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PONTRYAGIN’S MAXIMUM PRINCIPLE AND
A MINIMAX PROBLEM

GUNNAR ARONSSON

1. Introduction.

The main purpose of this paper is to derive a counterpart of the
Pontryagin maximum principle, valid for certain minimax problems.
Our problem is to minimize the functional

H(x) = sup,F(t,x,dx/dt)

under given boundary conditions. The admissible functions are abso-
lutely continuous vector functions. Such problems have been treated by
D. S. Carter and the author. Carter [4] has given a thorough treatment
of the case

F = || A(t)(dx/dt + B(t)x +c(t))|l ,

where A(t) and B(¢) are matrix functions and c(¢) is a vector function.
The author has treated the case z a scalar for fairly general nonlinear
functions F, (cf. [1], [2], [3]).

We first state a partial result as a theorem, and in proving it we will
derive our version of the maximum principle, which is given in Theorem
2. The principle is applicable only to minimizing functions which satisfy
a certain condition, and this fact is illustrated by an example. After
the maximum principle, we prove a theorem which shows a connection
with the papers [1], [2], [3]. Finally, we derive a theorem about exis-
tence of solutions of the minimax problem.

2. Statement of the problem and Theorem 1.

Let us state the problem in detail. By D we denote a region in R"+,
and points in D are written (f,x), where x has n components. By (T, X,)
and (7,,X,) we denote two points in D with T\<T,. The class & of
admissible functions consists of all vector functions x=x(f) with graph
in D, defined for 7',<t<T,, absolutely continuous there and satisfying

For z(t) e #, we define the functional H(x) by
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H(z) = sup, g F(t,2(t),dx(t)/dt) .

Here, F(t,z,z) is a given function of (2n+ 1) variables, defined on D x R®,
and E is the subset of [T, T;] where z(t)(=dx/dt) exists. Sometimes,
it is convenient to consider the functional

esssup, .z F(t, (t), dx(t)/dt)

and it will be proved in a lemma that esssup, g F(-,*,*)=sup;.z F(-,",*)
for any x(t) e # among those functions F' which we are interested in,
i.e. satisfying conditions 1)-3) below.

Further, we write My=inf, ,H(x) and it will be seen below that
M,> —oco. We impose the following conditions on F(t,z,z):

1) F(t,x,z) € CY(D x Rn)

2) For any fixed (t,x) € D, the function u(z)=F(t,x,z) is strictly
convex in z. Further, there exists a mapping w:D — R” such that
F(t,z,w(t, ) =min, g F(t,,2) for all (f,x) € D. Also, w € C1(D).

3) limy , F(¢,2,2) = + oo, uniformly if (¢,x) is restricted to a com-
pact subset of D. (Compare the end of section 6.)

It is clear that H(x)2max {F(Ty,X,,o(Ty,X,)),F(Ty, X, (T, X,))}
for any admissible x, which shows that M;> — cc.

" THEOREM 1. Suppose that Z(t) is a solution of the minimization prob-
lem, and that F satisfies the conditions 1), 2) and 3) above. Suppose fur-
ther that F(8,%(t), o(t,%(t))) < M, for To<t<T,. Then

zy(t) € O T, T4]
and F(t,%(t),dZ,(t)]dt) = My for Ty<t<T,.

3. Proof of Theorem 1.

The proof consists of three parts:

1) The identification of a class of admissible functions (lying in a
neighbourhood of Z,(t)) with a class of solutions of a certain control
system dx/dt=f(t,x,u(t)), where u(t) is a measurable control vector rang-
ing over a fixed control region U <R™.

2) The development of a variational method suited for our problem.
This particular method is often used in proving the Pontryagin maxi-
mum principle, like for instance in [8, pp. 75-108], and [7, pp. 246-256].
It is based on so-called ‘“‘needle-shaped” variations of the control func-
tion u(t).

3) The variational method is applied to the minimizing function
Z,o(t). It turns out that, unless Z,(t) satisfies the maximum principle, it
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is possible to construct a ‘“better’’ admissible function Z,, i.e. satisfying
H(z,) < M,, which is clearly impossible.

1) Construction of the control system.

Since F(t,x,w(t,x)) <M, along the curve Z,(!), we may introduce a
region D, <D, containing the curve x=7%(t), Ty<t<T,, and such that

F(t,z,0(t,2)) < My on D.
Further, for (t,x) € D, we put
O(t,x) = {zeRn | F(t,z,2) < M} .

Thus C(t,z) is a closed, convex set in R™ and w(f,x) is an interior point
of C(¢,z). The closed unit sphere U in R™ will serve as the control region.
Finally, we put 2,=D;x U and

Q, = {(t,x,2) | (t,x)eDy; zeC(t,x)}.

Hence 2, and 2, are subsets of R2*+! and we will now construct a topo-
logical mapping between these sets.

First, we define the mapping f: 2, - R®. We define f(t,z,0) = w(t,z).
Consider then (¢,x,4) where u=+0. There is a unique « > 0 such that

F(t,2,0(,2) + ocuflul) = M, .

This is clear from our assumptions 2) and 3) regarding F, and from the
fact that F(¢,x,w(t,2)) <M,. We put

f(t,z,u) = o(t,x)+ou .

Geometrically, this means that for fixed (¢,x), each radius in the sphere
U is mapped on a parallel “radius” in C(f,x) through w(f,x) such that
the endpoint where |ju||=1 is mapped on the endpoint z € dC(t,x) (where
F(t,z,z)=M,), and the origin is mapped on w(f,x). Further, the corre-
spondence within each pair of “radii”’ is linear.

Clearly, for fixed (f,x), this gives a one-to-one mapping of U onto
C(t,x). Therefore, if we define

O(t,z,u) = (t9x:f(t:x,u)) ’

then @ gives a one-to-one mapping of 2, onto 2,. Next we have to
show that f(f,z,u) and all derivatives of;(¢,x,u)/0x; are continuous for
(t,z,u) € 2,. We start with f and let (¢,,x,,u,) = (£, 2, %)-

A) uy=0. Since w is continuous and f(t,2,0) = w(t,x), we may assume
that u,+0 for n=1,2,3,.... We have
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”f(tn’xn’un) —f(to:xos 0)” |w(tn’xn) + KUy — w(to,xo)“

= |
-S-' “w(tn’xn) - w(tmwo)” + “n”'u’n” ’
where

F(tm Ty, w(t'm xn) + O‘nu‘n/“u’n“) = Mo *

Now the sequence {(t,,,)}7 belongs to some compact subset of D and
it follows from condition 3) on F that «, <K <oo. Thus f(t,,z,,u,) ~
(b9, %, 0).

B) uy+0. We must study more closely the quantity « as a function
of (t,z,u). We have

Ft,2,0t,z)+ouflu]) = M,.
Put
G(t,x,u,0) = F(t, 2, 0(t,2) + ocu/|u|) — M, .

Clearly, G, G,, @,, G, all exist and are continuous functions of
(t,z,u,x) provided that (f,) € D; and O+« € R* (no condition on «).
The restriction ||u||<1 can be left aside here. Further,

oG I oF u
—= — (¢ t d
= 3 5 b reullul) o

= (grad, F(t,2, o(t,2) + ocw/|[ull), uf|lu]) ,

and it follows from condition 2) on F that 0G/ox >0 for «>0. Hence
the relation G(---)=0 will define « implicitly as a function &= u(t,z,u)
in a neighbourhood V of (t,,%,,u,), and u € CY(V). It follows that

ft,x,u) = ot,x)+pt,z,u)u € CY(V).

We have proved that f(f,z,u) is continuous for (¢,x) € D, and, in fact,
any « € R®. We must also consider of,/ox,(t,x,u). We have

afi(t: x, O)/axk = awi(t’x)/axk
and
of (t,2,u)[0x;, = Owy(t,x)[0x; + u; Ou(t, x, u)[0x;

for u+0. In order to show that of;/dx, is continuous, we need only
prove continuity at a point (¢,,x,,0), since w and u belong to C1, as is
seen above. Now, in order to prove that 9f;/0x, is continuous at (£y,2,,0),
it is clearly sufficient to verify that ou/ox, is bounded for

(¢, 2, %) — (b, %, 0)I| < 6, wu=+0.
We have
ou G (b2, u, u(t, 2, u))

ox;, Q (%, u,u(t, x,u)) )
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Consider a sequence (¢,,x,,%,) — (t,%y,0) such that «,+0 for all =.
We have seen above that u,=u(t,,2,,%,) forms a bounded sequence.
Further,

¢ o (bo o a) = af (b0t s ) +

ow;(t,x)
0%y,

n oF
+El é—z—‘ (t z,0(t,x) + ul,z,u) m ||>
and

0G(t,x,u,u(t,x,u)) -
- (gradF(txw(t )+l o ||) M>'

Now, since F,w € (%, all partial derivatives F,, and F,, as well as (w;),,
are bounded on compact sets. Moreover, (,,2,) > (t,%,) € Dl, and
(w(tn, 2p) + Uy fl2,]]) is & bounded quantity. Therefore Goy(tns @y, . ) 18
clearly bounded. It remains to show that

(grad, F(ty, @p, (tn, @) + pin U I10ll), waflnll) > & > 0.

If this is not true, there must be a subsequence for which

(gra'sz(tn’xn" R un/”un“) -0.
Further, we may select subsequences for which
Mo > o Z 0 and un/“un” Uy *+ 0.

We may assume that all this holds even without selection. It then fol-
lows from continuity that

F(ty, 9, w(to, ) + prothy) = M

This means that u,>0 (remember that (ty,2,) € D;). From continuity
we also get

(gra'sz(tmxo’w(to,“’o)+/«¢ouo)» up) = 0.

But since py>0 and w,+ 0 this certainly contradicts the assumption 2)
concerning F(¢,,z).

We have thus proved that f and all derivatives of,/ox, are continuous
functions of (f,z,u) in ,. We also know that @(t,z,u)=(t,x,f(¢,x,u))
gives a one-to-one mapping of 2, onto £2,. Hence, there is an inverse
mapping &-1: 2, - 2,, and it follows from a simple selection argument
using the continuity of @ and the compactness of U that @-! is continu-
ous.
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Now consider an absolutely continuous vector function z(¢), defined
for ty’ =t =t,", with graph in D; and such that

sup, F(t,z(t), 2(t)) < M,.
We may then define u(t) by
D¢, 2(t), %(t)) = (t,2(t), u(t))

whenever z(t) exists, that is, a.e. Since @1 is continuous, it is clear that
the vector function wu(t) is Lebesgue measurable. Further, we have
&(t)=f(t,(t),u(t)) a.e., and u(t) e U. :

Conversely, if (¢,2') € D, and u(t) is defined in a neighbourhood of
t=t', measurable and with values in U, then the vector differential
equation dx/dt=f(¢,x,u(t)) under the initial condition z(#')=2' has a
unique absolutely continuous solution z,(t) in a neighbourhood of t=t¢'.
(See [8, p. 78] or [10, pp. 291 and 298]. Here, the continuity of f(¢,x,u)
and (9f;/ox,)(t,x,u) is used). Also,

F(t,x,(t),2,(t)) < M, ae.,
and according to our lemma this means that
sup, F(t,2,(t),%,(t) £ M, .

We may thus identify an absolutely continuous vector function z(f) in
D, satisfying F(¢,x(t),2(t)) < M,, with the solution of the control system
dx/dt=f(t,x,u(t)), for some measurable control function u(f). Further,
any minimizing function for the minimax problem with graph in D,
corresponds to a measurable control function u(t) with values in U and
defined a.e. on [T, 7,]. In the opposite direction, however, an arbitrary
measurable control «(t) with values in U and defined a.e. on [7,,T,]
need mot correspond to a minimizing function, since it need not steer
the system #=f(¢,z,u(t)) from the left endpoint (T, X,) to the right
endpoint (7'y,X,;). This difficulty, caused by the boundary conditions,
will be taken care of by the variational method.

2) The variational method.

We shall use the technique developed in [8, chap. 2], and simplified
in [7, chap. 4]. It is based on “needle-shaped” variations of the control u.
We will follow the presentation in [7, pp. 247-251] (also most of the
notations agree). We found above that f(¢,x,u) and (9f;/0x;)(f,x,u) are
continuous, and this agrees with the assumptions in [7]. There is one
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difference: our system is not autonomous, but this has no importance
here.

Let Z(t) be a trajectory and #(f) the corresponding control function
over the interval T, <t <7T',. We consider an ‘‘elementary perturbation”
of u(t) at some time £, and estimate the change in Z(t), thus defining the
“tangent vector” v, (¢,) at Z({;). We define the “tangent perturbation
cone”’ K, and we consider finite combinations of elementary perturba-
tions. The results in [7, pp. 248-250] are carried over with trivial changes.

3) Variation of the minimizing function Zy(t).

Let Zy(¢) be the minimizing function in our theorem. We apply our
variation method to Z,(!) over the interval T <t=<T,, and we consider
the tangent perturbation cone K, . If K is not the whole tangent
space at Zy(T,), then K, is contained in a halfspace bounded by a
hyperplane through the origin. (See [10, p. 319, Lemma 39 C.1]). We
want to show that K is contained in a halfspace. Suppose then that
K, is the whole tangent space at Zy (7). It is then possible to choose

perturbation vectors wvg,v,,...,v, corresponding to data complexes
Ty - - 7, , SUch that:

a) (vg,vs,...,Y,) is an n-simplex

b) 0 is an interior point of the convex hull of the points v,...,v,

¢) the corresponding perturbation times are all distinct.
This is seen by arguing in the same way as in [7, Lemma 1 on p. 251].
Let G be the closed convex hull of the points v,,v,,...,v,. Then any
point z € @ is described by its barycentric coordinates

n
Hosfyse « o sfn T =_Z MiVs.

1=0
Also, these coordinates are continuous functions of x,u;=pu,(x).
Each perturbation vector v; corresponds to a data complex

T, = (tl,‘i" . .,ts",t; ll,'i" . "ls",'i; (IR ’uSi,i) .
Let Ag,. . .,4, be non-negative numbers such that 34;=1. Consider the
“composite data complex” m=(1y7g,A;7;,. . .,A,7,), Where multiplying

7; by A, just means that the numbers [, ; are multiplied by 2,. It is fairly
evident what is meant by the perturbation (w,¢). Now, for ¢>0 small
enough, we have “the basic perturbation formula” (see [7, p. 250]):

B (Tye) = Bo(Ty) +e éoaivimwo(e) :

where lim,_, ,,[0(¢)/e] =0 uniformly in 2, (as long as 0<2;<1). Note also
that the data complexes z; and the vectors v, are fixed all the time.
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For x € G, we form the composite data complex

7 = {po() 79, s (T) 701, . . ., () 0} = 7()
and we consider the mapping
p(x,€) = e (T(T1,€) —Zo(Th)) -
It follows from the perturbation formula that
n
9(z,6) = 3 @)y + e ole) = z+etole) .
i=0

Clearly, for fixed ¢>0, ¢(z,¢) is a continuous mapping from G to R™.

Hurther lim, , o(¢(2,¢) ~2) =0

uniformly for x € G. (Note that 0= py,(x)<1, for k=0,1,...,n, as re-
quired for uniformity.) Put d=min,,q||.
We can then fix & > 0 such that

llp(x,e;)—x|| < 40 for z €@ .

We shall now perform a final perturbation of the control functions.
Let u,(t) be the control, obtained from the unperturbed control (t)
by perturbing according to z(x) and &,. Put

dE,z(t) = Eun(m)(t) ’

where £ is a parameter, and 0 <&< 1. It is seen from standard estimates
that

lim, ;o [@(T'1, T, 5) — 2Ty Uie)l| = O
uniformly for x € @. Put
p(@,8) = &M (F(T'0, Ty, ) — Zo(T)) -
lim, ;o llp(@,&) —p(x,&)| = 0,
uniformly for x € @. Choose &,, 0< &, <1, such that

Thus

lhp(, &) — @z, &)|| < 36  for x e G .

Then y(z,£,) is a continuous mapping from @ to R* and if z € 0G, then

llw(e, &) —2ll < $6 = %l .

Further, 0 is an interior point of G. Then degree(y(-,¢;),d,0)= +1,
which implies that there is a point z* € G such that y(z*,£,)=0. (See
[6, p. 32].) To see that degree(y(-,&;),d,0)= +1, one may argue as fol-
lows: perform a homotopy of the mapping y(x) =y(x,&,) into the identity
mapping I in such a way that the image of 2 moves along the straight
segment from y(x) to x. For x € 0G we have
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=l >0 and |lp(@)—=z| = gl .

This implies that a point on 9@ is not mapped on the origin during the
homotopy, and so

degree (y(-,&,),d,0)=degree(l,G,0) = +1

(cf. [8]). Thus Z(T', &1 ;) =Fo(T;), and this means that the trajectory
T, &1 Upnew) 18 admissible for our minimax problem. Further,

esssupt||51un(x*)(t)“ §<1.

It follows from this, and from the way we constructed the mapping
between 2, and £, (in part 1 of the proof) that H(Z(t,&1u,,w)) < M.
But this contradlcts the definition of M,, and the contradiction shows
that K, is not the whole tangent space at Zy(T,).

As we have mentioned before, this means that K, is contained in a
half-space.

Let this halfspace be bounded by the hyperplane y-N=0 and let
yN<0 for ye Ky, . Let %y(t) be the control function corresponding to
Zy(t). Consider the differential system (A) which is the adjoint of the
variational system:

dy of _
(A) d_ti = _,El axk (t,Zo(t), To(1)) Ypy = 1,2,...,m
Let y(¢) be the solution of this system which takes the value N for ¢t=1T

Now it follows in the usual way (see [7, the proof of Theorem 3, pp.
254-255]) that

(*) Zv 1'/).(t)f (t xo(t uo(t)) = ma'xueU{zv—ﬂPv )f(t"?o(t):u)}

for almost all ¢ € [T, T,], namely on the Lebesgue set for f(¢,Z(t),%,(t)).
Consider the problem of finding max{(y,f) | feC(¢,x)}, where (¢,x) is
any point in D,, and y a non-zero vector in R”. It follows from conditions
2) and 3) on F that C(t,x) is a compact and strictly convex set in R™.
Therefore the scalar product (y,f) takes its maximum at some well-
defined point
f = w(t,x,yp) € 0C(,x) .

Thus, the relation (*) implies that
dz,[dt = w(t, Ty(t),p(t)) a.e. on [Ty, T].

To be able to conclude that Z,(t) € C!, we must verify that w(f,x,y) is a
continuous function of (¢,z,v), provided that (t,z) € D, and p=+0. Sup-
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pose that (¢,,2,,v,) > (f, %y, ¥,). The sequence w(t,,x,,y,), n=1,2,3,...,
is certainly bounded and we may assume that it is convergent:

w(tn’xn"'/’n) = Wy, > W .

It suffices to prove that wy,=w(ty, o, p,). Let z € R® and F(ty,xy,2) < M,.
Then F(t,,x,,2z)<M, for n=n,, and thus zeC(,,x,). From the
definition of w, we find (z,y,) < (w,,y,) for n>n,. A passage to the
limit gives (2,v) < (Wo,9,). Owing to the convexity of u(y)=F(ty,2o,¥),
C(ty,x,) is the closure of

{z | zeR™, F(ty,xg,2) <My}

and thus (y,y,) < (wy, y,) for any y € C(ty,x,). Further, F(t,,z,,w,)=M,
for n=1,2,3,..., which gives F(t,,xy,w,)=DM,, that is, w,e C(ty,x,)-
Consequently, wy=w(ty, %y, v,), and w(t,x,y) is shown to be continuous.
(Ct. [6, pp. 411-413].)

Now dux,(t)/dt =w(t,Z(t),p(t)) a.e., and the right member is continuous.
Since Z,(t) is absolutely continuous, we have dx,(t)/dt=w(:,-,*) for all
t e [T,,T,]. It follows that Zy(t) € C'[T,, T,] and that F(t,7Z(t),dZ,(t)/dt) =
M, on the same interval. This completes the proof of Theorem 1.

It is clear that we have proved much more than stated in that theo-
rem. For this reason, and also in order to bring out the similarity with
the Pontryagin principle, we collect the results below.

THEOREM 2. THE MAXIMUM PRINCIPLE. Let the assumptions in Theo-
rem 1 be satisfied. Then there exists a monzero vector fumction

W(t) = (V"l(t)" . "Pn(t))

which 18 absolutely continuous over the interval Ty<t=<T, such that:

d "

@) v;t“) --3 5%(: Zolt), Tolt))pilt)  ave. for i=1.2,
=1

(b) df;’t(t) = w(t,Z(),p(t)) for To <t = Ty.

Here, w(t,x,y) is the (uniquely determined) vector z in C(t,x) which mawi-
mizes (z,y). Further, w(t,x,p) ts a continuous function of (t,x,y) for
(t,x) € Dy and p 0.

We also have
— w t,.’-l—? (t)’ (t) —w t’i (t)
uo(t) = ( 0 Y ) ( 0 )

[l (2, Zo(£), () — c(t, Zo(t))ll

which shows that @y(t) is a.e. equal to a continuous functions. Thus, after
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adjusting wy(t) on a set of measure zero, the relation under (a) holds for
Ty<t=T,. We find that both T,(t) and y(t) belong to C[T,,T,]. Here,
Uo(t) vs the comtrol which corresponds to Z(t).

RemARK. The condition F(t,Zy(t),w(...)) <M, cannot be omitted, as
is shown by the following simple example:
Choose n=1 and

F(t,z,x) = 1—824 (x)?,

To=-1, Ty=1, X;=X,=0. It is obvious that M,=1. In this case,
an admissible function is minimizing if and only if

1—-2+(2)2 £ 1 ae.,

that is, |#] < |¢| a.e. Thus, the assertions of the theorem need not hold here.

4. A lemma on the definition of H(x).

We have defined the functional H(z) as sup,. 5 F(t,(t),%(t)) and here E
is the set where z(t) exists. In part 1) of the proof of Theorem 1 we
found that

esssup F(t,z,,z,) £ M,

and we wished to conclude that H(xz,) < M,. Also, one might ask whether
or not K is to include endpoints of the interval if the corresponding
onesided derivatives exist. These questions are answered by the follow-
ing result.

LemMA. Let F(t,x,2) satisfy conditions 1, 2 and 3 (listed just before
Theorem 1), and let x(t) be absolutely continuous on an interval I. Denote
by E the subset of I where %(t) exists, including endpoints of I if the ap-
propriate one-sided derivatives exist. Then

sup g F(t,2(t), %(t)) = esssup, g F(¢,2(t),%(t))

(¢n the sense that if one member is finite, then so is the other and they are
equal).

Proor. Let ¢’ € E, and put M =F(t',2(t'),%(t')). Suppose that there are
positive numbers 7 and ¢ such that
F(t,z(t),%(t)) £ M—n

for almost all ¢t e[t',t'+6]. Let E; be the subset of [t',{’+J] where
F(t,x(t),#(t) <M —n. It is clear from condition 3) on F that

Math. Scand. — 5
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8Up; g, [Z(¢)]| < co. By uniform continuity of F we are thus allowed to
assume that
F(¢',x(t'),2(t)) £ M—34n for te E,

(possibly after decreasing ). Hence z(t) € C(t',z(t'), M — }n) for te E,
(here, C(¢,...) is defined in analogy with C(¢,z) in the proof of Theorem
1). Now C(¢,x(t'), M — }n) is convex and closed. It follows by consider-
ing the supporting planes that each difference quotient

t'+e

eYa(t' +&)—a(t') = et f () dt

H
(for £ = 6) belongs to C(t',...) and also that the same holds for any limit
of such quotients. We find that

a(t') e O(t',x(t'), M —4n) .

But this contradicts that, by definition, M =F(¢',2(t'),%(t')). This
proves the lemma.

ReMARK. We found above that z € C(t',z(t'), M — 4n) where z is any
limit of difference quotients e~Y(x(t'+e)—x(t')) for ¢ > +0. It is thus
clear that we have

sup,(sup {F(t,x(t),2) | z€ D(t)}) = esssup, g F(t,x(t), 2(t)) ,

where D(t) denotes the set of derived vectors at ¢, that is, the set of all
limits of difference quotients ¢1(x(t + &) —x(f)) for & — 0.

5. A connection with absolutely minimizing functions. An existence
theorem.

The so-called absolutely minimizing functions were introduced in
[1, p. 45]. In words, Z(t) is absolutely minimizing if it is a solution of
the minimax problem, not only on the given basic interval but also on
each sub-interval, the boundary values then being given by Z(t) itself.

THEOREM 3. The function Z,(t), considered in Theorems 1 and 2, is
absolutely minimizing on Ty<t<T,.

Proor. This will also be established by means of our control-theoretic
get-up. Suppose that Z(f) is not minimizing on the interval [«,f]<
[T4,T,]. Then there must exist an absolutely continuous function #,(f)
on [«,f] such that Z,(«) = ZTy(«), Z,(B) =7o(8), and
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Ml = esssupagtépF(tail(t)’E’l(t))
< e888UpP, ., s F(1,%o(t), 7o(t)) = M, .

We shall construct an admissible function #%(f) for the basic minimax
problem, satisfying H(y) < M,, which will give a contradiction. Clearly,
|Z,(¢)|| < K < co. Further, F(t,x,z) is uniformly continuous on compact
subsets of D x R®, Therefore, there must be a § >0 such that

F(t,7,(¢) +a+b(t — «),Z,(f) +b) < 3(Mo+M,) < M,

if the constant vectors a,b satisfy |ja||<d, ||b]|<d, and if ¢ is a point in
[x,8] where Zz, exists. (Note that (t,%,(f)) might not belong to D,, but
certainly to D.) Suppose that Ti<ax<f<T,. Now %,(t) is the control
corresponding to Zy(t). Let & 0<&=<1, be a parameter and consider the
system dx/dt=f(t,x,&u,(t)). We formulate two initial-value problems for
this system:
I) (Ty)=X,; a solution is sought over [T, «]

II) «(7T,)=X,, a solution is sought over [3,7,]
(that is, a ““backward’ solution).

For £=1, these problems have the solution Z,(t). Further, for £<1
and close enough to 1, both problems have solutions, y,(¢) defined for
Ty<t=«, and y,(t) defined for <t <7T,. This follows from standard
estimates since f(t,x,%) is uniformly continuous in (¢,2,u4) and Lipschitz-
ian in z, for |ju||<1 and for (¢,x) belonging to some tubular neighbour-
hood of the curve x=%(t), Ty <t<T,. It also follows that the differences
|[Zo(ex) — yolo)l| and [|Z(8) — ¥1(B)|| can be made arbitrarily small by choos-
ing & close enough to 1. Consider a function

y(t) = yo(t) for Ty<t<«,
= Z()+a+bt—«) for a<t<fp,
= 1(t) for p<t<T,.

In order to make y(t) continuous at =« and {=g, we choose

a = Yolo) = Ty(ox) = yolor) —To(e)
b = (B—0) (y2(B) — 1(B) +Z1(x) — Yo())
= (B~ )7 (42(B) — Zo(B) + () — Yo(x)) -
Now fix a value £=¢;<1 so close to 1 that the solutions y,(f) and y,(t)
exist over [T',«] and [8,7,], respectively, and so close to 1 that |ja|| <4,

]l < 8. Then y(x) is admissible for our minimax problem over [T, T,].
Further, since |ja|| <6 and ||b|| <4, we have

esssupa<t<ﬁF(t’y(t):y(t)) < ¥ Mp+My) < M, .



68 GUNNAR ARONSSON

We may assume that %,(¢) is continuous; see Theorem 2. For T,<t<«
and g<t=<7T, we thus have

y(&) = f(t,y(t):'flno(t))

and the right member is continuous for T <¢<7,. Since 0<§,<1 and
|[#Zo()ll=1, this obviously implies that

sup {F(t,y(t),5(t)) |t € [Ty, x)U(B, T} < M, .

Consequently, we have H(y)<.M,, which contradicts the definition of
M,. The cases Ty=ax<f<T,; and Ty<a<pB=T, are treated in ana-
logous manner. This completes the proof.

We conclude the discussion of the minimax problem with an existence
theorem. It is shown by an example in [2, p. 410] that a minimizing
function need not exist. It turns out that in this example, every mini-
mizing sequence is unbounded. In the converse direction we have the
next theorem. Note that there are cases where a minimizing function
exists, but none which satisfies F(t,x(t),w(t,x(t))) <M, for Ty<t=T,,
as can be seen from the example after Theorem 2.

THEOREM 4. If there exists a minimizing sequence of functions which is
contained in a compact subset of D, then there is a minimizing function.
(As before, F(t,x,z) is assumed to satisfy conditions 1), 2) and 3).)

Proor. Let z,(t), n=1,2,83,..., be a minimizing sequence in & such
that (¢,x,(¢)) € E, and such that
8up, o F (2, 2,(0), (1)) < o0 .
Here, E is a compact subset of D. It follows that
Supy 5 [, ()] < oo

Hence, these functions satisfy a uniform Lipschitz condition and a uni-
formly convergent subsequence can be selected. Let {x,(t)}}° be the sub-
sequence and z,(t) the limit function. Thus, z,(f) satisfies the same Lip-
schitz condition, and (£,%4(t)) € E<D. Clearly, z,(¢) is admissible. It
only remains to prove that

H(zy) < My+¢ for every e>0,

and the arguments for this will be very similar to those in the lemma.
Let ¢, be an arbitrary point where z, exists. Now

sup, F(t,x,(t),%,(t)) < Mo+4e if n2N,.
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Further, .
sup,, Jléa (0 = K < oo

Choose a closed spherical neighbourhood U, of (fy,2y(ty)), with radius r,
such that U,<=D. Then F(t,z,2) is uniformly continuous on

Uyx{z|lrl=K}.
Thus, there is a § £r such that
(t1,21) € Uy, (t2,25) € Uy, 2| K, and ||(ty,2,) — (85, 25)]| <O

implies that [P (1, 21,2) — Fty, %5,2)| < 3¢

Let U be a spherical neighbourhood of (fo,,(t,)) With radius . Because
of the equicontinuity and convergence of {z,(t)};° there are ,>0 and
N,= N, such that (¢,z,(t) e U if n2 N, and |t—1t)|<d,. Thus
|F(t07x0(t0)::in(t))_F(tyxn(t)rd:n(t))l < %6
if n=N,, |t—1t)| <6, and if z,(t) exists. For such n and ¢ we have
F(to, xo(to), n(t)) S Mo+e.
The set C' = {z| 2eR™, F(ty,xo(ty),2) < Mo+ ¢}

is closed and convex. As in the lemma of Section 4, it follows that
(E—to) L (2,(t) —2a(ty) € C'  for O<|t—1y| <6, .
Making » tend to infinity, we find that

(t—1to)~2(2o(t) —2o(ty)) € C" .

Finally, making ¢ tend to t,, we find that z(f,) € C’, which means that
F(tg, 2o(to), Zo(to)) < My+e. Since t, was arbitrary, it follows that H(x,) <
M,+e. This completes the proof.

If D>[T,,T,]xR", that is, there are no restrictions on z, the exis-
tence of a bounded minimizing sequence will imply the existence of a
minimizing function. Further, the existence of such a sequence can be
secured by imposing conditions on F, notably on the growth of F(t,x,2)
as a function of z. Compare [2, pp. 411-414].

6. Comments.

The special case for n=1 of Theorem 1 is contained in the result
proved in [3]. The method of proof used in [3] cannot be carried over
without essential changes.
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In Carter’s paper [4], the situation is as follows: we are given a linear
differential operator Ly =A(t)(j+ B(t)y +c(t)), where A(t) and B(t) are
matrix functions and ¢(f) a vector function. The admissible functions
are (essentially) the same as in this paper. For a vector function z(t)
we consider the norm

llell = max; ;< (esssupp,<i<r, 1%:(2)]) -

The problem is to minimize ||.Zy|| over all admissible y(¢). The solution
is based on the fact that the differential equation £y =g can be solved
for y if the function g(t) is given. Further, since we have fwo boundary
conditions, the boundary value problem is over-determined which means
that only certain functions g(f) € L™ correspond to admissible functions
y(t). The problem is then to determine this class of functions g(¢) and to
minimize ||g|| over it. Well-known properties of adjoint systems are used
in the analysis. The result is that the solution is always unique (we call
it y,), and it satisfies |((-Ly,)(?));| =M, a.e. for 1=1,2,...,n. Here, M,
is the minimum value of || £y||. (Compare the corollary of Theorem 9
in [1].) Thus the situation is much simpler in this case than it is in the
more general case, treated in this paper. Carter also considers the mini-
max problem for linear differential operators of higher order.

We also want to mention the thesis by F. M. Waltz [9]. The problem
here is to steer a control system from a given initial state to a prescribed
final state, over a given time interval, in such a way that the ‘“‘peak
amplitude control”, sup,||lu(?)||, is as small as possible. The problem is
solved in the linear case, ©=A(t)z+ B(t)u. The solution is too long to
be reported here. Naturally, there are parallels with Carter’s results.
We think the method of the present paper could also have been used,
even in the nonlinear case. The relation

(b) dZoldt = w(t, Zo(t),y(¢))

in Theorem 2 in this paper may be viewed as a counterpart of relation
(5.4) in [4] and of relation (3.12), p. 38 in [9].

Finally, a few words on the conditions 1), 2) and 3) of Sectiou 2 on
F. These conditions are not independent; in fact a tedious but routine
argument shows that 3) can be deduced from 1) and 2). However, as
it is convenient here, we work directly with conditions 1), 2) and 3).
Also, in specific cases, it is usually easy to see whether 3) is satisfied
or not. Other reductions of the conditions are also possible, but we do
not go into these details.
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