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ON THE p¢ IN A MINIMAL INJECTIVE RESOLUTION

HANS-BJORN FOXBY

A will always denote a (commutative) noetherian local ring with maxi-
mal ideal m and residue class field k=4/m.

Introduction.
Let M be a finitely generated 4-module, and let

do dt . di
O-M~>E—F — ... >E— ...

be a minimal injective resolution of M, that is, B¢ is the injective en-
velope of Kerd!=Imd:-! for all ¢. Then the cardinal number ui(p, M),
where p is a prime ideal, denotes the number of indecomposable compo-
nents of E* isomorphic to E(A4/p). We know that ui(p,M) is finite and
is only depending on 4, p, and M (cf. Hyman Bass [1, §2]).

The depth (or co-dimension) of M turns out to be the smallest integer
t for which u?(m,M)>0, while the injective dimension is the greatest ¢
for which ui(m,M)>0 (if such an ¢ exists). This means that if E(k) is
a direct summand in E? (that is, xi(m, M) > 0), then ¢ must lay between
the depth and the injective dimension of M.

The first part of this paper deals with the question: is E(k) a direct
summand in K for all ¢ between the depth and the injective dimension ?
Since ui(p, M)=pui(pA,, M,), the answer of this question also tells us
for which ¢, E(A/p) is a direct summand in E?. Unfortunately I have
only been able to answer the question, in the affirmative, in the following
cases:

1) A4 is Cohen-Macaulay,

2) depth M =z depth 4,

2"y M=A4,

3) M is Cohen-Macaulay,

4) injdim M finite.
In case 4) holds ¢(M)=3;(—1)*"*ui(m, M) =0, where s=injdim M, and
the following statements are equivalent:
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176 HANS-BJORN FOXBY
(i) p(M)>0, (ii) AonM =0, (iii) grad M =0.

This is the analogue to the corresponding result about the Euler-charac-
teristic of a finitely generated module of finite projective dimension.

In the second part (section 3) we will assume that there exists a
Gorenstein module ([11] and [12]). Then u? of a Cohen-Macaulay module
or a finitely generated module of finite injective dimension can be ex-
pressed by some Betti-numbers.

1. Notation and previous results.

Noration 1.1. Let L and M be finitely generated non-zero 4-mod-
ules. Then the following notation will be used:

grade,, L=maximal length of a M-regular sequence in AnnZ. (Ele-
ments a,,...,a,€ m are called a M-regular sequence, if each a; is not
a zero-divisor in M/(ay,...,a;_1)M.)

depth M = grade,, k.

dim M =the Krull-dimension of M, that is (in this case), the Krull-
dimension of the local ring A/Ann M.

M Cohen—Macaulay, if depth M =dim M (and M non-zero and finitely
generated).

2M =the zero-divisors on M.

Wi(M)=pi(m, M) as defined in the introduction.

B:(M)=the ith Betti-number of M, that is, the dimension of Tor, (k, M)
considered as a vector space over k.

The results in Bourbaki [2, Chap. IV] are considered as well known
and will hence be used without reference.

Some of the previous results, mainly from Bass [1, §§ 2-3], can be
summarized in

ProposiTioN 1.2. Let L and M be finitely generated mon-zero A-mod-
ules. Then:

(a) ui(M) is the dimension of Exti(k,M) considered as a vector space
over k. Further, ut(p, M) = ,uiip (M) for all prime ideals p.

(b) depth M =inf {s | w{(M)> 0} <dim M
Ssup{i | w{(M)>0}=injdim M (= oo).

(€) ugi(M)=pysiis(M|aM) for all i, if a € m— (zAuzM).
(d) If Exti(L,M)=+0 for some i and length L < oo, then u*(M)> 0.
(e) If injdim M = oo, then ut(M)>0 for i 2dim 4.
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(f) If injdim M < oo, then injdim M =depth A4, and
(g) depth A =depth L +sup {i | Ext!(L, M)+ 0}.

(h) gradey L=inf{i | Ext?*(L, M) 0} = (length of a maximal M-regular
sequence in AnnL)=gradey A/a, where a is the radical of AnnL.

(i) depth A4 <grade, M +dim M <dim 4.

For (g) and (i) we refer to [7], [8] and [9]:

(g): see [7, § 2] or [8, Theorem 3.1] (=[9, Theorem 1.1]).
(i): see [8, Lemma 3.8] (=[9, Lemme 1.4]).

Also the following results will be useful:

ProrosiTION 1.3. Let M be a finitely generated non-zero A-module.
Then:

(a) If e B E P NP M0
18 a minimal free resolution of M (that is, Imd*cmF,_, for all 1), then the
rank of F; is B (M) for all <.
(b) projdim M =sup i | B(HM)> 0} =inf (i 2 0 | By, (M)=0}.
(c¢) If projdimM < oo, then the Euler-characteristic x(M)=0 (where
2(M)=3,;(—1)8,(M)), and the following statements are equivalent:
(i) x(M)>0, (ii) AnonM =0, (iii) grade, M =0.

Proor. (a) and (b): see Serre [10, IV appendix I]. (c): see Kaplansky
[6, section 4-3].

2. Non-vanishing of u’.
ProrosiTioN 2.1. Let A be Cohen—Macaulay, and let M be a non-
zero finitely generated A-module. Then

ui(M) > 0 for depthM <i<injdim M(=oc0).

Proor. By Proposition 1.2 (e) and (f) it is enough to show ui(M)>0
for depth M <i<s=depth4=dimA. The proof will be by induction
on s:

s=0: nothing to prove.
s—1 -3, =1 (the inductive step): Divide in two cases:
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1°. depth M >0. With a € m— (24UzM) one obtains by 1.2 (c) that
pA (M) = pit, (MjaM). The inductive hypothesis gives the desired as-
sertion.

2°. depthM =0. Choose F finitely generated free and a submodule
K of F such that F/K =M. The corresponding long-exact sequence for
Ext(k, —) gives us Exti(k, M)=Ext'+1(k,K) for ¢<s—2, and hence
depth K=1>0 and ui(M)=pui+}(K)>0 for 0=t <s—2 (by case 1°).

The only thing left to show is now us-(M)> 0.

Let a,,. . .,a, be an A-regular sequence such that depth M, =0 for all 4,
0<¢=<s, where M,=M[a,M and a;=(a,,...,a;), a,=0. To see that this
is possible assume that a;_,;=(a,,....,a;_;) has been chosen. Pick
aem—z(Afa;_,), xe M,_, such that Annz=m (since depth M, _,=0),
and ¢ >0 such that x ¢ a'M,_,. Put a;=a’e m—2(4/a;_;). Then

m= Anmnz < AnnZ c m,

where Z is the residue class of « in M, ,Ja,M, ,=M, This gives
AnnZ=m, that is, depth M,;=0.
Since projdimA4/a;_;=1—1, there is an exact sequence

Exti-1(4/a;_y, M) 2> Exti-1(4]a;_y, M) - Exti(4]a, M) -0 .
Now induction on ¢ shows: Ext?(A4/a,, M)=M,. In particular
a, € z2M,_, = zExts-1(4/a,_,, M),
so from the exact sequence
Exts-1(4/a, M) - Exts-1(4/a,_,, M) =5 Exte-1(4/a,_y, M)
it follows that Ext®-(4/a,, M)=+0, and hence u®-}(M)>0 (by Proposi-
tion 1.2 (d)), since the length of 4/a, is finite.

Lemma 2.2, If depthA =0, there exists t=0 such that k is a direct
summand in mt.

Proor. Since depth4 =0, Annm+0. Choose a,€ Annm—0 and
t>20 such that a,em‘—ml. Expand a,em//mi*l to a Dbasis
(@o, @y, . . .,@,) for the vector space m//m‘+! over k. Then (ay,ay,...,a,)=
m! (by Nakayama’s lemma) and Y,;b,a,=0 implies that all b, € m.

If byay=3;.0b;2; € (a)N(ay,...,a,), then b,em, that is, bya,=0.
This shows (ag)n(ay,. . .,a,)=0, and hence

m = (a)®D(ay,...,a,) = kD(ay,...,a,) .
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ProrosiTioN 2.3. Let M be a finitely generated non-zero A-module with
depth M > depth A. Then

Ui(M) >0 for depthM <i<infdimM (<o),
in particular,

ui(A4) > 0  for depthd=<i<injdimA(= o).

Proor. By Proposition 1.2 (c), assume depth A =0 and use induction
on i:
~t—1->1,122: From the exact sequence
0->m—>A4->A/m -0,

with ¢2 0 such that m!=k®a (by Lemma 2.2), it follows for 122 that
| Exti(4/m!, M) = Ext*-Y(m!, M) = Exti-1(k, M)DExt*-1(a, M) .

By Proposition 1.2 (d) this gives u(M) >0, if y*-{(M)>0 and 7= 2.
1=1: By Proposition 1.2 (b), (f) and (e) we can assume:

depthM =0, injdimM = oo, dim4 > 0.

Choose a prime ideal p with dimA/p=1 and @ € m—p. From the exact
sequence

0> Afp—>Alp - Al(p+(@) > 0
it follows that also
Hom (4/p, M) —> Hom (4/p, M) ~ Ext'(4/(p + (a)), M)
is exact. Here Hom (4/p, M)=+0, since depth M =0, and thus
Ext(4/(p+(a)), M) + 0

(by Nakayama’s lemma), that is, u1(M)> 0 (by Proposition 1.2 (d)).

Prorosition 2.4. If M is a Cohen—Macaulay A-module, then u*(M)>0
for depth M =dim M <4 <injdim M ( < o).

Proor. Induction on d=depth M =dim M :

d =0 is equivalent to Supp M = {m}, that is, u¥(p, M) =0 for all < and
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all prime ideals p+m. This gives E(k)*®=Ei+0 (that is, ui(M) > 0)
for 0<¢<injdim M, when

O->-M—->E -FE' - ... >E' > ...

is a minimal injective resolution of M.

d—1-d, d=1: By Proposition 2.3 we can assume depthA4 >0. If
a€eM—(zAuzM), then M/aM is a Cohen-Macaulay A4/(a)-module of
dimension d—1 (see Serre [10, IV B]). The inductive hypothesis and
Proposition 1.2 (¢) now gives us the desired result.

The next result is a corollary of Theorem 3.4 of Peskine and Szpiro [8].
The equivalence between (ii) and (iii) in (c) is in fact well known [8,
Cor. 3.5 of Th. 3.4] and is also proved by Levin and Vasconcelos [7,
Th. 4.1] using different methods.

THEOREM 2.5. Let M be a non zero finitely generated A-module of finite
injective dimension 8. Then:

(a) u¥(M)>0 for depth M <1 <injdim M =s,
(b) p(M)=3;(—1)*~u(M)20.
(c) The following statements are equivalent:
(i) ¢(M)>0, (i) AnnM =0, (iii) grade M =0.

REMAREK. As pointed out before, this is the analogue of Proposition 1.3,
the theorem about the Euler-characteristic of a finitely generated mod-
ule of finite projective dimension. In fact we will use this proposition
to prove Theorem 2.5.

Proor. Let © denote completion with respect to the m-adic topology.
Then A4 is again noetherian local with residue class field k, and further
we know:

(Ann, M) = Anng M, 24 = AnzA, = M®A1f
and 4 is A-flat (see Bourbaki [2, Chap. III, § 3, no. 4, th. 3 et cor. 1]).
Let also L be a finitely generated A-module. Then Hom,(L,M)" =
Homy (L, M) (by Bourbaki [2, Chap. I, §2, no. 10, prop. 11]) and hence
(by an easy induction on ¢) Ext (L, M )" =Ext4%L, BI), in particular
pg (M) =pgi(d), since k=k, and thus

depth, M = depthy M and injdim, M = injdimy M .

Therefore we may assume that 4 is complete.
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Peskine and Szpiro ([8, Th. 3.4]) have proved that Ext(E(k),N)=0
for ¢+, and that N =Ext®(E(k), M) is finitely generated with Supp M =
Supp N and projdim N < oo.

We want to show ui{(M)=p,_;(N) for all i. Assume that this is done.
Then by Proposition 1.3 (b)

projdimN = s—depthM and ui(M) = B,_i(N) > 0
for depth M <+ <s. By Proposition 1.3 (c) we get

(M) = 3 (- 1) pH(M) = Z;(—1YB,(N) = x(N) 2 0.
Now (a) and (b) are established. We prove (c¢) as follows.

(i) = (ii): By Proposition 1.3 (c), y(N)=¢(M)> 0 implies that 0=
Ann N2 Ann M.

(ii) = (iii) is obvious.

(iii) = (i): Assume grade,M =0. Since SuppN=SuppM, also
grade ,N =0 by Proposition 1.2 (h). By Proposition 1.3 (c) this gives

0 < x(N) = (M) .

Now follows the proof of ui(M)=p8,_;(N) for all ¢: Let X, ¥ and Z be
A-modules. Then there is a homomorphism

o: XHom(Y,Z) -~ Hom(Hom(X,Y),Z)
defined by
o(z®f)9) = fy(x), zeX,

x4y Lz,
The homomorphism o is natural in X and Z, and ¢ is an isomorphism,

if X is finitely generated and free (cf. [3, VI, Prop. 5.2]). Assume X
finitely generated and let

i P> ... > F>Fy>X->0

be a free resolution of X with each F, finitely generated. Let
0>Z->E->E'—~...>E~ ...

be an injective resolution of Z and define a double complex K- - by

Krt = F_,@Hom (Y,E?) = Hom(Hom (F_,, Y), E9)

-p)

(and obvious differentiations). By standard filtrations one gets two spec-
tral sequences with the same limit and initial terms:
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*) Ipe = Tor_,(X, Ext¢(Y,Z)),
I = Extr(Ext—2(X, Y),Z) .

Let X=Fk, Y=E(k), and Z=M in these spectral sequences:
I?? = Tor_,(k,N) for q=s,

=0 otherwise ,
1172 = Ext?(k,M) for ¢=0,
=0 otherwise ,

and hence we have Tor,_;(k,N)=Ext?(k, M) for all 7.
This ends the proof of Theorem 2.5.

REMARK. There are more direct ways to prove u(M)=pg,_,(N), but
we shall use the spectral sequences (*) later.

ProrosiTioN 2.6. If M is a non-zero finitely generated A-module, then :

p(M) >0 for dimM <i < injdimM (o).

Proor. It is enough to show: pit{(M)=0, if u(M)=0 and +>dim M.
Assume therefore y*(M) =0 and ¢ = dim M, and hence also Ext{(L, M)=0
for all A-modules L of finite length (by Proposition 1.2 (d)). This gives
that Exti+1(-,M) is a left-exact contra-variant functor in the category
of A-modules of finite length and hence

Exti+!(k, M) = Hom(k, lim, Exti+1(4/m", M))
= Hom(k,H,*Y(M)) = 0,
where H ¢ is the ith derived of the local cohomology functor (see Harts-

horne [4, Prop. 4.5, Th. 2.8, and Prop. 6.4]).

REMARK. Proposition 2.4 follows of course also from Proposition 2.6.

3. u' and Gorenstein modules.
Assume in this section that G is a Gorenstein module of dimension s,
that is (Sharp [11]), @ is a finitely generated non-zero 4-module with
s = depthG = injdim@ (< o).

Then @ is a Cohen-Macaulay module of dimension s (by Proposition
1.2 (b)). ’
Also the ring 4 is Cohen-Macaulay of dimension s (Sharp [11, 3.9]).
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ProPosITION 3.1. Let M be a finitely generated mon-zero A-module of
finite injective dimension. Then:

(8) wi(M)u*(@) =B, (Hom (G, M)) for all i, and
projdim Hom (@, M) =s-depth M < oo,

(a’) Hom (G, ) is free of rank us(G)?,

(b) gradey, L =gradegy g, L for each non-zero finitely generated mod-
ule L, and Ass M = AssHom (G, M).

REMARK. The first part of (b) follows, in the case M =@, from Sharp
[11, 4.11].

Proor. Consider the spectral sequences (*) from the proof of Theorem
2.5 and let X=Fk, Y=G and Z=M. Since Ext?(¢,M)=0 for ¢+0 (by
Proposition 1.2 (g)) and Ext-2(k,G)=0 for g+ —s, the spectral se-
quences degenerate to isomorphisms:

Tor,_;(k,Hom (@, M)) = Ext{(Ext*(k,q), M) forallsi.

This shows (a) and (a’).
Since AnnG@ < AnnHom (G,G)=Ann A =0, it follows that

AssHom (G, M) = SuppG n AssM = AssM .
For a €e AnnL —2M we have
Hom (G, M/|aM) = Hom (G, M)[a Hom (G, M)

and therefore the rest of (b) is an easy induction.

COROLLARY 3.2. Let A be Gorenstein of dimension s, and let M be a
non-zero finitely generated A-module. Then

(1) injdimM < oo,
if and only if
(i) projdim M < co ,

and when these conditions are satisfied, then

(M) = By (M) foralli.

ReMARK. The equivalence between (i) and (ii) is well-known [7, Th.
2.2].
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A stronger result is (cf. Jensen [5, Cor. 5]): 4 is Gorenstein, if and only
if every (not necessarily finitely generated) A-module M of finite injec-
tive dimension has finite projective dimension. In fact, for a module M
over a Gorenstein ring, (i) and (ii) are equivalent with

(iii) weak dim M < .

LemMmA 3.3. Let M be a finitely generated non-zero A-module. Then M
is Cohen-Macaulay of dimension d, if and only if Ext!(M,G)=0 for
1+s—d.

Proor. Ext!(M,G)=0 for 1+s—d, if and only if depthM =d and
gradeg M =s—d (by Proposition 1.2 (g) and (h)). By Proposition 3.1 (b)
it follows that grade ;, M = grades M, and hence depth M =d and grade, M
=¢—d, if and only if M is Cohen-Macaulay of dimension d (by Propo-
sition 1.2 (i), since 4 is Cohen—Macaulay).

ProrosriTioN 3.4. If M is a Cohen—Macaulay A-module of dimension d,
then:

(a) Exts-¢(M,Q) is Cohen—Macaulay of dimension d too, and
Ext*-4(Ext*—¢(M,3),G) = MQHom(G,G) = M*@*,
(b) AssM = AssExts-¢(M,Q).

REMARK. From Theorem 3.11 (v) of Sharp [11], (a) follows in the case
d=0.

Proor. Consider the spectral sequences (*) from the proof of Theo-
rem 2.5 with X =M and Y=Z=(. By Proposition 3.1 and Lemma 3.3
they degenerate to
M®Hom(G’ @) for t=s—d

Ext!(Ext*-¢(M,Q),G) = otherwise ,

and thus (a) follows from Lemma 3.3.

Let us now show zM =2Ext*-4¢(M,F). Assume aem—zM. Then
M[aM is Cohen-Macaulay of dimension d—1 (by Serre [10, IV B]), and
hence Ext*-¢(M/aM,G)=0. We have therefore the exact sequence

0 - Ext*-¢(M, Q) = Ext*—4¢(M,Q),

and thus a ¢ 2Ext*-4(M,G). Now zM c2Ext*-4(M,Q) is shown. The
other inclusion follows by the duality of (a).
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To show (b), it is enough to show Ass M < AssExt*-4(M, Q) (again by
the duality of (a)). Assume therefore p € Ass M, that is,

p cz2M = z2Exts4(M,G),

and hence there exist p’e AssExts-¢(M,RF) such that pcp’ and
q € Ass M such that p’cq. We have p<cp’<cq, that is,

p =p € AssExt-¢(M,QR),

since AssExt*-¢(M,Q) is without embedded primes (see Prop. 13 of
[10, IV B]).

ProrositioN 3.5. Let M be a Cohen—Macaulay A-module of dimen-
ston d. Then

(@) wi(M)p%(G)=p;_q(Ext*-*(M,G)) and
B M) u(G) = pi+4(Ext-4(M, @) for all i,

(b) injdim M < o <=> projdimExt*-¢(M,F) < oo and
projdim M < oo <= injdim Exts-¢(M,F) < co.

Proor. Consider the spectral sequences (*) with X =k, Y =M, and
Z=@G. They degenerate to isomorphisms:

Tor,_4(k, Ext*-4(M,G)) = Ext*(Exti(k,M),G) foralli.

This gives the first part of (a). The second part follows from the first
and Proposition 3.4 (a).

(b) is now obvious.

COROLLARY 3.6. Let A be a Gorenstein ring of dimension s, and 1t M
be a Cohen—Macaulay A-module of dimension d. Then:

(a) Extt-4¢(M,A) is Cohen—Macaulay of dimension d and
Exts-¢(Ext*-¢(M,A),A)=M.

(b) ui(M)=p;_4(Ext—%(M,4)) and
Bi(M) = pi+d(Exts-4(M,A)) for all 1.

(¢) injdim M < oo <> injdimExt*—4(M,4)< oo <>
projdim M < co <= projdim Ext*-4(M, 4) < co.
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