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ON MODELS WITH UNDEFINABLE ELEMENTS

A. EHRENFEUCHT and G. FUHRKEN

The following problem was posed by C. Ryll-Nardzewski (cf. [3]):
Is there a complete theory 7' formulated in a first order language with
only finitely many non-logical symbols and which has the following prop-
erties:

(i) 7" has a model U every element of which is first order definable
in UA; hence A is a prime model of 7.

(ii) For every set X of non-principal (dual) prime ideals of F,(7') —
the Boolean algebra of formulas with v, as only free variable taken
modulo equivalence in 7' — there is a model B of 7' (which can be taken
to be an elementary extension of %) such that the non-principal prime
ideals of F';(T') which are realized in B are exactly those in X; further-
more those prime ideals are realized by exactly one element each.

This problem is an extension of an earlier problem which had been
solved in [2]. We give a partial answer to the extended problem in the
following

THEOREM. There is a complete extension T of the first order theory of
linear orderings such that: (i) holds; and there is a set ) of non-principal
prime ideals of F,(T'), Y being of the power of the continuum, such that (ii)
holds for subsets of 9).

The theory T will be described as the elementary theory of a partic-
ular model 9 which we are now going to describe. Let @ be the set of
rational numbers; {(r,:n € w) be an enumeration (without repetition)
of @; {¢,:new) a family of positive irrational numbers which are
linearly independent over the rationals. For n € w put

B, = {r,—t,-(t+1)1:icw}.

Note: (i) the sets B,, are pairwise disjoint; (ii) each B, has order type
w; (iii) sup B,,=r,; (iv) for any real numbers « and y, if <y then there
are arbitrarily large n € w such that for some 2€ B,, r<z<y.

Put Q' =@ x {0}, and for new, B,’=B,x{1,...,n+2}; finally put
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A=Q uU{B, :new} and A={4, <), where < is the lexicographical
ordering. Note:

(1.1) A is a linearly ordered system.

(1.2) The subsystem of % determined by @’ is isomorphic to the ordered
system of the rationals.

(1.3) The sets B, are pairwise disjoint.

(1.4) Each B,’ has order type w.

(1.5) For each n € w, supB,’=(r,,0).

(1.6) For any x,y € A4, if <y and if the interval from z to y is not
finite, then there are arbitrarily large n such that for some z € B,’
r<z<<y.

By definition U is a model of 7'. Hence in order to establish part (i)
of the theorem it suffices to show that every element of A is first order
definable in Y. This is seen as follows:

(2.1) For each n € w, the set B,’ is first order definable in ¥, viz. by
the property of belonging to a maximal discrete subset of power
n+ 2.

(2.2) For each »n € w, each element of B,’ is first order definable in A ;
this follows from (2.1) and (1.4).

(2.3) For each n € w, {r,,0) is first order definable in 9; this follows
from (2.1) and (1.5).

In order to show part (ii) of the theorem we shall proceed as follows:
Let I be a set of irrational numbers. Proceed as in the construction of
A except for taking @' =(QuI)x {0}. Call the resulting model B. We
shall show:

1° B is a model of T'.

2° For each 7 € I, the prime ideal defined by <7,0) in 8 is non-prin-
cipal.

3° For each ¢,jel, if i+j then the prime ideals defined by (¢,0) and
by {j,0) are distinct.

Part (ii) of the theorem will then be proved by taking I the set of all
irrational numbers and Y the set of all non-principal prime ideals rea-
lized in the corresponding B. Note that these are not all non-principal
prime ideals of F',(7T'); in fact there are continuum many others. Those
have the property that if they are realized in a model, then they are
realized by infinitely many elements.

Let us recall Fraissé’s relation =,, n € w. Let A and B be as above.
For m € w, a e ™4 and b e ™B, put
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0= it {Ca;,b;): © € m} establishes an isomorphism be-
- tween A May,. .., ¢, 1} and B by,. . .,b,_1};
for each x € 4 there is a ye€ B such that

alxy=,b{y) and for each ye B there is a
x € 4 such that a{x)=,b{(y).

a =p41 b i.ff

The two important properties of this relation which we need are (e.g.
see [1]):

(3.1) If for each n € w, J=,0, then A=\.

(3.2) For each formula ¢ in F,(T) there is a n € w (which is given by
the quantifier depth of @) such that for any z,y € A4, if (z)=,{y),
then x satisfies ¢ in 9 if and only if y satisfies ¢ in UA.

For the formulation and proof of the next lemma it is convenient to
expand the language of 7' by the following defined symbols:

(i) Svgvy =1, <A =3 v5[0g < VA0, <7y],
(ii) Smvgvy=3v,...39,[SvweASvevsA ... ASv,v], n=2,3,..
(iii) L,wo=3v,8™v,, n=1,2,...,
(iv) Rvy=3v,8™4w,, n=12,...,
(V) Dvgoy=vy<v;A R0y AL1v1 AV 0,[0<03A0, <0y > Lywp AR 0,] .

)

(The intuitive meaning of the latter is that the interval from v, to v,
is discrete; in A or B this implies that the interval is finite.) For k € w,
put A= (4,8, LY R¥),, and define B, similarly.

LEMMA. Let n,mew, ac™A, be™B, k=3" Assume

(i) {<a;;b;): 1 € w} establishes an isomorphism between Ay 1{ay,.. ., 0y, 1}
and By Mby,. . .,b,_1}; say, the a;'s are in increasing order.

(ii) For each z€ By'U...UB,_, the following conditions hold: (a) if
z=ay or 2Xby, then ay=>by; (b) if a,,_, =z or b,,_, =<z, then a,_,=b,_,;
(e) if, for i=0,...,m—2, a;82=La;,, or b;X2Xb;,,, then a;=b; and
Qiy1=bg1.

Under these conditions a=,b.

The proof is by induction on n. We shall only treat a typical case.
Assume the lemma holds for n (and all m). Given a and b satisfying
conditions (i) and (i) with k=3"+! and z € A with a;<x<a;,;. (Other
cases are: £<dy; @, <%; £=a,; and the cases with the roles of x and y
interchanged.) We shall find a y € B such that a{x) and b{y) satisfy
conditions (i) and (ii) with k=3". There are various possibilities:

(I) x e B,', for some p<k, or more generally, a;=b; and a;,;=>b;,;.
In this case take y==.
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(II) € B,’, for some p=k. Again various possibilities have to be
distinguished :

(ITa) <a;,x) € D¥. If there are at most 3" elements between a; and
z, say h of them, take as y the (k+ 1)st element to the right of b,; if there
are more than 3" elements between a; and « take as y the 3"th element
to the right of b,.

(IIb) (x,a;,,> € D* and the previous case does not apply. Proceed
similarly.

(IIc) Neither (ITa) nor (IIb) holds though (II) holds. Let = be the Ath
term of its discrete component. If A<3" take as y the hth term of a
discrete component between b; and b, ,,, using (1.6); if p—h =<3 proceed
similarly; in the remaining case take as y the [p/2]th term of a discrete
component between b; and b,,,, again using (1.6).

(ITI) x € @'. Take as y any element between b, and b1+1 belonging to
the @’ (of B).

COROLLARY. (i) A=Y, hence B is a model of T'.
(ii) Let y € B, y=3,0), where i € I. Then the prime ideal of F(T)
which is defined by y in B is non-principal.

Proor. Part (i) follows from the lemma and (3.1). For part (ii), let ¢
be an element of F,(7) satisfied by y in 8. Let n be the number obtained
for ¢ from (3.2). Put k=3" and let x € @' such that fornoze By’u...u
B;_,, 2 is between x and y. Let y be a formula with a single free variable
which defines according to (2.3) # in U and hence in 8. Then by the
lemma and (3.2) y satisfies pA—y in B while pa—y is not equivalent
in T with ¢.

Finally let 4,jel and i%j, say i<j. Let re @ with t<r<j. By

3), {r,0) is definable in A and hence in B, say by the formula y.
Then (%,0) satisfies v, [vy<v,Ax(v,)] in B while {j,0) does not. Hence
the prime ideal defined by those elements are distinct.

This concludes the proof of the theorem. We may remark that every
element of B is definable in B by formulas of L, |,
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