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A PROPERTY OF BIHARMONIC FUNCTIONS WITH
DIRICHLET FINITE LAPLACIANS

M. NAKAI and L. SARIO

Consider a noncompact orientable C* manifold R of dimension m = 2
with C* Riemannian metric ds?=37;_;g,/(x) dx*dai. A biharmonic
Sfunction w on R is a (* solution of the fourth order elliptic equation
A*u=0. Here

(1) 4, = — x)*zal(z‘q wm)a_>

is the Laplace-Beltrami operator associated with the metric tensor g,;,
with g det(g;;) and (g99)=(g;)". We are interested in the space

={u € O4R) | 4> =0} and its various subspaces.

If R is the 1nter10r of a compact bordered Riemannian manifold R,
then every we W(R)={uecW(R R) | AueC(R)} admits the Riesz-
type representation
(2) w=H,FE + fG'(',x) Au(z) de

R

where H,E is the solution of the harmonic Dirichlet problem on R with
boundary values u|0R, G(x,y) is the harmonic Green’s function on R,

and de=gtdat...da™ is the Riemannian volume element of R. The
representation (2) reduces the study of W(R) to that of
H(R) = {ueC¥R)nC(R) | Au=0 on R}

which is more accessible to exphclt treatment than W(R).

For this reason it is of compelling importance to distinguish subclasses
of W(R) and of Riemannian manifolds R for which the representation (2)
is valid. Some straightforward observations on this problem were made
in [2], [3], and [4]. In this paper we study the metric growth of du for
u € W(R) such that Au has a finite Dirichlet integral and u possesses a
certain boundedness property. The result to be proven is, roughly
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speaking, that Au e L*R,G-dx). From this it follows that such a u
admits the representation (2) for all R with 1 e L*R,G-dx). That a
condition on R cannot be altogether dispensed with is established by a
counterexample.

Subclasses of W(R).

1. We denote by P, B, and D the classes of nonnegative, bounded,
and Dirichlet finite functions, and we let BD stand for BnD. If no
confusion with the class of continuous functions is to be feared, we also
use C for BD. Given a class Y of functions we denote by Y, the class
{ueC? | AueY}, and consider the subclasses WXY ,(R) of W(R) with
X,Y=P,B,D, and C. Thus ue€ WXY , means that ue W, we X, and
AueY.

A regular subregion 2 of R is a relatively compact subregion of R
whose boundary 0f2 is a C* hypersurface. We denote by B(x,¢) a para-
metric ball about « with radius ¢, so small that B(z,¢) is a regular region
of R.

2. Let w € W(R) and take a regular region 2 of R. For an arbitrary
point x € 2 choose a ball B=B(x,e) with BcQ. Denote by Gg(-,*)
the harmonic Green’s function on 2 with flux —1 about its pole, and by
H,? the harmonic function on 2 continuous on 2 with H,?|0Q2=u. By
Green’s formula,

| ()~ H20) 4,6 w.9) ~ Gl 9) 4,ut) — H2@)] dy

2-B

= - f [(’"f(?/) - Hug(y))*dyG.Q(x, y) - Ga(x: y) *dy(u(y) - Hug(y))] .
292—0B

On letting £ - 0 we obtain
® u(z) = Hoz) + [ Gofa,y) 4,uy) dy
Q2

for every x € 2 (cf. e.g. [1]).
The transition to the limit 2 — R so as to obtain

) u(e) = HA@) + [ Oalwy)duly) dy,
R

with the conventional notation H,F=lim,  pH, 2 is possible if and
only if

®) [ xte)1au)dy < oo
R
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for some and hence for all  in R. This is the reason why we are inter-
ested in what could be called the metric growth [pGo(x,y)|du(y)|Pdy
of Au as 2 - R. We shall write G for Gp.

The class WDC,.

3. We first consider the class WDC (R) consisting of all e W(R)
with finite D(u) and supg|4u|+ D(4u), where

D(f) = Dalf) = [ dfmndf

R
is the Dirichlet integral. We shall prove:

THEOREM 1. The metric growth of the Laplacian of w in WDC ,(R) s
so slow that

®) [ @y dupizdy < .
R

4. Fix an ze R and a ball B=DB(x,¢). Let ye C®°(R) such that
0<y=<1l,y|R—B=1, and y|B(x,}e)=0. Since du € BD, the functions

Py) = vp(y)Q(x,y)Au(y) and  @go(y) = y(y)Galx,y)duly)

are in the class BD(R), with 2 an arbitrary regular region containing B,
and Gg(z,y) extended to R by G,|R—02=0. Since

lim!)—aRDR(G(x" ) —G.()(xa')) =0
(cf. e.g. [5]), we conclude that
(7) lim,_, p Dp(p—@q) = 0.

From d(py+du)=dggaxdu—@oAuxl and @,|0Q2=0, it follows by Stokes’
formula that

[ #o)Gate,9) 1 Autg)2 dy = [ dpgardu .
R R
By Schwarz’s inequality,
[ Galw.y)1duty)dy < (Dripa) Drw))t -

R-B

Since Gg(z,-) converges increasingly on R to G(x,*), we conclude by (7)
that

Q [ 6@y 1auw)P dy < (Drie) Da(w)t < o
R-B
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On B, we set K =supg(du)?gt, and obtain
Gz, y) |du(y) 2 dy < K1 (y)dy*...dy™,

where [,(y)=c, |y|>™ for m =3, and 1,(y)=c,log(2¢/|y|) for m =2, with
the c; constants. Therefore

©) [oEpiaumiray < .
B

We remark in passing that (9) is valid for every w € C%(B). From (8)
and (9), assertion (6) follows.

5. In the statement of Theorem 1 and in the above proof we implicitly
assumed the existence of the Green’s function G(-,-) on R. This is
justified by the following observation. Suppose R is in the class Oy of
Riemannian manifolds R that do not carry Green’s functions. Since O
is contained in the class Oy, of Riemannian manifolds R such that

HD(R) = {ueC*R) | Au=0, Dp(u) < o}

reduces to constants (cf. e.g. [5]), every u € WDD, satisfies du=c, a
constant. If ¢+0, then R ¢O,;,, where @={veC*R)|dv=1}. How-
ever R ¢ O,y is characterized by [pG(x,y)dxdy<oco (see [4]). This is
clearly a contradiction and we conclude that Aw=0 for every w € WDD,,
and a fortiori for every u e WDC,. If we set G(-,)=o0 for R e Oy and
make the convention that 0:co=0, then (6) is still valid.

Since we€ WDD, on R e O, belongs to HD, we deduce again by
Oqg<Ogp that u=const. We therefore can express the above relations
by the following inclusion scheme:

c0
10 O, <O { WDCg >
(10) Q WDDA4 ) —~ OWCDA ,

where Oy, xy, is the class of those R for which WXY 4(R) reduces to
constants.

The class WCD,,.

6. From the class WDC, we turn to the class WCD ,(R) consisting of
all u € W(R) with finite supg|u|+ Dg(u) and Dy(4u). This class is tech-
nically more difficult to treat than the former. As a counterpart of
Theorem 1 we shall prove:

THEOREM 2. The metric growth of the Laplacian of u in WCD ,(R) is so
slow that
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a [ ) u)ray < .
R

If B e Og4, then as in the case of Theorem 1, we have Adu=0 for every
ue WCD, (cf. (10)), and (11) can be considered trivial. Thus we may
suppose R & Og in the proof given in Nos. 7-10.

7. Fix an x € R and a ball B=B(x,¢). Let 2 be a regular region of R
with 2>B. We set

90 = [ Gal- ) duy) dy
2
on £ and recall (3):
(12) U = Hug'l'g.o

on . Since we are assuming 2supp|u|= K, < oo, we have, by the maxi-
mum principle, sup,|H,? < 3K, and consequently

(13) supgylgol < K, .

Further immediate consequences of (12) are

(14) Agq = Adu
on 2,
(15) 9al02 = 0,

and, by Stokes’ formula,
(16) Do(H,?)+Dg(gq) = Do(u) < Dg(u) < .

8. Since Gy(+,*) converges increasingly on R to G(-,-), and G(-,x) is
bounded on R—B,

K, = supg 5 5Supyeq-pGoy,x) < oo.

Stokes’ formula applied to 4,u(y)*(Gg(z,y)d,g9,(y)) on 2 — B reads

(17) f Aux(Godgy) = J' d(Aun(Gadgy)) -

29-0B a2-B

By (12) and (16) we see that the dg,(y)/dy;, i=1,...,m, are uniformly
convergent in B(x,2¢). Therefore there exists a constant K3 such that

(18) J.Au*(Gndga)

oB

< K,

for every Q. Since the right-hand side of (17) is
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f @ dAurrdg, + f Au dG axdg, — f G, Au Ag,dy ,
2-B B

relations (14), (17), and (18) imply

(19) fG (u)dy < K, +

Q2-B

f G oddurrdg, | +

f Au dG asdy, .

Q-B

9. We are going to evaluate the last two terms of the right-hand side
of (19). We start with the first. By Schwarz’s inequality and (16)

2 2
( f G,,dAmdg,,) =( f (Gt dAupAs(G gt dg,,))
o-B

Q2-B

IIA

f (Gt dAu)ax(Q ot dAu)- J’ (Gt dgo)ax(G ot dgy)

o-B 9-B
K2 Dy 5(4u) Dy g5(9o) < Ko? Dg(Au) Dy(w) .

A

Hence on setting K,=K,(Dg(4dw) Dp(u))t we obtain

(20) f G, dAuaxdg,| <

2-B

10. To evaluate the last term in (19), observe that AudGuaxdg,=
Audgoaxd@,. Again by Stokes’ formula

(21) f AugrdGy = f godAurrd@, + J' Audgoaxd@y, .
29—0B o-B 9-B
Since g, and the 0G,(z,y)/0y;, i=1,...,m, are uniformly convergent on

0B, there exists a constant K such that

(22)

f Au g ordG@y
oB

for every £2. From this and (21) we obtain

(23) f Au dQaxdg, | = f Au dgaxdG
2—-B Q—-B
< K, + f godAunsd@y ).
2-B
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In the same fashion as in No. 9, Schwarz’s inequality, (13), and (16)
yield

J‘ godAuned@,
o-B

= K2D, p(4u) Dy _5(Gg) = K, 2Dp(4u) Dg_5(Gy) -

Since Dp_g(G(z,))=limg_, oD, 5(Gq(x,*)), there exists a constant K
such that Ky+ K,(Dg(u)Dgy_5(Gg))t < K¢ for every 2. From (23) it now
follows that

(24) f Au dGgaxdgg | <

Q-B

By (19), (20), and (24), we have

| Gata.p)(au)y ay < K,

with K,=K;+ K,+ K4 for every regular region 2. On letting 2 - R
we obtain

f Q(z,y)(du(y))* dy £ K, .
R-B
By (9) we already know that [5@(z,y)(du(y))*dy < co. The proof of (11)
is thus complete.

11. We consider a measure dgx = G(z,x)dx on R, and the corresponding
L2-gpace L% R,dgx). In view of Harnack’s inequality, the location of 2
is immaterial provided it is fixed. Theorems 1 and 2 may be reformulated
as follows:

(25) A(WDC (R)UA(WCD4(R)) < L¥R,dy2) .

The Riesz-type representation.

12. Let Q(R)={ucC*R) | Au=1} and consider the class O,p of Rie-
mannian manifolds R for which @ P(R)=0@. It is known that R ¢ Ogp
is equivalent to [pG(x,y)dy<oo (see [4]), that is, 1€ L3 R,dgx). We
have seen that if R ¢ Ogp, then every ue WXY,, (X,Y =B,C) admits
the Riesz-type representation (2) (cf. [3]). We shall prove that the same
is true for WDC, and WCD,. The latter case only is nontrivial.

THEOREM 3. If R ¢ Oyp, then every u tn WCD4(R) (resp. WDC 4(R))
has the Riesz-type representation
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(26) w = h+t f Q- ,y)Auly)dy
R

on R, with h € HC(R) (resp. HD(R)).

For the proof, let (-,-) be the inner product on L%*R,d,y). Since 1
and |Au| are in L*(R,dy), Schwarz’s inequality yields

[ Gt auw)idy = Q,14uly < (1,1 dul, 4wt < .
R

In view of (16), (26) follows on letting £2 — R in (3).

13. One might suspect that the Riesz-type representation be valid at
least for every w € WBB,(R) without any condition on R. That this is
not the case can be seen by the following very simple example.

ExamMPLE. Let R be the Riemannian manifold whose base manifold is
the punctured disk {z | 1< |z| <oo} about oo and whose metric is given by
ds®=A(z) |dz|* with A(z)=|z|". Then the function

(27) u(z) = 3(z+2)/(22)

belongs to WBB 4(R) (and actually to WBC 4(R)) but does not admit a Riesz-
type representation.

To see this, denote by A,= —406%/020zZ the Euclidean Laplacian. The
Laplace-Beltrami operator on R is 4= A(z)"14, and the volume element
dV(z)=3%iA(z) dzadz. Thus H(R)={u | 4,4=0}, and the Euclidean Di-
richlet integral is identical with Dg(-).

By a simple computation we see that 4,u(z)=34(z+Z2)/(22)*2, which
in turn gives

(28) dufz) = J(1/z+1[2) .
Therefore Auw € HB(R). Moreover
dAu(z)axdAu(z)[dV (z) = (22)~2

and we conclude that Dp(4u) < . Since |u|< 1, we have u € WBC 4(R) <=
WBB ,(R).

To see that « has no Riesz-type representation we only have to show
that

(29) a = f G(w,z) |Au(z)| dV(z) = o .

|z|>1

Here we R is fixed with |w|>2, and G(w,-) is the harmonic Green’s
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function on R with pole at w. Clearly there exists a positive number &
such that G(w,z) 2 e for |2|=2. Therefore

£ f lz+z|—(§zdzAdz)

22z 7|
|z| >2

]
v

= J l——lf |sin (argz)| dargz = oo .

|z[>2

Observe that BR={z|1=<|z| <o} can be considered as a bordered
Riemannian manifold with compact border |z| =1 and the ideal boundary
oco. The function w is in W(R) and Au € H(R). Clearly Au is also har-
monic at co and Adu(oc)=0 but du(z)= —Au(—2). This accounts for the
intricate behavior of w near oo and leads to (29). Harmonically the ideal
boundary oo of R is of a quite simple nature but biharmonically it is
very involved. This shows that biharmonic classification (see [3], [4])
heavily depends on the metric structure of the manifold in addition to
its harmonie structure.

For a general R with R ¢ Oyp, every uwe WB,(R) admits (26) since

[ Grteiauldy s o [Gawy) dy < o
R R

(c=supg|d4u|) and the transition from (3) to (4) is legitimate.
Without the condition R ¢ Oyp this conclusion is no longer true, as
is also shown by our example. In fact,

G(w,z) dV(z) f [2|"1(}tdzAdZ) = 2me f dlz| =

|lz|>1 |z|>2 |z|>2

and our R belongs to Oyp. In this sense R ¢ Oy p is inevitable to assure
that every w € WB/(R) possess a Riesz-type representation. The signif-
icance of Theorem 3 lies in the fact that the same condition is sufficient
to admit a Riesz-type representation of every u e WCD,(R), with Au
not necessarily bounded.
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