ON THE HOMOMORPHIC IMAGE OF THE CENTER OF A C^* -ALGEBRA

JØRGEN VESTERSTRØM

Let A and A' be C^* -algebras with centers Z and Z'. If $\varphi \colon A \to A'$ is a surjective *-homomorphism, we generally have $\varphi(Z) \subseteq Z'$. In this paper we study under which conditions equality holds in the above inclusion. It is known that the corresponding question for complex algebras and homomorphisms has a negative answer, even if A is finite dimensional. If, in addition to being finite dimensional, A is semi-simple equality holds. It turns out, that strong semi-simplicity does not suffice to insure equality in the case of C^* -algebras, and equality depends on the joint separation properties of $\operatorname{Prim} A$ and $\operatorname{Prim} A'$.

Let A, A' and φ be as above. We shall always assume that A and A' have a unit. Prim A denotes the quasi-compact primitive ideal space of A. The map

$$\tilde{\varphi}: \operatorname{Prim} A' \to \operatorname{Prim} A$$

given by $\check{\varphi}(J) = \varphi^{-1}(J)$ imbeds $\operatorname{Prim} A'$ as a closed subspace of $\operatorname{Prim} A$ (see [2, p. 61]).

The crucial result for our work is the Dauns and Hofman theorem [3], which, in our set-up, we formulate as follows: The continuous map

$$\eta_A = \eta$$
: $\operatorname{Prim} A \to \operatorname{Prim} Z$

defined by $\eta(J) = J \cap Z$ induces a *-isomorphism of $C(\operatorname{Prim} Z)$ onto $C(\operatorname{Prim} A)$, where C(T) denotes the set of continuous complex valued functions on the topological space T. As pointed out by Dixmier [3] this means that $(\operatorname{Prim} Z, \eta)$ is the Stone-Čech compactification of $\operatorname{Prim} A$.

PROPOSITION 1. Let A, A', Z, Z', and φ be as above. Then the following three statements are equivalent:

- (i) $\varphi(Z) = Z'$.
- (ii) $(\varphi|_Z)^*$: $Prim(Z') \to Prim(Z)$ is injective.
- (iii) If J_1 and J_2 are primitive ideals of A', which can be separated by

continuous functions on $\operatorname{Prim} A'$, then J_1 and J_2 can be separated by continuous functions on $\operatorname{Prim} A$.

PROOF. The map $\varphi|_Z \colon Z \to Z'$ induces a map $(\varphi|_Z)^* \colon \operatorname{Prim} Z' \to \operatorname{Prim} Z$ such that the diagram

(1)
$$\Prim Z \leftarrow \stackrel{(\varphi|z)^{\vee}}{-} \Prim Z'$$

$$\uparrow^{\eta} \qquad \qquad \uparrow^{\eta}$$

$$\Prim A \leftarrow \stackrel{\check{\varphi}}{-} \Prim A'$$

is commutative. In fact,

$$\eta \circ \check{\varphi}(J) = \varphi^{-1}(J) \cap Z = \varphi^{-1}(J) \cap \varphi^{-1}(Z') \cap Z = \varphi^{-1}(J \cap Z') \cap Z = (\varphi|_Z)\check{\ } (\eta(J)).$$

From this fact and from the observation that J_1 and J_2 are separated by continuous functions if and only if they are separated by η the equivalence (ii) \Leftrightarrow (iii) follows. The equivalence (i) \Leftrightarrow (ii) is well known.

COROLLARY 1. If A, A', Z, Z', and φ are as above and if A has Hausdorff primitive ideal space, then $\varphi(Z) = Z'$.

REMARK. One motivation for this paper is Lemma 1.1 of [5] in which the author proved that $\varphi(Z) = Z'$ under strong conditions on A and A'. However, it has been pointed out to us by E. Kehlet, that we have always $\varphi(Z) = Z'$, whenever A is a von Neumann algebra. This is proved by means of Dixmier's approximation theorem [1]. In the following we shall prove a result which generalizes Kehlet's result and Corollary 1.

We recall that a C^* -algebra is called weakly central if for any two different maximal ideals J_1 and J_2 we have $J_1 \cap Z \neq J_2 \cap Z$. Thus A is weakly central if and only if the map η : $\operatorname{Prim} A \to \operatorname{Prim} Z$ restricted to the set of maximal ideals $\operatorname{Max}(A)$ is 1-1.

THEOREM 1. Let A, A', Z, Z', and φ be as above. If A is weakly central, then $\varphi(Z) = Z'$.

Proof. Consider the diagram

(2)
$$\begin{array}{ccc}
\operatorname{Max}(A') & \longrightarrow & \operatorname{Max}(A) \\
\downarrow^{i'} & & \downarrow^{i} \\
\operatorname{Prim} A' & \xrightarrow{\check{\varphi}} & \operatorname{Prim} A \\
\downarrow^{\eta} & & \downarrow^{\eta} \\
\operatorname{Prim} Z' & \xrightarrow{(\varphi|Z)^{*}} & \operatorname{Prim} Z,
\end{array}$$

where $\operatorname{Max}(A') \to \operatorname{Max}(A)$ is the restriction of $\check{\varphi}$. Clearly, (2) is commutative. The map $\eta \circ i$ is 1-1 by assumption. Therefore $\eta \circ i \circ \check{\varphi}$ is 1-1. By commutativity $(\varphi|_Z)^* \circ \eta \circ i'$ is 1-1, and since $\eta \circ i'$ is surjective it follows that $(\varphi|_Z)^*$ is 1-1. Hence by Proposition 1 we have $\varphi(Z) = Z'$.

COROLLARY 2. If A, A', Z, Z', and φ are as above, and if A is a von Neumann algebra, then $\varphi(Z) = Z'$.

PROOF. A is weakly central by the result of Misonou [4].

As a converse of Theorem 1 we present the following

THEOREM 2. Let A be a C*-algebra with unit. Suppose that for any uniformly closed two-sided ideal J of A the center of A is mapped onto the center of A|J under the canonical map $A \to A|J$. Then A is weakly central.

PROOF. Let J_1 and J_2 be maximal ideals of A with $J_1 \neq J_2$. Let $A' = A/J_1 \cap J_2$. Then $\operatorname{Prim} A'$ is the two point set $\{J_1/J_1 \cap J_2, J_2/J_1 \cap J_2\}$, and coincides with $\operatorname{Max}(A')$. Since $\operatorname{Max}(A')$ is a T_1 -space ([2]), $\operatorname{Prim} A'$ is discrete. Thus the two points in $\operatorname{Prim} A'$ can be separated by continuous functions, hence by the assumption and the equivalence (i) \Leftrightarrow (iii) of Proposition 1 J_1 and J_2 can be separated in $\operatorname{Prim} A$, but that means that J_1 and J_2 are separated by η , that is, $J_1 \cap Z \neq J_2 \cap Z$. Thus A is weakly central.

Example. Let A be the C^* -algebra of all bounded sequences $x=(x_n)$ of 2×2 complex matrices with $\lim_{n\to\infty}x_n=a$ diagonal matrix with entries a(x) and b(x). Let $J=\{x\in A\mid a(x)=0,\,b(x)=0\}$. Then one observes that A/J is 2-dimensional and commutative, whereas the canonical image of the center is the 1-dimensional scalar algebra.

REFERENCES

- J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. École Norm. Sup. 66 (1949), 209-261.
- J. Dixmier, Les C*-algèbres et leurs représentations (Cahiers Scientifiques 29), Gauthier-Villars, Paris, 1964.
- 3. J. Dixmier, Ideal center of a C*-algebra, Duke Math. J. 35 (1968), 375-382.
- 4. Y. Misonou, On a weakly central operator algebra, Tôhoku Math. J. 4 (1952), 194-202.
- J. Vesterstrøm, Quotients of finite W*-algebras, J. Functional Analysis 9 (1972), 322-335.