ON THE μ^i IN A MINIMAL INJECTIVE RESOLUTION

HANS-BJØRN FOXBY

A will always denote a (commutative) noetherian local ring with maximal ideal m and residue class field k=A/m.

Introduction.

Let M be a finitely generated A-module, and let

$$0 \to M \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \ldots \to E^i \xrightarrow{d^i} \ldots$$

be a minimal injective resolution of M, that is, E^i is the injective envelope of $\operatorname{Ker} d^i = \operatorname{Im} d^{i-1}$ for all i. Then the cardinal number $\mu^i(\mathfrak{p}, M)$, where \mathfrak{p} is a prime ideal, denotes the number of indecomposable components of E^i isomorphic to $E(A/\mathfrak{p})$. We know that $\mu^i(\mathfrak{p}, M)$ is finite and is only depending on i, \mathfrak{p} , and M (cf. Hyman Bass [1, §2]).

The depth (or co-dimension) of M turns out to be the smallest integer i for which $\mu^i(\mathfrak{m},M)>0$, while the injective dimension is the greatest i for which $\mu^i(\mathfrak{m},M)>0$ (if such an i exists). This means that if E(k) is a direct summand in E^i (that is, $\mu^i(\mathfrak{m},M)>0$), then i must lay between the depth and the injective dimension of M.

The first part of this paper deals with the question: is E(k) a direct summand in E^i for all i between the depth and the injective dimension? Since $\mu^i(\mathfrak{p},M) = \mu^i(\mathfrak{p}A_{\mathfrak{p}},M_{\mathfrak{p}})$, the answer of this question also tells us for which i, $E(A/\mathfrak{p})$ is a direct summand in E^i . Unfortunately I have only been able to answer the question, in the affirmative, in the following cases:

- 1) A is Cohen-Macaulay,
- 2) depth $M \ge \operatorname{depth} A$,
- 2') M=A,
- 3) M is Cohen-Macaulay,
- 4) injdim M finite.

In case 4) holds $\varphi(M) = \sum_{i} (-1)^{s-i} \mu^{i}(\mathfrak{m}, M) \ge 0$, where $s = \inf \dim M$, and the following statements are equivalent:

(i) $\varphi(M) > 0$, (ii) Ann M = 0, (iii) grad M = 0.

This is the analogue to the corresponding result about the Euler-characteristic of a finitely generated module of finite projective dimension.

In the second part (section 3) we will assume that there exists a Gorenstein module ([11] and [12]). Then μ^i of a Cohen–Macaulay module or a finitely generated module of finite injective dimension can be expressed by some Betti-numbers.

1. Notation and previous results.

Notation 1.1. Let L and M be finitely generated non-zero A-modules. Then the following notation will be used:

 $\operatorname{grade}_M L = \operatorname{maximal}$ length of a M-regular sequence in $\operatorname{Ann} L$. (Elements $a_1, \ldots, a_s \in \mathfrak{m}$ are called a M-regular sequence, if each a_i is not a zero-divisor in $M/(a_1, \ldots, a_{i-1})M$.)

 $\operatorname{depth} M = \operatorname{grade}_{M} k$.

 $\dim M =$ the Krull-dimension of M, that is (in this case), the Krull-dimension of the local ring A/Ann M.

M Cohen-Macaulay, if depth $M = \dim M$ (and M non-zero and finitely generated).

zM = the zero-divisors on M.

 $\mu^{i}(M) = \mu^{i}(\mathfrak{m}, M)$ as defined in the introduction.

 $\beta_i(M)$ = the *i*th Betti-number of M, that is, the dimension of $Tor_i(k, M)$ considered as a vector space over k.

The results in Bourbaki [2, Chap. IV] are considered as well known and will hence be used without reference.

Some of the previous results, mainly from Bass [1, §§ 2-3], can be summarized in

Proposition 1.2. Let L and M be finitely generated non-zero A-modules. Then:

- (a) $\mu^i(M)$ is the dimension of $\operatorname{Ext}^i(k,M)$ considered as a vector space over k. Further, $\mu^i(\mathfrak{p},M) = \mu^i_{A_\mathfrak{p}}(M_\mathfrak{p})$ for all prime ideals \mathfrak{p} .
 - (b) depth $M = \inf \{i \mid \mu^i(M) > 0\} \le \dim M$ $\le \sup \{i \mid \mu^i(M) > 0\} = \inf \dim M \ (\le \infty).$
 - (c) $\mu_A^{i}(M) = \mu_{A/(a)}^{i-1}(M/aM)$ for all i, if $a \in \mathfrak{m} (zA \cup zM)$.
 - (d) If $\operatorname{Ext}^i(L, M) \neq 0$ for some i and length $L < \infty$, then $\mu^i(M) > 0$.
 - (e) If $\inf \dim M = \infty$, then $\mu^i(M) > 0$ for $i \ge \dim A$.

- (f) If $\inf \dim M < \infty$, then $\inf \dim M = \operatorname{depth} A$, and
- (g) depth $A = \operatorname{depth} L + \sup \{i \mid \operatorname{Ext}^i(L, M) \neq 0\}.$
- (h) $\operatorname{grade}_{M} L = \inf\{i \mid \operatorname{Ext}^{i}(L, M) \neq 0\} = (\operatorname{length} \ of \ a \ maximal \ M\operatorname{-regular} \ \operatorname{sequence} \ in \ \operatorname{Ann} L) = \operatorname{grade}_{M} A/\mathfrak{a}, \ \text{where} \ \mathfrak{a} \ is \ the \ radical \ of \ \operatorname{Ann} L.$
 - (i) depth $A \leq \operatorname{grade}_A M + \dim M \leq \dim A$.

For (g) and (i) we refer to [7], [8] and [9]:

- (g): see $[7, \S 2]$ or [8, Theorem 3.1] (= [9, Theorem 1.1]).
- (i): see [8, Lemma 3.8] (=[9, Lemme 1.4]).

Also the following results will be useful:

Proposition 1.3. Let M be a finitely generated non-zero A-module. Then:

(a) If
$$\ldots \to F_i \xrightarrow{d_i} \ldots \to F_1 \xrightarrow{d_1} F_0 \to M \to 0$$

is a minimal free resolution of M (that is, $\operatorname{Im} d^i \subseteq \mathfrak{m} F_{i-1}$ for all i), then the rank of F_i is $\beta_i(M)$ for all i.

- (b) $\operatorname{projdim} M = \sup\{i \mid \beta_i(M) > 0\} = \inf\{i \ge 0 \mid \beta_{i+1}(M) = 0\}.$
- (c) If $\operatorname{projdim} M < \infty$, then the Euler-characteristic $\chi(M) \ge 0$ (where $\chi(M) = \sum_{i} (-1)^{i} \beta_{i}(M)$), and the following statements are equivalent:

(i)
$$\chi(M) > 0$$
, (ii) Ann $M = 0$, (iii) grade_A $M = 0$.

PROOF. (a) and (b): see Serre [10, IV appendix I]. (c): see Kaplansky [6, section 4-3].

2. Non-vanishing of μ^i .

PROPOSITION 2.1. Let A be Cohen-Macaulay, and let M be a non-zero finitely generated A-module. Then

$$\mu^{i}(M) > 0$$
 for depth $M \leq i \leq \text{inj dim } M(\leq \infty)$.

PROOF. By Proposition 1.2 (e) and (f) it is enough to show $\mu^{i}(M) > 0$ for depth $M \leq i < s = \text{depth } A = \dim A$. The proof will be by induction on s:

s=0: nothing to prove.

 $s-1 \rightarrow s, \ s \ge 1$ (the inductive step): Divide in two cases:

- 1°. depth M > 0. With $a \in \mathfrak{m} (zA \cup zM)$ one obtains by 1.2 (c) that $\mu_A^{i}(M) = \mu_{A/(a)}^{i-1}(M/aM)$. The inductive hypothesis gives the desired assertion.
- 2°. depth M=0. Choose F finitely generated free and a submodule K of F such that F/K=M. The corresponding long-exact sequence for $\operatorname{Ext}(k,-)$ gives us $\operatorname{Ext}^i(k,M)=\operatorname{Ext}^{i+1}(k,K)$ for $i\leq s-2$, and hence depth K=1>0 and $\mu^i(M)=\mu^{i+1}(K)>0$ for $0\leq i\leq s-2$ (by case 1°).

The only thing left to show is now $\mu^{s-1}(M) > 0$.

Let a_1,\ldots,a_s be an A-regular sequence such that depth $M_i=0$ for all i, $0 \le i \le s$, where $M_i=M/\mathfrak{a}_iM$ and $\mathfrak{a}_i=(a_1,\ldots,a_i)$, $\mathfrak{a}_0=0$. To see that this is possible assume that $\mathfrak{a}_{i-1}=(a_1,\ldots,a_{i-1})$ has been chosen. Pick $a\in \mathfrak{m}-z(A/\mathfrak{a}_{i-1}),\ x\in M_{i-1}$ such that $\mathrm{Ann}\,x=\mathfrak{m}$ (since depth $M_{i-1}=0$), and t>0 such that $x\notin a^tM_{i-1}$. Put $a_i=a^t\in \mathfrak{m}-z(A/\mathfrak{a}_{i-1})$. Then

$$\mathfrak{m} = \operatorname{Ann} x \subseteq \operatorname{Ann} \overline{x} \subseteq \mathfrak{m},$$

where \overline{x} is the residue class of x in $M_{i-1}/a_iM_{i-1}=M_i$. This gives $\operatorname{Ann} \overline{x}=\mathfrak{m}$, that is, $\operatorname{depth} M_i=0$.

Since $\operatorname{projdim} A/\mathfrak{a}_{i-1} = i-1$, there is an exact sequence

$$\operatorname{Ext}^{i-1}(A/\mathfrak{a}_{i-1},M) \xrightarrow{a_{i}^{*}} \operatorname{Ext}^{i-1}(A/\mathfrak{a}_{i-1},M) \to \operatorname{Ext}^{i}(A/\mathfrak{a}_{i},M) \to 0 \ .$$

Now induction on i shows: $\operatorname{Ext}^i(A/\mathfrak{a}_i, M) = M_i$. In particular

$$a_s \in zM_{s-1} = z\operatorname{Ext}^{s-1}(A/\mathfrak{a}_{s-1}, M)$$

so from the exact sequence

$$\operatorname{Ext}^{s-1}(A/\mathfrak{a}_s, M) \to \operatorname{Ext}^{s-1}(A/\mathfrak{a}_{s-1}, M) \xrightarrow{a_s} \operatorname{Ext}^{s-1}(A/\mathfrak{a}_{s-1}, M)$$

it follows that $\operatorname{Ext}^{s-1}(A/\mathfrak{a}_s, M) \neq 0$, and hence $\mu^{s-1}(M) > 0$ (by Proposition 1.2 (d)), since the length of A/\mathfrak{a}_s is finite.

Lemma 2.2. If depth A = 0, there exists $t \ge 0$ such that k is a direct summand in \mathfrak{m}^t .

PROOF. Since depth A=0, Ann $m \neq 0$. Choose $a_0 \in \text{Ann } m - 0$ and $t \geq 0$ such that $a_0 \in \mathfrak{m}^t - \mathfrak{m}^{t+1}$. Expand $\overline{a}_0 \in \mathfrak{m}^t/\mathfrak{m}^{t+1}$ to a basis $(\overline{a}_0, \overline{a}_1, \ldots, \overline{a}_p)$ for the vector space $\mathfrak{m}^t/\mathfrak{m}^{t+1}$ over k. Then $(a_0, a_1, \ldots, a_p) = \mathfrak{m}^t$ (by Nakayama's lemma) and $\sum_i b_i a_i = 0$ implies that all $b_i \in \mathfrak{m}$.

If $b_0 a_0 = \sum_{i>0} b_i a_i \in (a_0) \cap (a_1, \dots, a_p)$, then $b_0 \in \mathfrak{m}$, that is, $b_0 a_0 = 0$. This shows $(a_0) \cap (a_1, \dots, a_n) = 0$, and hence

$$\mathfrak{m}^t = (a_0) \oplus (a_1, \ldots, a_n) = k \oplus (a_1, \ldots, a_n)$$
.

Proposition 2.3. Let M be a finitely generated non-zero A-module with depth $M \ge \operatorname{depth} A$. Then

$$\mu^i(M) > 0 \quad \textit{for} \quad \operatorname{depth} M \leq i \leq \inf \dim M (\leq \infty)$$
 ,

in particular,

$$\mu^{i}(A) > 0$$
 for depth $A \leq i \leq \operatorname{injdim} A (\leq \infty)$.

PROOF. By Proposition 1.2 (c), assume depth A = 0 and use induction on i:

 $i-1 \rightarrow i$, $i \ge 2$: From the exact sequence

$$0 \to \mathfrak{m}^t \to A \to A/\mathfrak{m}^t \to 0$$

with $t \ge 0$ such that $\mathfrak{m}^t = k \oplus \mathfrak{a}$ (by Lemma 2.2), it follows for $i \ge 2$ that

$$\operatorname{Ext}^i(A/\mathfrak{m}^t,M) = \operatorname{Ext}^{i-1}(\mathfrak{m}^t,M) = \operatorname{Ext}^{i-1}(k,M) \oplus \operatorname{Ext}^{i-1}(\mathfrak{a},M)$$
.

By Proposition 1.2 (d) this gives $\mu^i(M) > 0$, if $\mu^{i-1}(M) > 0$ and $i \ge 2$. i = 1: By Proposition 1.2 (b), (f) and (e) we can assume:

$$\operatorname{depth} M = 0$$
, $\operatorname{injdim} M = \infty$, $\operatorname{dim} A > 0$.

Choose a prime ideal $\mathfrak p$ with $\dim A/\mathfrak p=1$ and $a\in\mathfrak m-\mathfrak p$. From the exact sequence

$$0 \to A/\mathfrak{p} \xrightarrow{a \cdot} A/\mathfrak{p} \to A/(\mathfrak{p} + (a)) \to 0$$

it follows that also

$$\operatorname{Hom}(A/\mathfrak{p},M) \stackrel{a\cdot}{\longrightarrow} \operatorname{Hom}(A/\mathfrak{p},M) \to \operatorname{Ext}^1\big(A/(\mathfrak{p}+(a)),M\big)$$

is exact. Here $\operatorname{Hom}(A/\mathfrak{p}, M) \neq 0$, since depth M = 0, and thus

$$\operatorname{Ext}^{1}(A/(\mathfrak{p}+(a)),M) \neq 0$$

(by Nakayama's lemma), that is, $\mu^1(M) > 0$ (by Proposition 1.2 (d)).

PROPOSITION 2.4. If M is a Cohen-Macaulay A-module, then $\mu^i(M) > 0$ for depth $M = \dim M \le i \le \inf \dim M (\le \infty)$.

PROOF. Induction on $d = \operatorname{depth} M = \dim M$:

d=0 is equivalent to Supp $M=\{\mathfrak{m}\}$, that is, $\mu^i(\mathfrak{p},M)=0$ for all i and

all prime ideals $\mathfrak{p} + \mathfrak{m}$. This gives $E(k)^{\mu^i(M)} = E^i + 0$ (that is, $\mu^i(M) > 0$) for $0 \le i \le \text{inj dim } M$, when

$$0 \to M \to E^0 \to E^1 \to \ldots \to E^i \to \ldots$$

is a minimal injective resolution of M.

 $d-1 \rightarrow d$, $d \ge 1$: By Proposition 2.3 we can assume depth A > 0. If $a \in \mathcal{M} - (zA \cup zM)$, then M/aM is a Cohen-Macaulay A/(a)-module of dimension d-1 (see Serre [10, IV B]). The inductive hypothesis and Proposition 1.2 (c) now gives us the desired result.

The next result is a corollary of Theorem 3.4 of Peskine and Szpiro [8]. The equivalence between (ii) and (iii) in (c) is in fact well known [8, Cor. 3.5 of Th. 3.4] and is also proved by Levin and Vasconcelos [7, Th. 4.1] using different methods.

THEOREM 2.5. Let M be a non zero finitely generated A-module of finite injective dimension s. Then:

- (a) $\mu^{i}(M) > 0$ for depth $M \leq i \leq \text{inj dim } M = s$,
- (b) $\varphi(M) = \sum_{i} (-1)^{s-i} \mu^{i}(M) \ge 0$.
- (c) The following statements are equivalent:
 - (i) $\varphi(M) > 0$, (ii) Ann M = 0, (iii) grade_A M = 0.

REMARK. As pointed out before, this is the analogue of Proposition 1.3, the theorem about the Euler-characteristic of a finitely generated module of finite projective dimension. In fact we will use this proposition to prove Theorem 2.5.

PROOF. Let \hat{A} denote completion with respect to the m-adic topology. Then \hat{A} is again noetherian local with residue class field k, and further we know:

$$(\operatorname{Ann}_A M)^{\hat{}} = \operatorname{Ann}_{\hat{A}} \hat{M}, \quad zA = A \cap z\hat{A}, \quad \hat{M} = M \otimes_A \hat{A}$$

and \hat{A} is A-flat (see Bourbaki [2, Chap. III, § 3, no. 4, th. 3 et cor. 1]). Let also L be a finitely generated A-module. Then $\operatorname{Hom}_A(L,M)^{\hat{}} = \operatorname{Hom}_{\hat{A}}(\hat{L},\hat{M})$ (by Bourbaki [2, Chap. I, § 2, no. 10, prop. 11]) and hence (by an easy induction on i) $\operatorname{Ext}_A{}^i(L,M)^{\hat{}} = \operatorname{Ext}_A{}^i(\hat{L},\hat{M})$, in particular $\mu_A{}^i(M) = \mu_A{}^i(\hat{M})$, since $\hat{k} = k$, and thus

$$\operatorname{depth}_A M = \operatorname{depth}_{\hat{A}} \hat{M}$$
 and $\operatorname{injdim}_A M = \operatorname{injdim}_{\hat{A}} \hat{M}$.

Therefore we may assume that A is complete.

Peskine and Szpiro ([8, Th. 3.4]) have proved that $\operatorname{Ext}^i(E(k), N) = 0$ for $i \neq s$, and that $N = \operatorname{Ext}^s(E(k), M)$ is finitely generated with $\operatorname{Supp} M = \operatorname{Supp} N$ and $\operatorname{projdim} N < \infty$.

We want to show $\mu^i(M) = \beta_{s-i}(N)$ for all i. Assume that this is done. Then by Proposition 1.3 (b)

$$\operatorname{projdim} N = s - \operatorname{depth} M$$
 and $\mu^{i}(M) = \beta_{s-i}(N) > 0$

for depth $M \leq i \leq s$. By Proposition 1.3 (c) we get

$$\varphi(M) = \sum_{i} (-1)^{s-i} \mu^{i}(M) = \sum_{j} (-1)^{j} \beta_{j}(N) = \chi(N) \ge 0$$
.

Now (a) and (b) are established. We prove (c) as follows.

(i) \Rightarrow (ii): By Proposition 1.3 (c), $\chi(N) = \varphi(M) > 0$ implies that $0 = \operatorname{Ann} N \supseteq \operatorname{Ann} M$.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i): Assume grade_A M=0. Since Supp N= Supp M, also grade_A N=0 by Proposition 1.2 (h). By Proposition 1.3 (c) this gives

$$0 < \chi(N) = \varphi(M).$$

Now follows the proof of $\mu^{i}(M) = \beta_{s-i}(N)$ for all i: Let X, Y and Z be A-modules. Then there is a homomorphism

$$\sigma: X \otimes \operatorname{Hom}(Y, Z) \to \operatorname{Hom}(\operatorname{Hom}(X, Y), Z)$$

defined by

$$\sigma(x \otimes f)(g) = fg(x), \quad x \in X,$$

$$X \xrightarrow{g} Y \xrightarrow{f} Z.$$

The homomorphism σ is natural in X and Z, and σ is an isomorphism, if X is finitely generated and free (cf. [3, VI, Prop. 5.2]). Assume X finitely generated and let

$$\ldots \to F_p \to \ldots \to F_1 \to F_0 \to X \to 0$$

be a free resolution of X with each F_i finitely generated. Let

$$0 \to Z \to E^0 \to E^1 \to \ldots \to E^q \to \ldots$$

be an injective resolution of Z and define a double complex K. by

$$K^{pq} = F_{-p} \otimes \operatorname{Hom}(Y, E^q) = \operatorname{Hom}(\operatorname{Hom}(F_{-p}, Y), E^q)$$

(and obvious differentiations). By standard filtrations one gets two spectral sequences with the same limit and initial terms:

(*)
$$I_2^{pq} = \operatorname{Tor}_{-p}(X, \operatorname{Ext}^q(Y, Z)), \\ II_2^{pq} = \operatorname{Ext}^p(\operatorname{Ext}^{-q}(X, Y), Z).$$

Let X = k, Y = E(k), and Z = M in these spectral sequences:

$$I^{pq} = \operatorname{Tor}_{-p}(k, N)$$
 for $q = s$,
 $= 0$ otherwise,
 $II^{pq} = \operatorname{Ext}^{p}(k, M)$ for $q = 0$,
 $= 0$ otherwise,

and hence we have $\operatorname{Tor}_{s-i}(k,N) = \operatorname{Ext}^i(k,M)$ for all *i*. This ends the proof of Theorem 2.5.

REMARK. There are more direct ways to prove $\mu^{i}(M) = \beta_{s-i}(N)$, but we shall use the spectral sequences (*) later.

PROPOSITION 2.6. If M is a non-zero finitely generated A-module, then:

$$\mu^i(M) > 0$$
 for $\dim M \leq i \leq \operatorname{injdim} M \ (\leq \infty)$.

PROOF. It is enough to show: $\mu^{i+1}(M) = 0$, if $\mu^i(M) = 0$ and $i \ge \dim M$. Assume therefore $\mu^i(M) = 0$ and $i \ge \dim M$, and hence also $\operatorname{Ext}^i(L,M) = 0$ for all A-modules L of finite length (by Proposition 1.2 (d)). This gives that $\operatorname{Ext}^{i+1}(\cdot,M)$ is a left-exact contra-variant functor in the category of A-modules of finite length and hence

$$\operatorname{Ext}^{i+1}(k, M) = \operatorname{Hom}(k, \lim_{\to n} \operatorname{Ext}^{i+1}(A/\mathfrak{m}^n, M))$$

=
$$\operatorname{Hom}(k, H_{\mathfrak{m}}^{i+1}(M)) = 0,$$

where $H_{\mathfrak{m}}^{i}$ is the *i*th derived of the local cohomology functor (see Hartshorne [4, Prop. 4.5, Th. 2.8, and Prop. 6.4]).

REMARK. Proposition 2.4 follows of course also from Proposition 2.6.

3. μ^i and Gorenstein modules.

Assume in this section that G is a Gorenstein module of dimension s, that is (Sharp [11]), G is a finitely generated non-zero A-module with

$$s = \operatorname{depth} G = \operatorname{inj} \operatorname{dim} G \ (< \infty) \ .$$

Then G is a Cohen-Macaulay module of dimension s (by Proposition 1.2 (b)).

Also the ring A is Cohen-Macaulay of dimension s (Sharp [11, 3.9]).

Proposition 3.1. Let M be a finitely generated non-zero A-module of finite injective dimension. Then:

- (a) $\mu^{i}(M)\mu^{s}(G) = \beta_{s-i}(\operatorname{Hom}(G, M))$ for all i, and proj dim $\operatorname{Hom}(G, M) = s$ -depth $M < \infty$,
- (a') Hom (G, G) is free of rank $\mu^s(G)^2$,
- (b) $\operatorname{grade}_{M} L = \operatorname{grade}_{\operatorname{Hom}(G,M)} L$ for each non-zero finitely generated module L, and $\operatorname{Ass} M = \operatorname{Ass} \operatorname{Hom}(G,M)$.

REMARK. The first part of (b) follows, in the case M = G, from Sharp [11, 4.11].

PROOF. Consider the spectral sequences (*) from the proof of Theorem 2.5 and let X=k, Y=G and Z=M. Since $\operatorname{Ext}^q(G,M)=0$ for $q\neq 0$ (by Proposition 1.2 (g)) and $\operatorname{Ext}^{-q}(k,G)=0$ for $q\neq -s$, the spectral sequences degenerate to isomorphisms:

$$\operatorname{Tor}_{s-i}(k,\operatorname{Hom}(G,M)) = \operatorname{Ext}^i(\operatorname{Ext}^s(k,G),M)$$
 for all i .

This shows (a) and (a').

Since Ann $G \subseteq$ Ann Hom (G,G) = Ann A = 0, it follows that

$$\operatorname{AssHom}(G,M) = \operatorname{Supp} G \cap \operatorname{Ass} M = \operatorname{Ass} M.$$

For $a \in \text{Ann} L - zM$ we have

$$\operatorname{Hom}(G, M/aM) = \operatorname{Hom}(G, M)/a \operatorname{Hom}(G, M)$$

and therefore the rest of (b) is an easy induction.

COROLLARY 3.2. Let A be Gorenstein of dimension s, and let M be a non-zero finitely generated A-module. Then

(i)
$$\operatorname{inj} \operatorname{dim} M < \infty$$
,

if and only if

(ii)
$$\operatorname{projdim} M < \infty$$
,

and when these conditions are satisfied, then

$$\mu^{i}(M) = \beta_{s-i}(M)$$
 for all i .

REMARK. The equivalence between (i) and (ii) is well-known [7, Th. 2.2].

A stronger result is (cf. Jensen [5, Cor. 5]): A is Gorenstein, if and only if every (not necessarily finitely generated) A-module M of finite injective dimension has finite projective dimension. In fact, for a module M over a Gorenstein ring, (i) and (ii) are equivalent with

(iii) weak dim
$$M < \infty$$
.

LEMMA 3.3. Let M be a finitely generated non-zero A-module. Then M is Cohen-Macaulay of dimension d, if and only if $\operatorname{Ext}^i(M,G) = 0$ for $i \neq s - d$.

PROOF. $\operatorname{Ext}^i(M,G)=0$ for $i \neq s-d$, if and only if $\operatorname{depth} M=d$ and $\operatorname{grade}_G M=s-d$ (by Proposition 1.2 (g) and (h)). By Proposition 3.1 (b) it follows that $\operatorname{grade}_A M=\operatorname{grade}_G M$, and hence $\operatorname{depth} M=d$ and $\operatorname{grade}_G M=s-d$, if and only if M is Cohen-Macaulay of dimension d (by Proposition 1.2 (i), since A is Cohen-Macaulay).

PROPOSITION 3.4. If M is a Cohen-Macaulay A-module of dimension d, then:

- (a) $\operatorname{Ext}^{s-d}(M,G)$ is Cohen-Macaulay of dimension d too, and $\operatorname{Ext}^{s-d}(\operatorname{Ext}^{s-d}(M,G),G)=M\otimes\operatorname{Hom}(G,G)=M^{\mu^s(G)^2}$.
- (b) Ass $M = \text{Ass Ext}^{s-d}(M, G)$.

Remark. From Theorem 3.11 (v) of Sharp [11], (a) follows in the case d=0.

PROOF. Consider the spectral sequences (*) from the proof of Theorem 2.5 with X = M and Y = Z = G. By Proposition 3.1 and Lemma 3.3 they degenerate to

$$\operatorname{Ext}^i(\operatorname{Ext}^{s-d}(M,G),G) = \begin{cases} M \otimes \operatorname{Hom}(G,G) & \text{for } i = s - d \\ 0 & \text{otherwise} \end{cases},$$

and thus (a) follows from Lemma 3.3.

Let us now show $zM = z \operatorname{Ext}^{s-d}(M,G)$. Assume $a \in \mathfrak{m} - zM$. Then M/aM is Cohen-Macaulay of dimension d-1 (by Serre [10, IV B]), and hence $\operatorname{Ext}^{s-d}(M/aM,G) = 0$. We have therefore the exact sequence

$$0 \to \operatorname{Ext}^{s-d}(M,G) \xrightarrow{a} \operatorname{Ext}^{s-d}(M,G)$$
,

and thus $a \notin z \operatorname{Ext}^{s-d}(M,G)$. Now $zM \subseteq z \operatorname{Ext}^{s-d}(M,G)$ is shown. The other inclusion follows by the duality of (a).

To show (b), it is enough to show $\operatorname{Ass} M \subseteq \operatorname{Ass} \operatorname{Ext}^{s-d}(M,G)$ (again by the duality of (a)). Assume therefore $\mathfrak{p} \in \operatorname{Ass} M$, that is,

$$\mathfrak{p} \subseteq zM = z \operatorname{Ext}^{s-d}(M,G),$$

and hence there exist $\mathfrak{p}' \in \operatorname{Ass} \operatorname{Ext}^{s-d}(M,G)$ such that $\mathfrak{p} \subseteq \mathfrak{p}'$ and $\mathfrak{q} \in \operatorname{Ass} M$ such that $\mathfrak{p}' \subseteq \mathfrak{q}$. We have $\mathfrak{p} \subseteq \mathfrak{p}' \subseteq \mathfrak{q}$, that is,

$$\mathfrak{p} = \mathfrak{p}' \in \mathrm{Ass}\,\mathrm{Ext}^{s-d}(M,G)$$
,

since Ass $\operatorname{Ext}^{s-d}(M,G)$ is without embedded primes (see Prop. 13 of [10, IV B]).

Proposition 3.5. Let M be a Cohen-Macaulay A-module of dimension d. Then

- (a) $\mu^{i}(M)\mu^{s}(G) = \beta_{i-d}(\operatorname{Ext}^{s-d}(M,G))$ and $\beta_{i}(M)\mu^{s}(G) = \mu^{i+d}(\operatorname{Ext}^{s-d}(M,G))$ for all i,
- (b) $\inf \dim M < \infty \iff \operatorname{proj dim} \operatorname{Ext}^{s-d}(M,G) < \infty \text{ and } \operatorname{proj dim} M < \infty \iff \operatorname{inj dim} \operatorname{Ext}^{s-d}(M,G) < \infty.$

PROOF. Consider the spectral sequences (*) with X = k, Y = M, and Z = G. They degenerate to isomorphisms:

$$\operatorname{Tor}_{i-d}(k,\operatorname{Ext}^{s-d}(M,G)) = \operatorname{Ext}^s(\operatorname{Ext}^i(k,M),G)$$
 for all i .

This gives the first part of (a). The second part follows from the first and Proposition 3.4 (a).

(b) is now obvious.

COROLLARY 3.6. Let A be a Gorenstein ring of dimension s, and $l_A t$ M be a Cohen-Macaulay A-module of dimension d. Then:

- (a) $\operatorname{Ext}^{s-d}(M,A)$ is Cohen-Macaulay of dimension d and $\operatorname{Ext}^{s-d}(\operatorname{Ext}^{s-d}(M,A),A)=M$.
- (b) $\mu^{i}(M) = \beta_{i-d}(\operatorname{Ext}^{s-d}(M, A))$ and $\beta_{i}(M) = \mu^{i+d}(\operatorname{Ext}^{s-d}(M, A))$ for all i.
- (c) inj dim $M < \infty \iff$ inj dim $\operatorname{Ext}^{s-d}(M,A) < \infty \iff$ proj dim $M < \infty \iff$ proj dim $\operatorname{Ext}^{s-d}(M,A) < \infty$.

REFERENCES

- 1. H. Bass, On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 8-28.
- 2. N. Bourbaki, Algèbre commutative, Hermann, Paris, 1961.

- H. Cartan and S. Eilenberg, Homological Algebra (Princeton Math. Ser. 19), Princeton Univ. Press, Princeton, N.J., 1956.
- R. Hartshorne Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, (Lecture Notes in Math. 41), Springer-Verlag, Berlin · Heidelberg · New York, 1967.
- 5. C. U. Jensen, On the vanishing of lim(i), J. Algebra 15 (1970), 151-166.
- 6. I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.
- G. Levin and W. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968), 315-353.
- 8. C. Peskine and L. Szpiro, A Theorem on intersections, to appear in Inst. Hautes
 - C. Peskine and L. Szpiro, Modules de type fini et de dimension injective finie sur un anneau local noethérien, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1117-A1120.
- J.-P. Serre, Algèbre locale. Multiplicités (Lecture Notes in Math. 11), Springer-Verlag, Berlin · Heidelberg · New York, 1965.
- 11. R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117-139.
- R. Y. Sharp, On Gorenstein modules over a complete Cohen-Macaulay ring, Quart. J. Math. (Oxford) (2) 22 (1971), 425-434.

UNIVERSITY OF COPENHAGEN, DENMARK