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A MAXIMAL ALGEBRA

FRANK FORELLI

1. Introduction.

1.1. Let (R, S) be a flow. By this we mean that S is a locally compact
Hausdorff space on which the real line R acts as a topological transfor-
mation group. We will denote by 7' the function from R xS to S that
defines the action of R on 8. Then by definition 7' is continuous,
T(0,z)==« for all z in S, and T(s+t,2)=T(s,T(t,x)) for all (s,t,x) in
RxRx 8. We recall that if f is a function on Rx S, teR, and z €S,
then f, and f* are the functions on S and R respectively defined by
fy)=f(@,y) for all y in 8 and f*(s)=f(s,x) for all s in R. (Thus T, is a
homeomorphism of S for every ¢ in R.) If X is a locally compact Haus-
dorff space, then we will denote by Cy(X) the uniform algebra of all
continuous complex functions on X that vanish at infinity. (Thus if
J€Cy(S) and z € 8, then fo7® is a uniformly continuous bounded com-
plex function on R.) The class of all functions f in Cy(S) such that
JoT* e H®(R) for every z in S is a uniformly closed subalgebra of the
algebra C(S) which we will denote by A (see Section 2.1 for the defini-
tion of H*(R)). If 8 is the unit circle in the complex plane and T, is the
rotation of S through an angle of ¢ radians for every f in R, then A4 is
the familiar disc algebra. Wermer showed that the disc algebra is a
maximal closed subalgebra of the algebra of all continuous functions on
the circle [8, Theorem 1]. The purpose of this paper is to state a generaliza-
tion and to give its proof. If « € 8, then by the orbit of x we mean 7'%(R),
which is a subset of S. The flow (R, S) is called minimal if for every =
in 8 the orbit of = is dense in S. The rotation flow on the circle is of
course minimal since there is just one orbit. There is the following
generalization of the Wermer maximality theorem.

1.2. THEOREM. If the flow (R, 8S) is minimal, then A is a maximal closed
subalgebra of C(S).

The proof of Theorem 1.2 is in Section 2.7. Sections 2.1-2.6 are pre-
paratory. With regard to the proof we refer to [5].
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1.3. We remark that Theorem 1.2 is a theorem of Hoffman and Singer
if (R,8) is the flow that is associated with a dense subgroup of R [6,
Theorem 4.7].

1.4. A subalgebra B of Cy(X) is called pervasive if for every proper
closed subset E of X the restriction of B to E is uniformly dense in Cy(E)

[7].

1.5. TaeorEM. If the flow (R, 8) is minimal, then A is a pervasive sub-
algebra of Cy(S).

The proof of Theorem 1.5 is in Section 3. We remark that Theorem 1.5
is a theorem of Hoffman and Singer if (R, S) is the flow that is associated
with a dense subgroup of R [7]. Furthermore, with regard to Theorem
1.5 we refer to [3, Theorem 4.2, 1°]. For some examples of minimal flows
we refer to [1].

2. The proof of Theorem 1.2.

2.1. We recall that H*(R) (which serves to define A) is the class of all
functions F in L*(R) such that

(2.1) JIm(1/(t—2))F(t) dt
is holomorphic on
(2.2) {z: Im(z)>0}.

An equivalent definition of H*(R) is that it is the class of all functions F
in L*®(R) such that the spectrum of F is contained in [0, o). Further-
more we recall that H(R) is the class of all functions ¥ in L(R) such
that (2.1) is holomorphic on (2.2). An equivalent definition of H(R) is
that it is the class of all functions F in L}(R) such that £ =0 on (— ,0)
where F is the Fourier transform of F,

F(s) = fe—ist F(t) dt .
The following lemma expresses the well-known relationship between
H>*(R) and H(R).
2.2 Lemma. If F € L*(R), then F € H®(R) if and only if

JE@)G(#)dt = 0
Jor every @ in HY(R).



154 FRANK FORELLI
Lemma 2.2 will be used at the end of Section 2.7.
2.3. The following lemma is a particular case of [2, Lemma 2, 2].

2.4. Lemma. If fe Oy(S), F € H(R), and

g = [foT,F(—1t)dt,
then ge A.

The proof is easy and is in [2]. We remark that g € Cy(S) because
feCy(S) and T is continuous.

2.5. With regard to measure theory we will follow Halmos [4]. If
X is a locally compact Hausdorff space, then we will denote by M(X)
the space of all complex Baire measures on X. We remark that every
complex measure is bounded. If § is a complex measure, then we will
denote by || the total variation measure of §. (Thus if § € M(X), then
|8l € M(X).) A measure § in M(S) is called quasi-invariant if whenever
a Baire set E is of |§| measure 0, then for every ¢ in B the Baire set
T(E) is of |f| measure 0. We define transformations U and ¥V of Rx S
by U(t,x)=(t,T(t,x)) and V(t,x)=(t,T(—*t,x)) for all (t,z) in RxS. We
have UoV =VoU=the identity transformation of Rx S, and thus U
and V are homeomorphisms of R x §. We will need the following lemma.

2.6. LeMmA. Let 2 and u be nonnegative measures tn M(R) and M(S)
respectively and consider the product measure A x u, which is in M(R x S).
If u is quasi-invariant, then there is a finite nonnegative Baire measurable
Sfunction ¢ on Rx S such that

(2.3) JFdAxpu) = [FoUgd(Axp)
for all F in LY(A % u).

Proor. We define a nonnegative measure y in M (R x 8) by

(2.4) y(B) = (Axu)(U(E))

for every Baire subset £ of Rx S.

We assert that y is absolutely continuous with respect to the product
measure 4 x 4. We recall that if Z is a subset of R xS and ¢ € R, then Z,
is the subset of S consisting of all  in S such that (t,x) € E. For the
purpose of proving the assertion let E be any Baire subset of Rx S
such that
(2.5) Axu)l)=0.
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Then (the Fubini theorem)
(2.6) w(E) =0

for 2 almost all ¢. If ¢ in R is such that (2.6) holds, then because y is
quasi-invariant we have u(T(E,))=0. Consequently since (U(E)),=
T(E,) we have u((U (E)),) =0 for A almost all ¢, and therefore by (2.4)

(2.7) y(B) = 0.
Thus we see that (2.5) implies (2.7), i.e. y<Ax u.

It now follows (the Radon-Nikodym theorem) that there is a finite
nonnegative Baire measurable function ¢ on R xS such that

(2.8) JGdy = [Gepd(Axp)

for all @ in L'(y). Since V=U-! we have by (2.4) y(V(E))=(Ax u)(E)
for every Baire subset £ of Rx S. It follows from this that

(2.9) [FoUdy = [ Fd(Axp)

for every nonnegative Baire measurable function F on R x §, and hence
for all F in LYAx u). The desired (2.3) follows from (2.9) and (2.8)
(with G=FoU).

2.7. We will now prove Theorem 1.2. Let B be any subalgebra of
Co(8) that contains A. It is to be shown that either B=A4 or B is uni-
formly dense in Cy(S). Suppose then that B is not uniformly dense in
Oy(S). Then (following Wermer [8]) there is a nonzero measure § in
M(8S) that annihilates B: [fdf+0 for some f in Cy(S) and [gdf=0 for
every g in B. By [2, Theorem 3] the measure § is quasi-invariant, and
thus |B| satisfies the hypothesis of Lemma 2.6. Fix a nonzero function
G in HY(R), let dA=|G(t)|dt, let u=|p|, and let @ be a finite nonnegative
Baire measurable function on R x S such that (2.8) holds. Furthermore
let X and y be bounded complex Baire measurable functions on R and §
respectively such that G=X|G| and 8= yu. We will denote by Z, the
class of all nonnegative integers, and by Q, the class of all nonnegative
rational numbers.

Let g € B. We will use (2.3) to prove that g € A. In (2.3) let

F(t,2) = e X(t)y()g(@)* f(T(~t,2))
where reQ,, ke Z,, and fe Cy(S). Then the right side of (2.3) is equal to
(2.10) [ (F G () x(T'(t,2)) pt,2) g(T(¢,2))* dt) f () du(x)
and the left side of (2.3) is equal to
(2.11) J (S foTT'_ et (t) dt) g* dp .
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By Lemma 2.4 the inner integral in the expression (2.11) is a member
of 4, and therefore because of the conditions on B and § the expression
(2.11) vanishes. Consequently the expression (2.10) vanishes for all
f in Cy(S), and therefore the inner integral in the expression (2.10)
vanishes for x4 almost all . Although the Baire set of 4 measure 0 where
the inner integral in the expression (2.10) does not vanish depends
onrinQ, and kin Z,, since Q, and Z, are countable there is a single
Baire set N of 4 measure 0 such that if x € N', then

(2.12) [ G (¢t) (Tt x)) p(t,x) g(T(¢, ) dt = O
for all 7 in Q, and all kin Z,. We remark that if x € N’, then
NGE) 2(T(t,2)) @t 2) dt < oo
By (2.3) (with F(t,z)=|x(x)|) we have
Jd(2xp) = [lxoTlpd(Axp),
and therefore there is an z in N’ such that
(2.13) [1G@) x(T(t,2))| (t,z) dt > 0.

Fix such an . Then for this # (2.12) and (2.13) state the following:
There is a nonzero function F in L(R) such that

(2.14) F(goT=)t € HY(R) for every kin Z,.
It is well-known nowadays that (2.14) implies that
(2.15) goT=e H*(R) .

This fact of the theory of H*(R) can be obtained from the theory of
simply invariant subspaces. Wermer [8] stated it in terms of the disc
algebra and the Hardy class H! on the circle, and proved it by means
of the theory of functions, thereby completing the proof of his maxi-
mality theorem.

From (2.15) it follows that if y e T=%R) (the orbit of z), then
goT¥ € H*(R), for H*(R) is a translation invariant space and

9(T(t,T(s,2))) = g(T(t+3,2)).
We will complete the proof of Theorem 1.2 by showing that
goTv e H*(R) forevery yin S.
Let G € H'(R) and consider the function in Cy(S) defined by the integral
[goT,G(t) dt .
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By Lemma 2.2 this function vanishes on the orbit of z, and therefore
because it is continuous it vanishes on the closure of the orbit of z.
This is true for every @ in H(R), and therefore by Lemma 2.2 we have
goTv € H*(R) for all y in the closure of the orbit of z. Since the flow
(R, 8) is minimal the closure of this orbit is S.

3. The proof of Theorem 1.5.
3.1. We will denote by Q the class of all rational numbers.

3.2. LemmA. If the flow (R, S) is minimal, then
(3.1) 8 = U, o T&)
for every nonempty open set G.

Proor. We will denote by H the right side of (3.1). If ¢ e Q, then
T(H)=H. Therefore because H is open we have T(H)=H for all ¢ in
R, and hence 7'(H')=H' for all t in R. It now follows since (R, 8) is mini-
mal that the closed set H’ is empty.

3.3. We will now prove Theorem 1.5. Let X be a proper closed subset
of S. If f is a function on S, then we will denote by f* the restriction of
f to X. Let A% be the subalgebra of Cy(X) consisting of all functions
on X of the form f* where f is any member of 4. It is to be shown that
A% is uniformly dense in Cy(X). For this purpose let « be any measure
in M(X) that annihilates A*. We will show that o« =0. The desired den-
sity of course follows from this. The measure « is defined on the class
of all Baire subsets of X. It is easily seen that this class coincides with
the class of all sets of the form EnX where E is any Baire subset of S.
We define a measure 8 in M(S) by

(3.2) BE) = x(En X)
for every Baire subset E of S. It follows that
[fap = [t da

for every bounded complex Baire measurable function f on §. Con-
sequently § annihilates 4, and therefore by [2, Theorem 3] the measure
B is quasi-invariant. Let u=|8| and let G be a nonempty open Baire
subset of § that is disjoint from X. If ¥ is any Baire subset of S that is
disjoint from X, then by (3.2) we have S(E)=0. Consequently u(G)=0,
and therefore by (3.1) and the fact that u is quasi-invariant we have

u#(8)=0. Hence by (3.2) we have x(EnX)=0 for every Baire subset E
of 8. Thus a=0.
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