A PROPERTY OF BIHARMONIC FUNCTIONS WITH DIRICHLET FINITE LAPLACIANS

M. NAKAI and L. SARIO

Consider a noncompact orientable C^{∞} manifold R of dimension $m \ge 2$ with C^{∞} Riemannian metric $ds^2 = \sum_{i,j=1}^m g_{ij}(x) dx^i dx^j$. A biharmonic function u on R is a C^4 solution of the fourth order elliptic equation $\Delta^2 u = 0$. Here

(1)
$$\Delta_{x} = -g(x)^{-\frac{1}{2}} \sum_{i=1}^{m} \frac{\partial}{\partial x^{i}} \left(\sum_{j=1}^{m} g(x)^{\frac{1}{2}} g^{ij}(x) \frac{\partial}{\partial x^{j}} \right)$$

is the Laplace–Beltrami operator associated with the metric tensor g_{ij} , with $g = \det(g_{ij})$ and $(g^{ij}) = (g_{ij})^{-1}$. We are interested in the space $W(R) = \{u \in C^4(R) \mid \Delta^2 u = 0\}$ and its various subspaces.

If R is the interior of a compact bordered Riemannian manifold \overline{R} , then every $u \in W(\overline{R}) = \{u \in W(R) \cap C(\overline{R}) \mid \Delta u \in C(\overline{R})\}$ admits the Riesz-type representation

(2)
$$u = H_u^R + \int_{\mathcal{P}} G(\cdot, x) \Delta_x u(x) dx,$$

where H_u^R is the solution of the harmonic Dirichlet problem on R with boundary values $u \mid \partial R$, G(x,y) is the harmonic Green's function on R, and $dx = g^{\frac{1}{2}} dx^1 \dots dx^m$ is the Riemannian volume element of R. The representation (2) reduces the study of $W(\bar{R})$ to that of

$$H(\overline{R}) = \{ u \in C^2(R) \cap C(\overline{R}) \mid \Delta u = 0 \text{ on } R \}$$

which is more accessible to explicit treatment than $W(\bar{R})$.

For this reason it is of compelling importance to distinguish subclasses of W(R) and of Riemannian manifolds R for which the representation (2) is valid. Some straightforward observations on this problem were made in [2], [3], and [4]. In this paper we study the metric growth of Δu for $u \in W(R)$ such that Δu has a finite Dirichlet integral and u possesses a certain boundedness property. The result to be proven is, roughly

Received September 28, 1970.

The work was sponsored by the U.S. Army Research Office - Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.

speaking, that $\Delta u \in L^2(R, G \cdot dx)$. From this it follows that such a u admits the representation (2) for all R with $1 \in L^2(R, G \cdot dx)$. That a condition on R cannot be altogether dispensed with is established by a counterexample.

Subclasses of W(R).

1. We denote by P, B, and D the classes of nonnegative, bounded, and Dirichlet finite functions, and we let BD stand for $B \cap D$. If no confusion with the class of continuous functions is to be feared, we also use C for BD. Given a class Y of functions we denote by Y_{Δ} the class $\{u \in C^2 \mid \Delta u \in Y\}$, and consider the subclasses $WXY_{\Delta}(R)$ of W(R) with X, Y = P, B, D, and C. Thus $u \in WXY_{\Delta}$ means that $u \in W$, $u \in X$, and $\Delta u \in Y$.

A regular subregion Ω of R is a relatively compact subregion of R whose boundary $\partial\Omega$ is a C^{∞} hypersurface. We denote by $B(x,\varepsilon)$ a parametric ball about x with radius ε , so small that $B(x,\varepsilon)$ is a regular region of R.

2. Let $u \in W(R)$ and take a regular region Ω of R. For an arbitrary point $x \in \Omega$ choose a ball $B = B(x, \varepsilon)$ with $\overline{B} \subset \Omega$. Denote by $G_{\Omega}(\cdot, \cdot)$ the harmonic Green's function on Ω with flux -1 about its pole, and by H_u^{Ω} the harmonic function on Ω continuous on $\overline{\Omega}$ with $H_u^{\Omega} | \partial \Omega = u$. By Green's formula,

$$\begin{split} \int_{\Omega-\overline{B}} \left[\left(u(y) - H_u{}^\Omega(y) \right) \varDelta_y G_\Omega(x,y) - G_\Omega(x,y) \varDelta_y \left(u(y) - H_u{}^\Omega(y) \right) \right] dy \\ &= - \int_{\partial\Omega-\partial B} \left[\left(u(y) - H_u{}^\Omega(y) \right) * d_y G_\Omega(x,y) - G_\Omega(x,y) * d_y \left(u(y) - H_u{}^\Omega(y) \right) \right]. \end{split}$$

On letting $\varepsilon \to 0$ we obtain

(3)
$$u(x) = H_u^{\Omega}(x) + \int_{\Omega} G_{\Omega}(x, y) \Delta_y u(y) dy$$

for every $x \in \Omega$ (cf. e.g. [1]).

The transition to the limit $\Omega \to R$ so as to obtain

(4)
$$u(x) = H_u^R(x) + \int_R G_R(x,y) \Delta u(y) \, dy ,$$

with the conventional notation $H_u{}^R = \lim_{\Omega \to R} H_u{}^\Omega$, is possible if and only if

(5)
$$\int_{R} G_{R}(x,y) |\Delta u(y)| dy < \infty$$

for some and hence for all x in R. This is the reason why we are interested in what could be called the metric growth $\int_R G_{\Omega}(x,y) |\Delta u(y)|^p dy$ of Δu as $\Omega \to R$. We shall write G for G_R .

The class WDC_{Λ} .

3. We first consider the class $WDC_{A}(R)$ consisting of all $u \in W(R)$ with finite D(u) and $\sup_{R} |\Delta u| + D(\Delta u)$, where

$$D(f) = D_R(f) = \int_R df \wedge *df$$

is the Dirichlet integral. We shall prove:

Theorem 1. The metric growth of the Laplacian of u in $WDC_{\Delta}(R)$ is so slow that

(6)
$$\int_{R} G(x,y) |\Delta u(y)|^{2} dy < \infty.$$

4. Fix an $x \in R$ and a ball $B = B(x, \varepsilon)$. Let $\psi \in C^{\infty}(R)$ such that $0 \le \psi \le 1$, $\psi \mid R - \overline{B} = 1$, and $\psi \mid B(x, \frac{1}{2}\varepsilon) = 0$. Since $\Delta u \in BD$, the functions

$$\varphi(y) = \psi(y)G(x,y)\Delta u(y)$$
 and $\varphi_{\Omega}(y) = \psi(y)G_{\Omega}(x,y)\Delta u(y)$

are in the class BD(R), with Ω an arbitrary regular region containing \bar{B} , and $G_{\Omega}(x,y)$ extended to R by $G_{\Omega}|R-\Omega=0$. Since

$$\lim_{\Omega \to R} D_R(G(x,\cdot) - G_{\Omega}(x,\cdot)) = 0$$

(cf. e.g. [5]), we conclude that

(7)
$$\lim_{Q \to R} D_R(\varphi - \varphi_Q) = 0.$$

From $d(\varphi_{\Omega}*du) = d\varphi_{\Omega} \wedge *du - \varphi_{\Omega} \Delta u *1$ and $\varphi_{\Omega} \mid \partial \Omega = 0$, it follows by Stokes' formula that

$$\int\limits_{R} \psi(y) \, G_{\varOmega}(x,y) \, |\varDelta u(y)|^2 \, dy \, = \int\limits_{R} d\varphi_{\varOmega} \mathsf{A} * du \, \, .$$

By Schwarz's inequality,

$$\int\limits_{R-B} G_{\varOmega}(x,y) \, |\varDelta u(y)|^2 \, dy \, \leqq \, \big(D_R(\varphi_\varOmega) \, D_R(u)\big)^{\frac12} \, .$$

Since $G_{\Omega}(x,\cdot)$ converges increasingly on R to $G(x,\cdot)$, we conclude by (7) that

(8)
$$\int_{R-R} G(x,y) |\Delta u(y)|^2 dy \leq (D_R(\varphi)D_R(u))^{\frac{1}{2}} < \infty.$$

On B, we set $K = \sup_{B} (\Delta u)^2 g^{\frac{1}{2}}$, and obtain

$$G(x,y)|\Delta u(y)|^2 dy \leq K l_m(y) dy^1 \dots dy^m$$
,

where $l_m(y) = c_1 |y|^{2-m}$ for $m \ge 3$, and $l_m(y) = c_2 \log(2\varepsilon/|y|)$ for m = 2, with the c_i constants. Therefore

(9)
$$\int_{\mathcal{B}} G(x,y) |\Delta u(y)|^2 dy < \infty.$$

We remark in passing that (9) is valid for every $u \in C^2(\overline{B})$. From (8) and (9), assertion (6) follows.

5. In the statement of Theorem 1 and in the above proof we implicitly assumed the existence of the Green's function $G(\cdot,\cdot)$ on R. This is justified by the following observation. Suppose R is in the class O_G of Riemannian manifolds R that do not carry Green's functions. Since O_G is contained in the class O_{HD} of Riemannian manifolds R such that

$$HD(R) = \{u \in C^2(R) \mid \Delta u = 0, D_R(u) < \infty\}$$

reduces to constants (cf. e.g. [5]), every $u \in WDD_A$ satisfies $\Delta u = c$, a constant. If $c \neq 0$, then $R \notin O_{QD}$, where $Q = \{v \in C^2(R) \mid \Delta v = 1\}$. However $R \notin O_{QD}$ is characterized by $\int_R G(x,y) dx dy < \infty$ (see [4]). This is clearly a contradiction and we conclude that $\Delta u = 0$ for every $u \in WDD_A$ and a fortiori for every $u \in WDC_A$. If we set $G(\cdot, \cdot) \equiv \infty$ for $R \in O_G$ and make the convention that $0 \cdot \infty = 0$, then (6) is still valid.

Since $u \in WDD_{A}$ on $R \in O_{G}$ belongs to HD, we deduce again by $O_{G} \subset O_{HD}$ that u = const. We therefore can express the above relations by the following inclusion scheme:

$$O_G \subset O_{WDD\Delta} \begin{cases} \subset O_{WDC\Delta}, \\ \subset O_{WCDA}, \end{cases}$$

where $O_{WXY_{\Delta}}$ is the class of those R for which $WXY_{\Delta}(R)$ reduces to constants.

The class WCD_{A} .

6. From the class WDC_{Δ} we turn to the class $WCD_{\Delta}(R)$ consisting of all $u \in W(R)$ with finite $\sup_{R} |u| + D_{R}(u)$ and $D_{R}(\Delta u)$. This class is technically more difficult to treat than the former. As a counterpart of Theorem 1 we shall prove:

Theorem 2. The metric growth of the Laplacian of u in $WCD_{\Delta}(R)$ is so slow that

(11)
$$\int\limits_{R} G(x,y) |\Delta u(y)|^2 dy < \infty.$$

If $R \in O_G$, then as in the case of Theorem 1, we have $\Delta u = 0$ for every $u \in WCD_{\Delta}$ (cf. (10)), and (11) can be considered trivial. Thus we may suppose $R \notin O_G$ in the proof given in Nos. 7-10.

7. Fix an $x \in R$ and a ball $B = B(x, \varepsilon)$. Let Ω be a regular region of R with $\Omega \supset \overline{B}$. We set

$$g_{\Omega} = \int_{\Omega} G_{\Omega}(\cdot, y) \Delta u(y) \, dy$$

on Ω and recall (3):

$$(12) u = H_u^{\Omega} + g_{\Omega}$$

on Ω . Since we are assuming $2\sup_{R}|u|=K_1<\infty$, we have, by the maximum principle, $\sup_{\Omega}|H_u^{\Omega}|\leq \frac{1}{2}K_1$ and consequently

$$\sup_{\Omega} |g_{\Omega}| \le K_1.$$

Further immediate consequences of (12) are

$$\Delta g_{\Omega} = \Delta u$$

on Ω .

$$g_{\Omega}|\partial\Omega=0,$$

and, by Stokes' formula,

(16)
$$D_{\Omega}(H_u^{\Omega}) + D_{\Omega}(g_{\Omega}) = D_{\Omega}(u) \leq D_{R}(u) < \infty.$$

8. Since $G_{\Omega}(\cdot,\cdot)$ converges increasingly on R to $G(\cdot,\cdot)$, and $G(\cdot,x)$ is bounded on R-B,

$$K_2 = \sup_{Q \supset \overline{R}} \sup_{y \in Q = R} G_Q(y, x) < \infty$$
.

Stokes' formula applied to $\Delta_y u(y) * (G_{\Omega}(x,y) d_y g_{\Omega}(y))$ on $\Omega - \overline{B}$ reads

(17)
$$\int_{\partial \Omega - \partial R} \Delta u * (G_{\Omega} dg_{\Omega}) = \int_{\Omega - \overline{R}} d(\Delta u * (G_{\Omega} dg_{\Omega})) .$$

By (12) and (16) we see that the $\partial g_{\Omega}(y)/\partial y_i$, $i=1,\ldots,m$, are uniformly convergent in $B(x,2\varepsilon)$. Therefore there exists a constant K_3 such that

$$\left| \int_{\partial B} \Delta u * (G_{\Omega} dg_{\Omega}) \right| \leq K_{3}$$

for every Ω . Since the right-hand side of (17) is

$$\int\limits_{\Omega-\overline{B}} G_{\varOmega} d\varDelta u \mathsf{n} * dg_{\varOmega} \, + \, \int\limits_{\Omega-\overline{B}} \varDelta u \; dG_{\varOmega} \mathsf{n} * dg_{\varOmega} \, - \, \int\limits_{\Omega-\overline{B}} G_{\varOmega} \varDelta u \; \varDelta g_{\varOmega} dy \; ,$$

relations (14), (17), and (18) imply

$$(19) \quad \int_{\Omega-\overline{B}}G_{\Omega}(\varDelta u)^{2}\,dy\,\leq\,K_{3}\,+\left|\int_{\Omega-\overline{B}}G_{\Omega}d\varDelta u \mathsf{A}*dg_{\Omega}\right|\,+\left|\int_{\Omega-\overline{B}}\varDelta u\,dG_{\Omega}\mathsf{A}*dg_{\Omega}\right|.$$

9. We are going to evaluate the last two terms of the right-hand side of (19). We start with the first. By Schwarz's inequality and (16)

$$\begin{split} \left(\int\limits_{\Omega-\overline{B}} G_{\Omega} d\varDelta u \mathbf{n} * dg_{\Omega}\right)^2 &= \left(\int\limits_{\Omega-\overline{B}} (G_{\Omega}^{\frac{1}{2}} \, d\varDelta u) \mathbf{n} * (G_{\Omega}^{\frac{1}{2}} \, dg_{\Omega})\right)^2 \\ &\leq \int\limits_{\Omega-\overline{B}} (G_{\Omega}^{\frac{1}{2}} \, d\varDelta u) \mathbf{n} * (G_{\Omega}^{\frac{1}{2}} \, d\varDelta u) \cdot \int\limits_{\Omega-\overline{B}} (G_{\Omega}^{\frac{1}{2}} \, dg_{\Omega}) \mathbf{n} * (G_{\Omega}^{\frac{1}{2}} \, dg_{\Omega}) \\ &\leq K_2^2 \, D_{\Omega-\overline{B}} (\varDelta u) \, D_{\Omega-\overline{B}} (g_{\Omega}) \, \leq K_2^2 \, D_R (\varDelta u) \, D_R (u) \; . \end{split}$$

Hence on setting $K_4 = K_2(D_R(\Delta u)D_R(u))^{\frac{1}{2}}$ we obtain

$$\left| \int_{\Omega - \overline{B}} G_{\Omega} \, d\Delta u \wedge * dg_{\Omega} \right| \leq K_{4} \, .$$

10. To evaluate the last term in (19), observe that $\Delta u dG_{\Omega} \wedge * dg_{\Omega} = \Delta u dg_{\Omega} \wedge * dG_{\Omega}$. Again by Stokes' formula

(21)
$$\int_{\partial \Omega - \partial B} \Delta u g_{\Omega} * dG_{\Omega} = \int_{\Omega - \overline{B}} g_{\Omega} d\Delta u \wedge * dG_{\Omega} + \int_{\Omega - \overline{B}} \Delta u dg_{\Omega} \wedge * dG_{\Omega} .$$

Since g_{Ω} and the $\partial G_{\Omega}(z,y)/\partial y_i$, $i=1,\ldots,m$, are uniformly convergent on ∂B , there exists a constant K_5 such that

(22)
$$\left| \int_{\partial B} \Delta u \; g_{\Omega} * dG_{\Omega} \right| \leq K_{5}$$

for every Ω . From this and (21) we obtain

(23)
$$\left| \int_{\Omega - \overline{B}} \Delta u \ dG_{\Omega} \wedge * dg_{\Omega} \right| = \left| \int_{\Omega - \overline{B}} \Delta u \ dg_{\Omega} \wedge * dG_{\Omega} \right|$$

$$\leq K_5 + \left| \int_{\Omega - \overline{B}} g_{\Omega} d\Delta u \wedge * dG_{\Omega} \right|.$$

In the same fashion as in No. 9, Schwarz's inequality, (13), and (16) yield

$$\left|\int\limits_{\Omega-\overline{B}}g_{\varOmega}d\varDelta u \mathsf{n}*dG_{\varOmega}\right|^{2} \leq K_{1}^{2}D_{\Omega-\overline{B}}(\varDelta u)\;D_{\Omega-\overline{B}}(G_{\varOmega})\;\leq\;K_{1}^{2}D_{R}(\varDelta u)\;D_{\Omega-\overline{B}}(G_{\varOmega})\;.$$

Since $D_{R-\overline{B}}(G(x,\cdot)) = \lim_{\Omega \to R} D_{\Omega-\overline{B}}(G_{\Omega}(x,\cdot))$, there exists a constant K_6 such that $K_5 + K_1(D_R(u)D_{\Omega-\overline{B}}(G_{\Omega}))^{\frac{1}{2}} \leq K_6$ for every Ω . From (23) it now follows that

$$\left| \int_{\Omega - \overline{B}} \Delta u \ dG_{\Omega} \wedge * dg_{\Omega} \right| \leq K_{6}.$$

By (19), (20), and (24), we have

$$\int_{\Omega - \overline{B}} G_{\Omega}(x, y) (\Delta u(y))^2 dy \leq K_7$$

with $K_7 = K_3 + K_4 + K_6$ for every regular region Ω . On letting $\Omega \to R$ we obtain

$$\int_{R-\overline{R}} G(x,y) (\Delta u(y))^2 dy \leq K_7.$$

By (9) we already know that $\int_{\overline{B}} G(x,y) (\Delta u(y))^2 dy < \infty$. The proof of (11) is thus complete.

11. We consider a measure $d_Gx = G(z,x)dx$ on R, and the corresponding L^2 -space $L^2(R,d_Gx)$. In view of Harnack's inequality, the location of z is immaterial provided it is fixed. Theorems 1 and 2 may be reformulated as follows:

$$\Delta(WDC_{\underline{A}}(R)) \cup \Delta(WCD_{\underline{A}}(R)) \subset L^{2}(R, d_{G}x).$$

The Riesz-type representation.

12. Let $Q(R) = \{u \in C^2(R) \mid \Delta u = 1\}$ and consider the class O_{QP} of Riemannian manifolds R for which $QP(R) = \emptyset$. It is known that $R \notin O_{QP}$ is equivalent to $\int_R G(x,y) dy < \infty$ (see [4]), that is, $1 \in L^2(R,d_Gx)$. We have seen that if $R \notin O_{QP}$, then every $u \in WXY_D$ (X,Y=B,C) admits the Riesz-type representation (2) (cf. [3]). We shall prove that the same is true for WDC_A and WCD_A . The latter case only is nontrivial.

THEOREM 3. If $R \notin O_{QP}$, then every u in $WCD_{\Delta}(R)$ (resp. $WDC_{\Delta}(R)$) has the Riesz-type representation

(26)
$$u = h + \int_{R} G(\cdot, y) \Delta u(y) dy$$

on R, with $h \in HC(R)$ (resp. HD(R)).

For the proof, let $\langle \cdot, \cdot \rangle$ be the inner product on $L^2(R, d_G y)$. Since 1 and $|\Delta u|$ are in $L^2(R, d_G y)$, Schwarz's inequality yields

$$\int\limits_R G(x,y) \left| \varDelta u(y) \right| \, dy \, = \, \left< 1, \left| \varDelta u \right| \right> \, \leqq \, \left(\left< 1, 1 \right> \left< \left| \varDelta u \right|, \left| \varDelta u \right| \right> \right)^{\frac{1}{4}} \, < \, \infty \, \, .$$

In view of (16), (26) follows on letting $\Omega \to R$ in (3).

13. One might suspect that the Riesz-type representation be valid at least for every $u \in WBB_{\Delta}(R)$ without any condition on R. That this is not the case can be seen by the following very simple example.

Example. Let R be the Riemannian manifold whose base manifold is the punctured disk $\{z \mid 1 < |z| < \infty\}$ about ∞ and whose metric is given by $ds^2 = \lambda(z) |dz|^2$ with $\lambda(z) = |z|^{-1}$. Then the function

(27)
$$u(z) = \frac{1}{2}(z+\bar{z})/(z\bar{z})^{\frac{1}{2}}$$

belongs to $WBB_{\Delta}(R)$ (and actually to $WBC_{\Delta}(R)$) but does not admit a Riesztype representation.

To see this, denote by $\Delta_e = -4\partial^2/\partial z\partial\bar{z}$ the Euclidean Laplacian. The Laplace–Beltrami operator on R is $\Delta = \lambda(z)^{-1}\Delta_e$ and the volume element $dV(z) = \frac{1}{2}i\lambda(z)\,dz\wedge d\bar{z}$. Thus $H(R) = \{u \mid \Delta_e u = 0\}$, and the Euclidean Dirichlet integral is identical with $D_R(\cdot)$.

By a simple computation we see that $\Delta_e u(z) = \frac{1}{2}(z+\bar{z})/(z\bar{z})^{3/2}$, which in turn gives

(28)
$$\Delta u(z) = \frac{1}{2}(1/z + 1/\bar{z}).$$

Therefore $\Delta u \in HB(R)$. Moreover

$$d\Delta u(z) \wedge *d\Delta u(z)/dV(z) = (z\bar{z})^{-2}$$

and we conclude that $D_R(\Delta u) < \infty$. Since |u| < 1, we have $u \in WBC_{\Delta}(R) \subseteq WBB_{\Delta}(R)$.

To see that u has no Riesz-type representation we only have to show that

(29)
$$a = \int_{|z|>1} G(w,z) |\Delta u(z)| \ dV(z) = \infty.$$

Here $w \in R$ is fixed with |w| > 2, and $G(w, \cdot)$ is the harmonic Green's

function on R with pole at w. Clearly there exists a positive number ε such that $G(w,z) \ge \varepsilon$ for $|z| \ge 2$. Therefore

$$\begin{split} a & \geq \varepsilon \int\limits_{|z|>2} \frac{|z+\bar{z}|}{2z\bar{z}} \, \frac{1}{|z|} \left(\frac{1}{2} i dz \wedge d\bar{z} \right) \\ & = \varepsilon \int\limits_{|z|>2} \frac{d|z|}{|z|} \int\limits_{0}^{2\pi} |\sin(\arg z)| \, d\arg z = \infty \, . \end{split}$$

Observe that $\overline{R} = \{z \mid 1 \leq |z| < \infty\}$ can be considered as a bordered Riemannian manifold with compact border |z| = 1 and the ideal boundary ∞ . The function u is in $W(\overline{R})$ and $\Delta u \in H(\overline{R})$. Clearly Δu is also harmonic at ∞ and $\Delta u(\infty) = 0$ but $\Delta u(z) = -\Delta u(-\overline{z})$. This accounts for the intricate behavior of u near ∞ and leads to (29). Harmonically the ideal boundary ∞ of R is of a quite simple nature but biharmonically it is very involved. This shows that biharmonic classification (see [3], [4]) heavily depends on the metric structure of the manifold in addition to its harmonic structure.

For a general R with $R \notin O_{QP}$, every $u \in WB_{\Delta}(R)$ admits (26) since

$$\int\limits_R G_R(x,y) \, |\varDelta_y u(y)| \; dy \; \leqq \; c \int\limits_R G_R(x,y) \; dy \; < \; \infty$$

 $(c = \sup_{R} |\Delta u|)$ and the transition from (3) to (4) is legitimate.

Without the condition $R \notin O_{QP}$ this conclusion is no longer true, as is also shown by our example. In fact,

$$\int\limits_{|z|>1} G(w,z) \; d\,V(z) \; \geqq \; \varepsilon \int\limits_{|z|>2} |z|^{-1} \big(\tfrac12 i dz \wedge d\bar z \big) \; = \; 2\pi \varepsilon \int\limits_{|z|>2} d|z| \; = \; \infty \; ,$$

and our R belongs to O_{QP} . In this sense $R \notin O_{QP}$ is inevitable to assure that every $u \in WB_{\Delta}(R)$ possess a Riesz-type representation. The significance of Theorem 3 lies in the fact that the same condition is sufficient to admit a Riesz-type representation of every $u \in WCD_{\Delta}(R)$, with Δu not necessarily bounded.

REFERENCES

- C. Constantinescu und A. Cornea, Ideale Ränder Riemannscher Flächen (Ergebnisse Math. Grenzgebiete, N.F. 32), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.
- Y. K. Kwon, L. Sario and B. Walsh, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier, Grenoble (to appear).

- M. Nakai and L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc. 77 (1971), 432–436.
- M. Nakai and L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc.
- L. Sario and M. Nakai, Classification theory of Riemann surfaces (Grundlehren Math. Wissensch. 164), Springer-Verlag, Berlin · Heidelberg · New York, 1970.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, U.S.A.