{\langle a_i, b_i \rangle : i \in \omega\}$ establishes an isomorphism between $A_k \upharpoonright \{a_0, \ldots, a_{m-1}\}$ and $B_k \upharpoonright \{b_0, \ldots, b_{m-1}\}$; say, the a_i 's are in increasing order.
- (ii) For each $z \in B_0' \cup \ldots \cup B_{k-1}'$ the following conditions hold: (a) if $z \leq a_0$ or $z \leq b_0$, then $a_0 = b_0$; (b) if $a_{m-1} \leq z$ or $b_{m-1} \leq z$, then $a_{m-1} = b_{m-1}$; (c) if, for $i = 0, \ldots, m-2$, $a_i \leq z \leq a_{i+1}$ or $b_i \leq z \leq b_{i+1}$, then $a_i = b_i$ and $a_{i+1} = b_{i+1}$.

Under these conditions $a \equiv_n b$.

The proof is by induction on n. We shall only treat a typical case. Assume the lemma holds for n (and all m). Given a and b satisfying conditions (i) and (ii) with $k=3^{n+1}$ and $x\in A$ with $a_i < x < a_{i+1}$. (Other cases are: $x < a_0$; $a_{m-1} < x$; $x=a_i$; and the cases with the roles of x and y interchanged.) We shall find a $y \in B$ such that $a\langle x \rangle$ and $b\langle y \rangle$ satisfy conditions (i) and (ii) with $k=3^n$. There are various possibilities:

(I) $x \in B_p'$, for some p < k, or more generally, $a_i = b_i$ and $a_{i+1} = b_{i+1}$. In this case take y = x.

- (II) $x \in B_p'$, for some $p \ge k$. Again various possibilities have to be distinguished:
- (IIa) $\langle a_i, x \rangle \in D^{\mathfrak{A}}$. If there are at most 3^n elements between a_i and x, say h of them, take as y the (h+1)st element to the right of b_i ; if there are more than 3^n elements between a_i and x take as y the 3^n th element to the right of b_i .
- (IIb) $\langle x, a_{i+1} \rangle \in D^{\mathfrak{A}}$ and the previous case does not apply. Proceed similarly.
- (IIe) Neither (IIa) nor (IIb) holds though (II) holds. Let x be the hth term of its discrete component. If $h \leq 3^n$ take as y the hth term of a discrete component between b_i and b_{i+1} , using (1.6); if $p-h \leq 3^n$ proceed similarly; in the remaining case take as y the [p/2]th term of a discrete component between b_i and b_{i+1} , again using (1.6).
- (III) $x \in Q'$. Take as y any element between b_i and b_{i+1} belonging to the Q' (of \mathfrak{B}).

COROLLARY. (i) $\mathfrak{A} \equiv \mathfrak{B}$, hence \mathfrak{B} is a model of T.

(ii) Let $y \in B$, $y = \langle i, 0 \rangle$, where $i \in I$. Then the prime ideal of $F_1(T)$ which is defined by y in \mathfrak{B} is non-principal.

PROOF. Part (i) follows from the lemma and (3.1). For part (ii), let φ be an element of $F_1(T)$ satisfied by y in \mathfrak{B} . Let n be the number obtained for φ from (3.2). Put $k=3^n$ and let $x\in Q'$ such that for no $z\in B_0'\cup\ldots\cup B'_{k-1}$, z is between x and y. Let χ be a formula with a single free variable which defines according to (2.3) x in \mathfrak{A} and hence in \mathfrak{B} . Then by the lemma and (3.2) y satisfies $\varphi \wedge \neg \chi$ in \mathfrak{B} while $\varphi \wedge \neg \chi$ is not equivalent in T with φ .

Finally let $i,j \in I$ and $i \neq j$, say i < j. Let $r \in Q$ with i < r < j. By (2.3), $\langle r, 0 \rangle$ is definable in $\mathfrak A$ and hence in $\mathfrak B$, say by the formula χ . Then $\langle i, 0 \rangle$ satisfies $\exists v_1[v_0 < v_1 \land \chi(v_1)]$ in $\mathfrak B$ while $\langle j, 0 \rangle$ does not. Hence the prime ideal defined by those elements are distinct.

This concludes the proof of the theorem. We may remark that every element of B is definable in B by formulas of $L_{\omega_1\omega}$.

LITERATURE

- A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math. 43 (1960), 129-141.
- G. Fuhrken, A model with exactly one undefinable element, Colloq. Math. 19 (1968), 183-185.
- Autoreferat von [2], Zbl. Math. 176 (1969), 275.

UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, U. S. A. UNIVERSITY OF MINNESOTA, MINNEAPOLIS, U. S. A.