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THE ATTAINMENT SET OF THE ϕ-ENVELOPE
AND GENERICITY PROPERTIES

A. CABOT, A. JOURANI, L. THIBAULT and D. ZAGRODNY

Abstract
The attainment set of the ϕ-envelope of a function at a given point is investigated. The inclusion
of the attainment set of the ϕ-envelope of the closed convex hull of a function into the attainment
set of the function is preserved in sufficiently general settings to encompass the case ϕ being a
norm in a power not less than 1. The non-emptiness of the attainment set is guaranteed on generic
subsets of a given space, in several fundamental cases.

1. Introduction

Given a normed space (X, ‖·‖), two reals λ > 0 and p ≥ 1, and an extended
real-valued function f : X → R∪ {+∞}, the Klee envelope of f with index λ

and power p is defined by

κλ,pf (x) := sup
y∈X

(
1

pλ
‖x − y‖p − f (y)

)
for all x ∈ X,

and the attainment set is

Qλ,pf (x) :=
{
y ∈ X :

1

pλ
‖x − y‖p − f (y) = κλ,pf (x)

}
.

The Klee envelope is extensively studied. There are a lot of results concern-
ing its properties and its attainment set, see, e.g., [3], [7], [17] and references
therein. The Klee envelope is a suitable extension of the farthest distance func-
tion widely developed, e.g., in [1], [9], [10], [13], [14]. Recently, various
new properties of the Klee envelope of a function have been obtained through
the notion of norm subdifferential local uniform convexity (NSLUC, for short),
see [12]. Among them, assuming that f is a proper lower semicontinuous func-
tion whose effective domain dom f := {x ∈ X : f (x) < +∞} is bounded,
the inclusions

Qλ,pf (x) ⊂ Qλ,p(co f )(x) ⊂ co Qλ,pf (x) (1)
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are established, see [12, Theorem 2]. In the case p = 1, it is also shown (for
any real α > 0) in [12, Theorem 3] that, whenever κλ,1f is finite at some point,
then

κλ,1f (x) + 1

λ
dist(x, Wα) = mα, (2)

where mα := α+ infy∈X κλ,1f (y); this allowed in [12] to reduce the important
problem of singleton property of sets with unique farthest point to the other
important problem of convexity of Chebyshev sets.

The Klee envelope is an important particular case of the Moreau supremal
convolution. Thus, it is natural to look for counterparts of those results (for
the Klee envelope) in more general cases. The aim of the present paper is to
investigate attainment sets of the supremal convolution, whenever a general
convex function ϕ: X → R ∪ {−∞, +∞} is considered in place of the norm
to the power p above. This is motivated by recent results in [6], where the
concept of ϕ-envelope of a function is considered in depth. Given an extended
real-valued function ϕ: X → R∪ {−∞, +∞}, the ϕ-envelope of the function
f : X → R ∪ {−∞, +∞} is defined by

f ϕ(x) := sup
y∈X

(
ϕ(x − y) +. (−f (y))

)
for all x ∈ X,

where following Moreau [15]

∀r, s ∈ R, r +. s := r + s, r +. ∞ := +∞, r +. (−∞) := −∞,

and (+∞) +. (−∞) = (−∞) +. (+∞) = −∞.

Of course, as said in [6], the functionf ϕ corresponds to the Moreau c-conjugate
f c of f with the coupling c: X × X → R ∪ {−∞, +∞} given by c(x, y) :=
ϕ(x − y). The structure of the transform f 
→ f ϕ is examined in great detail
in [6] and various properties of ϕ-envelopes are provided.

The paper is organized as follows. In the next section we present prelimin-
ary results used throughout the development. In Section 3 we recall the notion
of NSLUC sets and give many examples from [12] of NSLUC sets, relating in
this way that concept to the ones of locally uniformly rotund property (LUR,
for short), Kadec-Klee property, etc. We also prove some new results for NS-
LUC sets which are crucial in the following sections, see, e.g., Proposition 3.7.
Section 4 is devoted to generalize (1) to the general fundamental case when
the ϕ-envelope of f is involved instead of the Klee envelope. This is achieved
in Theorem 4.1. The genericity of non-emptiness of the attainment set is con-
sidered in Section 5 and shown in Theorem 5.1 therein. Finally, in Section 6
the identity given in (2) is obtained for the ϕ-envelope of f , see Theorem 6.1.
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2. Preliminaries

Throughout the paper, given a normed space (X, ‖·‖) we will denote by B[x, r]
(resp. B(x, r)) the closed (resp. open) ball centered at x ∈ X and with radius
r > 0. It will be convenient to denote by BX and SX the closed unit ball and
closed unit sphere of X, that is BX := B[0, 1] and SX := {x ∈ X : ‖x‖ = 1}.
As usual, we will also denote by N the set of all positive integers and by
R := R ∪ {−∞, +∞} the extended real line. The indicator function of a set
S ⊂ X is defined by

δS(x) =
{

0, if x ∈ S,

+∞, if x /∈ S.

The closure, the convex hull and the closed convex hull of S ⊂ X are denoted
by cl S, co S and co S respectively. For a function f : X → R, we denote its
effective domain by dom f , that is,

dom f := {x ∈ X : f (x) < +∞}.
We call f a proper function if f (x) < +∞ for at least one x ∈ X, and
f (x) > −∞ for all x ∈ X, or in other words, if dom f is a non-empty set on
which f is finite. The function which is constantly equal to +∞ (resp. −∞)
on X is denoted by ωX (resp. −ωX). A function f : X → R is said to be Fréchet
differentiable at a point x where it is finite whenever as usual there is some
x∗ ∈ X∗ (the topological dual space of X) such that

f (x ′) − f (x) − 〈x∗, x ′ − x〉
‖x ′ − x‖ → 0 as x ′ → x;

in such a case f is necessarily finite near x. The continuous linear functional
x∗ is called the Fréchet derivative of f at x and it is denoted by DF f (x).
Similarly, when for any h ∈ X,

t−1
(
f (x + th) − f (x) − t〈x∗, h〉) → 0 as t → 0,

one says that f is Gâteaux differentiable and such an element x∗ is generally
denoted by DGf (x).

If f is convex, its Moreau-Rockafellar subdifferential is defined as ∂f (x) =
∅ if f is not finite at x and if f is finite at x

∂f (x) := {x∗ ∈ X∗ : 〈x∗, x ′ − x〉 ≤ f (x ′) − f (x), ∀x ′ ∈ X}.
More generally, given a real δ ≥ 0 and a point x ∈ X with |f (x)| < +∞ the
set

∂δf (x) := {x∗ ∈ X∗ : 〈x∗, x ′ − x〉 ≤ δ + f (x ′) − f (x), ∀x ′ ∈ X}
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is the δ-subdifferential of f at x, and as above one puts ∂δf (x) = ∅ when
f (x) is not finite. Of course, ∂δf (x) coincides with ∂f (x) whenever δ = 0.
The domain of the set-valued mapping ∂δf is

dom ∂δf := {x ∈ X : ∂δf (x) �= ∅}.
The normal cone to a convex set S ⊂ X at x ∈ cl S is defined by

N(S, x) := {x∗ ∈ X∗ : 〈x∗, u − x〉 ≤ 0 ∀u ∈ S}.
Consider now the concepts of convex hull and closed convex hull of an

extended real-valued function. For a function f : X → R∪{+∞}, one defines
its convex hull co f : X → R by

co f (x) := inf{r ∈ R : (x, r) ∈ co(epi f )},
where epi f denotes the epigraph of f , that is,

epi f := {(x, r) ∈ X × R : f (x) ≤ r}.
Obviously, it is the greatest convex function majorized by f and

co f (x) = inf

{ m∑
i=1

tif (yi) : yi ∈ X, ti > 0,

m∑
i=1

tiyi = x,

m∑
i=1

ti = 1

}
. (3)

Similarly, the lower semicontinuous convex hull (or closed convex hull)
co f : X → R ∪ {−∞, +∞} of f is defined by

co f (x) := inf{r ∈ R : (x, r) ∈ co(epi f )}.
From the above formulas one sees that co f is convex and lower semicontinu-
ous and it is the greatest lower semicontinuous convex function less or equal
to f . It also satisfies the following properties

co(epi f ) = epi(co f ), co(dom f ) ⊂ dom co f.

This allows us to express this closed convex hull function in the following
manner in the case when f is lower semicontinuous: for all x ∈ X and n ∈ N
there exist mn ∈ N, tn1 , . . . , tnmn

in ]0, 1] with
∑mn

i=1 tni = 1, and yn
1 , . . . , yn

mn
in

dom f , such that

lim
n→∞

mn∑
i=1

tni yn
i = x and co f (x) = lim

n→∞

mn∑
i=1

tni f (yn
i ).
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Let us first state a result from [6] on the relationship between the ϕ-envelope
of f and the ϕ-envelope of co f ; for the previous case when ϕ is a norm to a
power not less than one see, for example, [12]. For the sake of completeness,
we give a detailed proof.

Proposition 2.1. Let (X, ‖·‖) be a normed space, f : X → R ∪ {+∞} be
a proper function and ϕ: X → R ∪ {+∞} be a proper convex function. Let
x ∈ X be such that ϕ is lower semicontinuous on x − dom co f . Then

f ϕ(x) = gϕ(x) = (co f )ϕ(x) = (co f )ϕ(x), (4)

where g is any function satisfying co f ≤ g ≤ f .

Proof. Since co f ≤ g ≤ f , we see that f ϕ ≤ gϕ ≤ (co f )ϕ . Thus (4)
holds true, whenever f ϕ(x) = +∞. The case f ϕ(x) = −∞ is excluded since
f is proper. Let us consider the case f ϕ(x) ∈ R. Let us take any y ∈ X,
m ∈ N, and ti > 0, and yi ∈ X for every i = 1, . . . , m, such that

∑m
i=1 ti = 1

and
∑m

i=1 tiyi = y. We have

ϕ(x − yi) ≤ f ϕ(x) + f (yi),

thus m∑
i=1

tiϕ(x − yi) ≤ f ϕ(x) +
m∑

i=1

tif (yi),

so by the convexity of ϕ

ϕ(x − y) ≤ f ϕ(x) +
m∑

i=1

tif (yi).

Taking the infimum over all admissible convex combinations, that is, the in-
fimum over the set in (3) with y playing the role of x, we obtain

ϕ(x − y) ≤ f ϕ(x) + inf

{ m∑
i=1

tif (yi) :
m∑

i=1

tiyi = y, ti > 0,

m∑
i=1

ti = 1

}
,

or equivalently ϕ(x − y) ≤ f ϕ(x) + co f (y). This, combined with the lower
semicontinuity of ϕ on x − dom(co f ), yields ϕ(x − y) ≤ f ϕ(x) + co f (y)

for all y ∈ dom(co f ). From the latter inequality we obtain that (co f )ϕ(x) ≤
f ϕ(x), hence the desired equalities

f ϕ(x) = gϕ(x) = (co f )ϕ(x)

are true. Finally, taking g = co f in the latter equalities gives the equality with
(co f )ϕ(x).
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Given functions f, ϕ: X → R, and a real ε ≥ 0, consider x, y ∈ X such that
ϕ(x − y) +. (−f (y)) ≥ f ϕ(x) − ε and note, for such x, y, that both ϕ(x − y)

and f (y) are finite whenever f ϕ(x) is finite. Then, for every x ∈ X the ε-
approximate attainment set Mε,ϕ(x) is defined as follows: if |f ϕ(x)| = +∞
then Mε,ϕf (x) := ∅, and if |f ϕ(x)| < +∞ then

Mε,ϕf (x) := {y ∈ X : ϕ(x − y) +. (−f (y)) ≥ f ϕ(x) − ε}
= {y ∈ X : ϕ(x − y) − f (y) ≥ f ϕ(x) − ε}, (5)

where the second equality is due to the above comment. For ε = 0 the set
Mε,ϕf (x), called the attainment set, will be denoted by Mϕf (x), so

Mϕf (x) := {y ∈ X : ϕ(x − y) +. (−f (y)) = f ϕ(x)}
= {y ∈ X : ϕ(x − y) − f (y) = f ϕ(x)}

if |f ϕ(x)| < +∞, and Mϕf (x) = ∅ if |f ϕ(x)| = +∞. Our objective is to
study the domain of the set-valued mapping x 
→ Mϕf (x), that is, the set
of x ∈ dom f ϕ for which the attainment set Mϕf (x) is non-empty. Under
suitable conditions, we will study, in particular, properties of sequences of
approximating points, connections between Mϕ(co f )(x) and Mϕf (x), and
the generic property of attainment points.

The next lemma, providing relations between the Fréchet subdifferentiab-
ility of −f ϕ and the differentiability of ϕ, will be used in Section 4. Recall
that the Fréchet subdifferential of a function g: X → R at a point x where g

is finite is given by

∂F g(x) =
{
x∗ ∈ X∗ : lim inf

x ′→x

g(x ′) − g(x) − 〈x∗, x ′ − x〉
‖x ′ − x‖ ≥ 0

}
.

We adopt the convention ∂F g(x) = ∅ if g(x) is not finite.

Lemma 2.1. Let (X, ‖·‖) be a normed space, and let ϕ: X → R ∪ {+∞}
and f : X → R be extended real-valued functions. Assume that f ϕ is finite
at x.

(1) If f ϕ is continuous at x and ϕ is proper and convex, then for every
y ∈ dom co f , the function ϕ is finite and continuous at x − y.

(2) If y ∈ Mϕf (x), then the following hold:
(i) ∂F ϕ(x − y) ⊂ ∂F f ϕ(x);

(ii) ∂F (−f ϕ)(x) ⊂ ∂F (−ϕ)(x − y);
(iii) if ∂F (−f ϕ)(x) �= ∅ and if ∂F ϕ(x − y) �= ∅, then f ϕ is Fréchet

differentiable at x and ϕ is Fréchet differentiable at x − y with
DF f ϕ(x) = DF ϕ(x − y);
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(iv) if f ϕ is Fréchet differentiable at x and ϕ is proper and convex, then
ϕ is Fréchet differentiable at x − y with DF ϕ(x − y) = DF f ϕ(x).

Proof. (1) Following the proof of Proposition 2.1, we have

∀x ′ ∈ dom f ϕ, ∀y ∈ X, ϕ(x ′ − y) ≤ f ϕ(x ′) + co f (y).

Fix ε > 0 and, by the continuity of f ϕ at x, take δ > 0 such that

f ϕ(x ′) ≤ f ϕ(x) + ε, ∀x ′ ∈ B(x, δ),

which implies that for every y ∈ dom co f

ϕ(x ′ − y) ≤ co f (y) + f ϕ(x) + ε, ∀x ′ ∈ B(x, δ). (6)

Let y ∈ dom co f . There exists a sequence {zk}k∈N converging to y such that
limk→+∞ co f (zk) = co f (y). We may choose an integer k ∈ N such that
co f (zk) < co f (y) + ε and ‖zk − y‖ < δ/2. Thus relation (6) ensures that

ϕ(x ′ − zk) ≤ co f (y) + f ϕ(x) + 2ε, ∀x ′ ∈ B(x, δ),

and this implies that ϕ is bounded from above on B(x − y, δ/2). This guaran-
tees, because of the convexity of ϕ, that ϕ is continuous at x − y.

(2)(i) The function f ϕ is the supremal convolution of the functions ϕ and
−f , hence the result can be deduced from [12, Lemma 1].

(ii) Let x∗ ∈ ∂F (−f ϕ)(x). There is some function ε(x ′) → 0 as x ′ → x

such that, for all x ′ near x,

〈−x∗, x ′ − x〉 ≥ f ϕ(x ′) − f ϕ(x) − ε(x ′)‖x ′ − x‖
≥ ϕ(x ′ − y) − f (y) − (

ϕ(x − y) − f (y)
) − ε(x ′)‖x ′ − x‖

= ϕ(x ′ − y) − ϕ(x − y) − ε(x ′)‖x ′ − x‖.
This shows that x∗ ∈ ∂F (−ϕ)(x − y), which ends the proof of the inclusion
∂F (−f ϕ)(x) ⊂ ∂F (−ϕ)(x − y).

(iii) In view of (i) and (ii), the non-emptiness of ∂F ϕ(x−y) and ∂F (−f ϕ)(x)

implies the non-emptiness of ∂F f ϕ(x) and ∂F (−ϕ)(x − y), which implies in
turn the Fréchet differentiability of f ϕ at x and the Fréchet differentiability of
ϕ at x − y. The equality DF f ϕ(x) = DF ϕ(x − y) then follows immediately
from the inclusion of (i).

(iv) Since the convex function ϕ is finite and continuous at x − y by (1), it
ensues that ∂ϕ(x − y) �= ∅, thus (iv) follows from (iii).

Finishing this preliminary section, we give a formula connecting the sub-
differential of ϕ for maximizing sequences with the Fréchet derivative of f ϕ .
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Proposition 2.2. Let (X, ‖·‖) be a normed space, let ϕ: X → R ∪ {+∞}
be a proper convex function and let f : X → R be a function such that f ϕ(x) is
finite and the Fréchet derivative DF f ϕ(x) exists. Let {yi}i∈N be any maximizing
sequence for f ϕ(x), that is,

lim
i→∞

(
ϕ(x − yi) − f (yi)

) = f ϕ(x). (7)

Then the following properties hold.

(a) The function ϕ is continuous at x − yi for i ∈ N sufficiently large. If
x∗

i ∈ ∂δi
ϕ(x − yi) for all i ∈ N, then

lim
i→∞ ‖x∗

i − DF f ϕ(x)‖ = 0, (8)

where δi ≥ 0 for all i ∈ N and limi→∞ δi = 0.

(b) Moreover, if {yik }k∈N is a subsequence converging weakly to y, then
the sequences {ϕ(x − yik )}k∈N and {f (yik )}k∈N converge to ϕ(x − y) ∈
R and (co f )(y) ∈ R, respectively. The limit point y satisfies y ∈
Mϕ(co f )(x).

Proof. (a) Since f ϕ(x) is finite, then we may suppose that all f (yi) and
ϕ(x − yi) are finite, thus the continuity of ϕ at each x − yi is a consequence of
Lemma 2.1(1). Consider any sequence {δi}i∈N with δi ≥ 0 and limi→∞ δi = 0,
and consider also, for each i ∈ N, any x∗

i ∈ ∂δi
ϕ(x − yi). Put

εi :=
√

max{f ϕ(x) − (ϕ(x − yi) − f (yi)), δi, i−1}
and x∗ := DF f ϕ(x) as well. For all h ∈ BX and all i ∈ N, we have

〈x∗
i , h〉 ≤ ε2

i + ϕ(x + εih − yi) − ϕ(x − yi)

εi

≤ ε2
i + ϕ(x + εih − yi) − f (yi) − (ϕ(x − yi) − f (yi))

εi

≤ f ϕ(x + εih) − f ϕ(x) + 2ε2
i

εi

≤ 〈x∗, h〉 + 2εi + θi,

where θi → 0 uniformly with respect to h ∈ BX. This ensures that the sequence
of subgradients is strongly convergent to the Fréchet derivative of f ϕ at x.

(b) Note that, by Lemma 2.1, the function ϕ is continuous on x −dom co f ,
and, by Proposition 2.1, (co f )ϕ(x) = f ϕ(x). Thus relation (7) ensures that

(co f )ϕ(x) = f ϕ(x) = lim
i→∞

(
ϕ(x − yi) − co f (yi)

)
. (9)
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Now, let {yik }k∈N be a subsequence converging weakly to y. For large k, say
k ≥ k0, by (a) the convex function ϕ is finite and continuous at x − yik , so we
can choose x∗

ik
∈ ∂ϕ(x − yik ). By (a) again, we know that {x∗

ik
}k∈N converges

strongly to x∗. Thus for k ≥ k0 we have

〈x∗
ik
, u + yik − x〉 + ϕ(x − yik ) ≤ ϕ(u), ∀u ∈ X,

which allows us to say (by taking, respectively, u ∈ dom ϕ and u = x − y)
that

lim sup
k→+∞

ϕ(x − yik ) < +∞ and lim sup
k→+∞

ϕ(x − yik ) ≤ ϕ(x − y).

On the other hand, relation (9) implies that

lim inf
k→+∞ ϕ(x − yik ) ≥ f ϕ(x) + lim inf

k→+∞ co f (yik )

≥ f ϕ(x) + co f (y)

≥ ϕ(x − y).

Thus we have limk→+∞ ϕ(x − yik ) = ϕ(x − y) ∈ R. We then deduce from the
last inequalities above that f ϕ(x)+co f (y) = ϕ(x−y). By using relations (7)
and (9), we finally obtain limk→+∞ f (yik ) = limk→+∞ co f (yik ) = co f (y),
which completes the proof.

3. NSLUC sets

We begin this section by recalling the definition of the NSLUC property, which
was introduced in [12].

Definition 3.1. Let S be a subset of the normed space (X, ‖·‖). We say
that S has the norm subdifferential local uniform convexity property, NSLUC
property for short, if for every bounded subset S ′ ⊂ S with 0 /∈ cl‖·‖ S ′ and
every u ∈ SX for which there is a continuous linear functional u∗ ∈ ∂‖·‖(u)

satisfying
inf
s ′∈S ′ ‖s ′ − 〈u∗, s ′〉u‖ > 0,

one can find a real β > 0 such that

∀s ′ ∈ S ′, ‖s ′‖ ≥ |〈u∗, s ′〉| + β‖s ′ − 〈u∗, s ′〉u‖.

Of course, the NSLUC property holds for any subset of a set having this
property. Several characterizations of the NSLUC property were established
in [12]. To cite some of them, given a norm ‖·‖ on a vector space X we need
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to recall some definitions. The norm ‖·‖ is strictly convex on a subset S of X

if the following implication holds true:

x, y ∈ S, ‖x + y‖ = ‖x‖ + ‖y‖, x �= 0, y �= 0 �⇒ x = ‖x‖
‖y‖y. (10)

If (10) holds true for S = SX, then one just says that the norm is strictly convex
or the space (X, ‖·‖) is strictly convex.

We say that a set S ⊂ X has the Kadec-Klee property with respect to the
norm ‖·‖ whenever any sequence {xi}i∈N of elements of S converging weakly
to x ∈ X along with limi→∞ ‖xi‖ = ‖x‖ converges strongly to x (that is,
‖xi − x‖ → 0 as i → ∞). So, the norm ‖·‖ has the Kadec-Klee property if
and only if the whole set X has the Kadec-Klee property with respect to ‖·‖.
As recalled in the next proposition, see [12] for details, the NSLUC property
entails both the strict convexity and the Kadec-Klee property.

Proposition 3.1. Let S be a set in the normed space (X, ‖·‖) having the
NSLUC property. Then the norm ‖·‖ is strictly convex on S and S has the
Kadec-Klee property with respect to ‖·‖.

We recall (see [7]) that the norm ‖·‖ of X is locally uniformly rotund (LUR,
for short) at a given point x ∈ X\{0} if limi→∞ ‖xi−x‖ = 0, whenever {xi}i∈N
is a sequence in X such that limi→∞ ‖xi‖ = ‖x‖ and limi→∞ ‖xi +x‖ = 2‖x‖.
Clearly (see, e.g., [8]), the norm ‖·‖ is locally uniformly rotund (LUR) or
simply (X, ‖·‖) is LUR if it is LUR at each x ∈ X \ {0}. The following
proposition on the NSLUC property of every LUR space was obtained in [12].

Proposition 3.2. If the normed space (X, ‖·‖) is LUR, then X has the
NSLUC property.

In the next propositions the notion of relative ball compactness is used
to get the NSLUC properties. We say that a subset S of the normed space
(X, ‖·‖) is relatively ball compact (resp. relatively weakly sequentially ball
compact) whenever the intersection of S with any closed ball is relatively
compact (resp. relatively weakly sequentially compact). The following result
was obtained in [12]. There it is stated that a weakly relatively ball compact
set has the NSLUC property whenever the norm is strictly convex and has the
Kadec-Klee property.

Proposition 3.3. Let S be a relatively weakly sequentially ball compact
subset of the normed space (X, ‖·‖). If the norm ‖·‖ is strictly convex (or
equivalently the norm is strictly convex on SX) and the set S has the Kadec-
Klee property, then S has the NSLUC property.
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The strict convexity of a normed space can be also characterized through
the NSLUC property for some class of sets, we refer to [12] for details.

Proposition 3.4. A normed space (X, ‖·‖) is strictly convex if and only if
every relatively ball compact subset S of X has the NSLUC property.

The NSLUC property can be obtained by the use of the dual norm. The
Gâteaux differentiability of the dual norm with the Kadec-Klee property of the
norm guarantees the NSLUC property of the space, see [12].

Proposition 3.5. Let (X, ‖·‖) be a Banach space whose norm has the
Kadec-Klee property and the dual norm is Gâteaux differentiable off the origin.
Then X has the NSLUC property.

Now we present some new results using the NSLUC property and which
will be crucial in the development in Section 4. The first one is related to the
limit superior of approximate subdifferentials of the norm. Recall that, for a
topological space (Z, τ) and a sequence of subsets {Si}i∈N, the τ -limits inferior
and superior are defined as

τ Lim inf
i→∞ Si := {

z ∈ Z : z = τ − lim
i→∞ zi, zi ∈ Si, ∀i ∈ N}

,

τ Lim sup
i→∞

Si := {
z ∈ Z : there is a subsequence {ik}k∈N such

that z = τ − lim
k→∞ zk, zk ∈ Sik , ∀k ∈ N}

.

As was mentioned before, the LUR property can be useful to derive the NSLUC
property. However, when we limit ourselves to a sequence, a weaker condition
can be used to guarantee the NSLUC property on the sequence, namely the
LUR property at a given point. Indeed, as illustrated in the next proposition,
there is an interesting relationship between the LUR property at a given point x
and the NSLUC property of a sequence {xi}i∈N such that

‖·‖Lim sup
i→+∞

∂αi
‖·‖(xi) ⊂ ∂‖·‖(x), (11)

for any sequence {αi}i∈N of non-negative numbers with limi→+∞ αi = 0.
Let us note that if x �= 0 then the inclusion (11) implies immediately that
the sequence {xi}i∈N does not have any subsequence which converges to the
origin. In order to see this, observe that 0 ∈ ∂αi

‖·‖(xi) with αi = ‖xi‖, so if
a subsequence converges to the origin, then by (11) we get 0 ∈ ∂‖·‖(x), but
this is impossible.

Proposition 3.6. Let (X, ‖·‖) be a normed space and x ∈ X \ {0} be given
such that the norm ‖·‖ of the space has the LUR property at x. Then each



214 A. CABOT, A. JOURANI, L. THIBAULT AND D. ZAGRODNY

bounded sequence {xi}i∈N satisfying (11) for every sequence {αi}i∈N such that
αi ≥ 0 and limi→∞ αi = 0, has the NSLUC property.

Proof. If the LUR property of the norm holds at x �= 0, then it obviously
holds at ‖x‖−1x. This and the equality

∂‖·‖(‖x‖−1x) = ∂‖·‖(x)

allows us to suppose without loss of generality that ‖x‖ = 1. Let {xi}i∈N be a
bounded sequence satisfying (11) for every sequence {αi}i∈N of non-negative
reals such that limi→∞ αi = 0.

(a) Suppose first that ‖xi‖ = 1 for all i ∈ N. To show the NSLUC property,
let us argue by contradiction. So let us assume that there exist u ∈ SX and
u∗ ∈ ∂‖·‖(u) such that for some subsequence {xik }k∈N we have

inf
k∈N ‖xik − 〈u∗, xik 〉u‖ > 0 (12)

and
lim

k→∞ |〈u∗, xik 〉| = 1.

Putting δk := 1 − |〈u∗, xik 〉|, we have δk ≥ 0 and δk → 0 as k → +∞.
Taking into account the boundedness of the sequence {xi}i∈N, then, without
loss of generality we may suppose that either 〈u∗, xik 〉 > 0 for all k ∈ N or
〈u∗, xik 〉 < 0 for all k ∈ N.

If 〈u∗, xik 〉 > 0 for all k, then u∗ ∈ ∂δk
‖·‖(xik ) and therefore, by (11), u∗ ∈

∂‖·‖(x). Thus, using the definition of the subdifferential combined with the
equality 〈u∗, u〉 = ‖u‖ (due to u∗ ∈ ∂‖·‖(u)), and using the triangle inequality,
we see that ‖u + x‖ = ‖u‖ + ‖x‖ = 2‖x‖, hence u = x (because of the LUR
property at x applied with the sequence zi := u for all i ∈ N). Similarly, using
the inclusion u∗ ∈ ∂δik

‖·‖(xik ) combined with the equality 〈u∗, x〉 = ‖x‖ and
using the triangle inequality, we obtain that limk→∞ ‖xik + x‖ = 2‖x‖.

If 〈u∗, xik 〉 < 0 for all k, then −u∗ ∈ ∂δk
‖·‖(xik ) and thus, by (11), −u∗ ∈

∂‖·‖(x). Consequently, as above, on the one hand ‖u − x‖ = ‖u‖ + ‖x‖ =
2‖−x‖, hence u = −x, and on the other hand limk→∞ ‖xik − x‖ = 2‖x‖.
Using the LUR property again, in both cases we obtain limk→∞ ‖xik −u‖ = 0,
which contradicts (12).

(b) Remove now the condition ‖xi‖ = 1 for all i ∈ N. As it is observed
in comments concerning (11) the inclusion ‖·‖Lim supi→+∞ ∂αi

‖ · ‖(xi) ⊂
∂‖·‖(x) implies that

lim inf
i→+∞ ‖xi‖ > 0.

Then put x̃i := xi/‖xi‖ and observe that the sequence {x̃i}i∈N satisfies (11).
We deduce from (a) that {x̃i}i∈N has the NSLUC property, which entails in turn
that {xi}i∈N has the NSLUC property. This finishes the proof.
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The second result, which is needed in the next section, is quite technical.

Proposition 3.7. Assume that (X, ‖·‖) is a normed space, S ⊂ X is a
bounded subset such that the set x − S has the NSLUC property for some
x ∈ X, and let d ∈ X \ {x}. Suppose that for each n ∈ N there exist mn ∈ N,
tn1 , . . . , tnmn

∈ ]0, 1], with
∑mn

i=1 tni = 1, and yn
1 , . . . , yn

mn
∈ S such that

lim
n→∞

mn∑
i=1

tni yn
i = d and lim

n→∞

mn∑
i=1

tni ‖x − yn
i ‖ = ‖x − d‖.

Then for every ε > 0, u∗ ∈ ∂‖·‖(u) with u := ‖x − d‖−1(x − d) and

Cn
ε := {

j ∈ {1, . . . , mn} : ‖x − yn
j − 〈u∗, x − yn

j 〉u‖ ≥ ε
}
,

one has
lim

n→∞
∑
i∈Cn

ε

tni = 0, (13)

and consequently for every sequence {εi}i∈N, such that εi > 0 for all i ∈ N and
limi→∞ εi = 0, we are able to choose ni := n(εi), such that limi→∞ ni = ∞
and

lim
i→∞

max
j∈{1,...,mni

}\Cni
εi

dx+span{x−d}(yni

j ) = 0,

and
lim
i→∞

∑
j∈{1,...,mni

}\Cni
εi

t
ni

j = 1.

Proof. For each n ∈ N, take mn ∈ N, tn1 , . . . , tnmn
∈ ]0, 1], with

∑mn

i=1 tni =
1, and yn

1 , . . . , yn
mn

∈ S such that

lim
n→∞

mn∑
i=1

tni yn
i = d and lim

n→∞

mn∑
i=1

tni ‖x − yn
i ‖ = ‖x − d‖. (14)

Note that the set
⋃

n∈N{yn
1 , . . . , yn

mn
} is bounded according to the boundedness

of S. Let us fix μ > 0 and consider the sets

Mn
μ := {

(i, j) ∈ N×N : i, j ∈ {1, . . . mn} and

‖x − yn
i ‖ + ‖x − yn

j ‖ ≥ μ + ‖x − yn
i + x − yn

j ‖}
and (Mn

μ)c the complement of Mn
μ in {1, . . . , mn} × {1, . . . , mn}. We claim

that
lim

n→∞
∑

(i,j)∈Mn
μ

tni tnj = 0. (15)
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If not, that is, lim supn→∞
∑

(i,j)∈Mn
μ
tni tnj > 0, then, by (14), we have

2‖x − d‖ = lim
n→∞

∑
(i,j)∈{1,...,mn}×{1,...,mn}

tni tnj (‖x − yn
i ‖ + ‖x − yn

j ‖)

= lim
n→∞

( ∑
(i,j)∈Mn

μ

tni tnj (‖x − yn
i ‖ + ‖x − yn

j ‖)

+
∑

(i,j)∈(Mn
μ)c

tni tnj (‖x − yn
i ‖ + ‖x − yn

j ‖)
)

≥ lim sup
n→∞

( ∑
(i,j)∈Mn

μ

tni tnj (μ + ‖x − yn
i + x − yn

j ‖)

+
∑

(i,j)∈(Mn
μ)c

tni tnj (‖x − yn
i + x − yn

j ‖)
)

≥ lim sup
n→∞

∑
(i,j)∈Mn

μ

tni tnj μ + 2‖x − d‖ > 2‖x − d‖,

a contradiction. Given ε > 0, u and u∗ as in the statement of the proposition,
we are able to construct a discrete (infinite, denumerable) subset 
 of ]0, 1[
and a sequence {n(μ)}μ∈
 such that for all μ1, μ2 ∈ 
 we have

μ1 > μ2 �⇒ n(μ1) < n(μ2)

and 0 ∈ cl 
, and (keep in mind (15))

lim
μ∈
,μ→0+

∑
(i,j)∈(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j = 1, (16)

lim
μ∈
,μ→0+

∑
i∈C

n(μ)
ε

t
n(μ)

i = lim sup
n→∞

∑
i∈Cn

ε

tni , (17)

and such that for all (i, j) ∈ {1, . . . , mn(μ)} × {1, . . . , mn(μ)} \ Mn(μ)
μ we have

‖x − y
n(μ)

i ‖ + ‖x − y
n(μ)

j ‖ ≤ μ + ‖x − y
n(μ)

i + x − y
n(μ)

j ‖. (18)

Since the set x−S has the NSLUC property, there exists β > 0 (not depending
on μ) such that for all (i, j) ∈ {1, . . . , mn(μ)}∩Cn(μ)

ε ×{1, . . . , mn(μ)}∩Cn(μ)
ε \

Mn(μ)
μ we get

‖x − y
n(μ)

i ‖ ≥ |〈u∗, x − y
n(μ)

i 〉| + β‖x − y
n(μ)

i − 〈u∗, x − y
n(μ)

i 〉u‖,

‖x − y
n(μ)

j ‖ ≥ |〈u∗, x − y
n(μ)

j 〉| + β‖x − y
n(μ)

j − 〈u∗, x − y
n(μ)

j 〉u‖.
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Putting 1
C

n(μ)
ε

(i) = 1 if i ∈ Cn(μ)
ε and 1

C
n(μ)
ε

(i) = 0 otherwise, it follows
from (14), (16), (17) and (18) that

2‖x − d‖
= lim

μ∈
,μ→0+

∑
(i,j)∈(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j

(
μ + ‖x − y

n(μ)

i + x − y
n(μ)

j ‖)

= lim
μ∈
,μ→0+

∑
(i,j)∈(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j

(‖x − y
n(μ)

i ‖ + ‖x − y
n(μ)

j ‖)

≥ lim
μ∈
,μ→0+

∑
(i,j)∈(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j

(|〈u∗, x − y
n(μ)

i 〉|

+ 1
C

n(μ)
ε

(i)β‖x − y
n(μ)

i − 〈u∗, x − y
n(μ)

i 〉u‖
+ |〈u∗, x − y

n(μ)

j 〉| + 1
C

n(μ)
ε

(j)β‖x − y
n(μ)

j − 〈u∗, x − y
n(μ)

j 〉u‖)

= 2‖x − d‖ + lim
μ∈
,μ→0+

∑
(i,j)∈C

n(μ)
ε ×C

n(μ)
ε ∩(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j β
(‖x − y

n(μ)

i

− 〈u∗, x − y
n(μ)

i 〉u‖ + ‖x − y
n(μ)

j − 〈u∗, x − y
n(μ)

j 〉u‖),
where the second equality is due to (15) and the last equality is due to the fact
that 〈u∗, x − d〉 = ‖x − d‖ since u∗ ∈ ∂‖·‖(u). Then, we obtain by definition
of Cn

ε that

0 ≥ lim sup
μ∈
,μ→0+

∑
(i,j)∈C

n(μ)
ε ×C

n(μ)
ε ∩(M

n(μ)
μ )c

t
n(μ)

i t
n(μ)

j β2ε

≥ 2βε lim
μ∈
,μ→0+

( ∑
(i,j)∈C

n(μ)
ε ×C

n(μ)
ε

t
n(μ)

i t
n(μ)

j −
∑

(i,j)∈M
n(μ)
μ

t
n(μ)

i t
n(μ)

j

)

= 2βε lim
μ∈
,μ→0+

( ∑
i∈C

n(μ)
ε

t
n(μ)

i

)2

= 2βε lim sup
n→∞

(∑
i∈Cn

ε

tni

)2

.

So, it ensues as desired that

lim sup
n→∞

∑
i∈Cn

ε

tni = 0. (19)

Now, let {εi}i∈N be a sequence such that εi > 0 for all i ∈ N and limi→∞ εi = 0.



218 A. CABOT, A. JOURANI, L. THIBAULT AND D. ZAGRODNY

By (19) we can choose ni := n(εi) ∈ N such that limi→∞ ni = ∞ and

lim
i→∞

∑
j∈{1,...,mni

}\Cni
εi

t
ni

j = 1.

Then, for each i ∈ N from the definition of Cni
εi

it results that

dx+span(d−x)(y
ni

j ) ≤ ‖x − y
ni

j − 〈u∗, x − y
ni

j 〉u‖ < εi, ∀i ∈ N, ∀j ∈ (Cni

εi
)c,

which justifies that

lim
i→∞

max
j∈{1,...,mni

}\Cni
εi

dx+span{x−d}(yni

j ) = 0

and finishes the proof.

The last result of this section is related to a sequence {yi}i∈N such that the
set {x − yi : i ∈ N} satisfies the NSLUC property along with a condition on
the convergence of the sequence of subdifferential {∂ϕ(x − yi)}i∈N.

Proposition 3.8. Let (X, ‖·‖) be a normed space, Q be a convex set of X

and g: [0, +∞[ → [0, +∞[ be an increasing convex function with g(0) = 0.
Suppose that the function ϕ: X → R ∪ {+∞} defined by

ϕ(x) := g(‖x‖) + δQ(x), ∀x ∈ X

is lower semicontinuous. Let us fix x, y ∈ X, with x �= y, x − y ∈ Q,
N(Q, x − y) = {0} and consider a bounded sequence {yi}i∈N in X such
that the NSLUC property holds for the set {x − yi : i ∈ N} and there is
x∗ ∈ ∂ϕ(x − y) such that

lim
i→∞ d∂ϕ(x−yi )(x

∗) = 0, (20)

which means x∗ ∈ ‖·‖Lim inf i→∞ ∂ϕ(x − yi). Then

lim
i→∞

∥∥x − yi − ‖x − yi‖u
∥∥ = 0, (21)

with u = (x − y)/‖x − y‖.

Proof. Suppose that our conclusion is false, that is, there exist ε > 0 and
a subsequence of {yi}i∈N (which is not relabeled for simplicity) such that∥∥x − yi − ‖x − yi‖u

∥∥ ≥ ε. (22)

Let us notice that, by the subdifferential calculus, there are a ∈ ∂g(‖x − y‖),
with a > 0 (because x �= y and g is increasing), u∗ ∈ ∂‖·‖(x − y), such
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that x∗ = au∗ �= 0. Of course, ‖u∗‖ = 1 and u∗ ∈ ∂‖·‖(u). By (20) there
is a sequence {x∗

i }i∈N of subgradients x∗
i ∈ ∂ϕ(x − yi), which converges in

norm to x∗ and satisfies x∗
i = aiu

∗
i , with ai ∈ ∂g(‖x − yi‖) as well as ai > 0

(since, because of (22), x �= yi), and u∗
i ∈ ∂‖·‖(ui), where ui = x−yi

‖x−yi‖ .
Since ai = ‖x∗

i ‖ → ‖x∗‖ = a, from the equality x∗
i = aiu

∗
i we see that

‖u∗
i − u∗‖ → 0 as i → ∞.
Now, taking into account (22), we obtain for i large enough,

‖x − yi − 〈u∗, x − yi〉u‖ ≥ ‖x − yi − 〈u∗
i , x − yi〉u‖ − ‖u∗

i − u∗‖‖x − yi‖
≥ ∥∥x − yi − ‖x − yi‖u

∥∥ − ε/2 (23)

≥ ε/2.

From the NSLUC property of the set S ′ := {x −yi : i ∈ N}, there exists β > 0
such that

‖x − yi‖ ≥ |〈u∗, x − yi〉| + β‖x − yi − 〈u∗, x − yi〉u‖, for all i ∈ N.

Using (23) and taking i sufficiently large it ensues that

‖x − yi‖ ≥ |〈u∗, x − yi〉| + βε/2

≥ |〈u∗
i , x − yi〉| + βε/4

= ‖x − yi‖ + βε/4,

and this contradiction completes the proof.

Let us point out that (21) implies that

lim
i→+∞ dx+R+(y−x)(yi) = 0.

Because of the boundedness of the sequence {yi}i∈N, this is in turn equivalent
to ∅ �= ‖·‖Lim sup

i→∞
{yi, yi+1, . . .} ⊂ x + R+(y − x).

This ensures the existence of cluster points of the sequence {yi}i∈N with respect
to the strong topology. The key tool in getting this is the NSLUC property
assumed on the set {x − yi : i ∈ N}.

4. Properties of attainment sets

We start this section with the following question: when does the non-emptiness
of Mϕ(co f )(x) imply the non-emptiness of Mϕf (x)? An answer to that ques-
tion was given in the paper [12] for ϕ of the form ϕ = ‖·‖p with p ∈ [1, +∞[.
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Below this result is extended to a more general case, namely instead of the
norm to a power p ≥ 1, a function ϕ of the form as ϕ(·) = g(‖·‖) + δQ(·) is
investigated, where Q is a convex subset and g: [0, ∞[ → [0, ∞[ is an increas-
ing convex function with g(0) = 0. The function f is also assumed to be lower
semicontinuous with bounded domain and such that x−dom f has the NSLUC
property. Under such conditions, the inclusion Mϕ(co f )(x) ⊂ co Mϕf (x) is
still preserved, seeTheorem 4.1(a). The non-emptiness ofMϕ(co f )(x) implies
the non-emptiness of Mϕf (x) in this case. Moreover, assuming Fréchet dif-
ferentiability of f ϕ at x and strict convexity of g, the equality Mϕ(co f )(x) =
Mϕf (x) is obtained, see Theorem 4.1(b). Additionally, the non-emptiness of
Mϕf (x) implies that the problem is well posed, that is, any maximizing se-
quence is strongly convergent.

The theorem concerning the inclusion Mϕ(co f )(x) ⊂ co Mϕf (x), The-
orem 4.1 below, involves the Painlevé-Kuratowski limit superior of sets. Let
G be the Painlevé-Kuratowski limit superior of a sequence of sets in the normed
space (X, ‖·‖), that is, G = ‖·‖Lim supi→∞ Gi . Of course, there are several
questions concerning properties of the limit superior of sets. It is not the aim
of our work to investigate those questions in detail. However, in our reasoning
below, we need the inclusion ‖·‖Lim supi→∞ co Gi ⊂ co G, which holds in
some important cases. In order to clarify the necessity of conditions for the
validity of such an inclusion, we provide a counter-example showing that the
inclusion is not valid even in the case where G and Gi are compact. Next, we
give a lemma where the property is true for a particular sequence of sets which
will be involved in Theorem 4.1. Let us start with the counter-example.

Example 4.1. Let X := �2(N), Gi := {0, e1, . . . , i
−1ei}, and

G := {0, e1, 2−1e2, 3−1e3, . . .} = {0} ∪ {i−1ei : i ∈ N},

where ei := {δi(j)}j∈N, with δi(j) = 0, whenever i �= j , and δi(j) = 1,
for i = j . We have G = ‖·‖Lim supi→∞ Gi , however ‖·‖Lim supi→∞ co Gi �⊂
co G. In order to see this, put θj := 2−j , yi := ∑i

j=1 θj j
−1ej . Then,

limi→∞ yi ∈ ‖·‖Lim supi→∞ co Gi , however limi→∞ yi /∈ co G, since there
are infinitely many positive coefficients in the limit.

Lemma 4.1. Let (X, ‖·‖) be a normed space and let Ai ⊂ N be finite subsets
for i ∈ N. Suppose that a bounded set {yi

j ∈ X : i ∈ N, j ∈ Ai} is such that

lim
i→+∞ max

j∈Ai

dL(yi
j ) = 0, (24)

for some finite-dimensional affine subspace L of X. Then, for G :=
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‖·‖Lim supi→+∞ Gi , with Gi := {yi
j : j ∈ Ai}, we have

‖·‖Lim sup
i→+∞

co Gi ⊂ co G.

Proof. First note that by the definition of G and relation (24), we have
G ⊂ L, and hence co G = co G. Let v ∈ ‖·‖Lim supi→∞ co Gi and suppose
that v /∈ co G. By the Hahn-Banach separation theorem, there exist x∗ ∈ X∗,
with x∗ �= 0, and α ∈ R such that

〈x∗, v〉 < α < 〈x∗, z〉, ∀z ∈ G. (25)

By the definition of Gi , there are sequence {ik}k∈N of integers, with
limk→+∞ ik = +∞, and non-negative numbers {tj : j ∈ Aik }, with

∑
j∈Aik

ti =
1, such that

lim
k→∞

∑
j∈Aik

tj y
ik
j = v. (26)

Relations (24), (25) and (26) ensure, for k sufficiently large, the following
strict inequalities

〈
x∗,

∑
j∈Aik

tj y
ik
j

〉
< α < 〈x∗, yik

� 〉, ∀� ∈ Aik ,

and hence 〈
x∗,

∑
j∈Aik

tj y
ik
j

〉
< α <

〈
x∗,

∑
j∈Aik

tj y
ik
j

〉

whence the contradiction. The proof is then complete.

Theorem 4.1. Assume that (X, ‖·‖) is a normed space and f : X → R ∪
{+∞} is a lower semicontinuous function such that x −dom f is a non-empty
bounded set which has the NSLUC property for some x ∈ X. Let ϕ: X →
R ∪ {+∞} be a lower semicontinuous function of the form

ϕ(·) = g(‖·‖) + δQ(·),
where Q is a non-empty convex subset with 0 ∈ Q and g: [0, ∞[ → [0, ∞[
is an increasing convex function with g(0) = 0. Suppose that f ϕ is finite at x.
Then the following hold.

(a) One has the inclusions

Mϕf (x) ⊂ Mϕ(co f )(x) ⊂ co Mϕf (x).
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(b) Moreover if the Fréchet derivative of f ϕ at x exists, then

• the set Mϕ(cof )(x) is convex, and hence Mϕ(cof )(x) = co Mϕf (x);

• the set Mϕf (x) is at most a singleton provided that g is strictly convex;

• each maximizing sequence {yi}i∈N for f ϕ(x) is strongly convergent
provided that the set Mϕf (x) is a singleton (which holds true if g is
strictly convex and Mϕf (x) �= ∅).

Proof. (a) First observe that the inclusion Mϕf (x) ⊂ Mϕ(co f )(x) is
immediate. To prove the second inclusion, let us fix any d ∈ Mϕ(co f )(x) (if
any). By Proposition 2.1 we have

f ϕ(x) = (co f )ϕ(x) = ϕ(x − d) − (co f )(d). (27)

Case 1: If d = x, then since the equality infy∈X co f (y) = infy∈X f (y) is
obvious, by (27) we get

f ϕ(d) = (co f )ϕ(d) = − co f (d)

= sup
y∈X

− co f (y) = sup
y∈X

−f (y)

= − inf
y∈X

f (y).

Take a sequence {yn}n∈N in dom f such that limn→∞ f (yn) = infy∈X f (y)

and note that

−f (yn) ≤ ϕ(d − yn) − f (yn) ≤ f ϕ(d) = − inf
y∈X

f (y).

It follows that limn→∞ ϕ(d − yn) = 0, and consequently limn→∞ yn = d. So
using the lower semicontinuity of f , we get

f (d) ≤ lim inf
n→∞ f (yn) = inf

y∈X
f (y) ≤ f (d)

and this implies that f ϕ(d) = −f (d), and consequently d ∈ Mϕf (x).
Case 2: If d �= x, then define u := ‖x − d‖−1(x − d) and pick u∗ ∈

∂‖·‖(x − d).
For each n ∈ N there exist mn ∈ N, tn1 , . . . , tnmn

∈ ]0, 1], with
∑mn

i=1 tni = 1,
and yn

1 , . . . , yn
mn

∈ dom f such that

lim
n→∞

mn∑
i=1

tni yn
i = d, co f (d) = lim

n→∞

mn∑
i=1

tni f (yn
i ). (28)



THE ATTAINMENT SET OF THE ϕ-ENVELOPE 223

Note that the set
⋃

n∈N{yn
1 , . . . , yn

mn
} is bounded according to the boundedness

of dom f . On the other hand, as by (27) for all n ∈ N and i = 1, . . . , mn,

ϕ(x − yn
i ) − f (yn

i ) ≤ ϕ(x − d) − co f (d),

which by the choice of {tni }n∈N, i∈{1,...,mn} implies

mn∑
i=1

tni [ϕ(x − yn
i ) − f (yn

i )] ≤ ϕ(x − d) − co f (d),

and hence, by the convexity of ϕ,

ϕ

( mn∑
i=1

tni (x − yn
i )

)
≤

mn∑
i=1

tni ϕ(x − yn
i ) ≤ ϕ(x − d)− co f (d) +

mn∑
i=1

tni f (yn
i ).

This combined with (28) and the lower semicontinuity of ϕ at x − d entails

lim
n→∞

mn∑
i=1

tni ϕ(x − yn
i ) = ϕ(x − d). (29)

Let μ > 0 be arbitrary and consider, for each n ∈ N, the following sets

�n
μ := {

i ∈ {1, . . . , mn} : ϕ(x − yn
i ) − f (yn

i ) + μ ≤ f ϕ(x)
}

and
ϒn

μ := {1, . . . , mn} \ �n
μ.

We have
lim

n→∞
∑
i∈�n

μ

tni = 0, (30)

because (keep in mind (28) and (29))

f ϕ(x) = ϕ(x − d) − co f (d)

= lim
n→∞

(∑
i∈�n

μ

tni [ϕ(x − yn
i ) − f (yn

i )] +
∑
i∈ϒn

μ

tni [ϕ(x − yn
i ) − f (yn

i )]

)

≤ lim inf
n→∞

(∑
i∈�n

μ

tni [f ϕ(x) − μ] +
∑
i∈ϒn

μ

tni f ϕ(x)

)

≤ f ϕ(x) − μ lim sup
n→∞

∑
i∈�n

μ

tni ≤ f ϕ(x).
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Let {μi}i∈N be a decreasing sequence in the set ]0, 1[ such that limi→∞ μi =
0, and consider a sequence of integers {n(μi)}i∈N satisfying

i < j �⇒ μi > μj �⇒ n(μi) < n(μj ).

To simplify, we put ni := n(μi) and mi := mn(μi). Keeping in mind (30), we
may suppose that the sequence satisfies the following properties

mi∑
j=1

t
ni

j = 1 and lim
i→∞

∑
j∈ϒ

ni
μi

t
ni

j = 1. (31)

For all j ∈ ϒni
μi

we have

f ϕ(x) = ϕ(x − d) − co f (d) ≤ ϕ(x − y
ni

j ) − f (y
ni

j ) + μi.

We claim that

lim
i→∞

mi∑
j=1

t
ni

j ‖x − y
ni

j ‖ = ‖d − x‖.

In fact, if

lim sup
i→∞

mi∑
j=1

t
ni

j ‖x − y
ni

j ‖ > ‖d − x‖, (32)

then it follows from (29) that

ϕ(x − d) = lim
i→∞

mi∑
j=1

t
ni

j ϕ(x − y
ni

j )

= lim
i→∞

mi∑
j=1

t
ni

j g(‖x − y
ni

j ‖)

≥ lim sup
i→∞

g

( mi∑
j=1

t
ni

j ‖x − y
ni

j ‖
)

≥ g

(
lim sup

i→∞

mi∑
j=1

t
ni

j ‖x − y
ni

j ‖
)

> ϕ(x − d),

which is impossible (note that the second inequality is due to the continuity of
g while the last one is due to relation (32) and the fact that g is increasing). Let
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Cni
εi

be as in Proposition 3.7 and let (Cni
εi

)c be its complement in {1, . . . , mni
}.

To simplify notation put Ai := ϒni
μi

∩ (Cni
εi

)c. We claim that

lim
i→∞

∑
j∈Ai

t
ni

j = 1, and d = lim
i→∞

∑
j∈Ai

t
ni

j y
ni

j .

The first equality follows from the following decomposition formula
∑

j∈ϒ
ni
μi

∪(C
ni
εi

)c

t
ni

j =
∑

j∈ϒ
ni
μi

t
ni

j +
∑

j∈(C
ni
εi

)c

t
ni

j −
∑
j∈Ai

t
ni

j

and the equalities (13) and (31), while the second equality follows from the
first one and the first equality in (28). Put Gi := {yni

j : j ∈ Ai}, for all i ∈ N,
G := Lim supi→∞ Gi and L := x+span{d−x}. Proposition 3.7 again ensures
that relation (24) is satisfied. Applying Lemma 4.1, we obtain

d ∈ Lim sup
i→∞

co Gi ⊂ co G.

Observe by the definition of G that G ⊂ Mϕf (x). Indeed, for any y ∈ G

there exists a sequence {ynik

jk
}k∈N, with y

nik

jk
∈ Gik for all k ∈ N, such that

limk→+∞ y
nik

jk
= y. By the definition of ϒni

μi
, we have limk→+∞[ϕ(x − y

nik

jk
) −

f (y
nik

jk
)] = f ϕ(x) and hence

lim inf
k→∞ ϕ(x − y

nik

jk
) ≥ f ϕ(x) + f (y).

By the definition of f ϕ , we have x −y
nik

jk
∈ Q and hence lim infk→∞ ϕ(x −

y
nik

jk
) = lim infk→∞ g(‖x − y

nik

jk
‖) = g(‖x − y‖) (the later equality is due to

the continuity of g), so the lower semicontinuity of ϕ ensures that x − y ∈ Q.
Consequently,

lim inf
k→∞ ϕ(x − y

nik

jk
) = ϕ(x − y).

Combining this equality with the last inequality, we obtain

ϕ(x − y) ≥ f ϕ(x) + f (y)

and hence y ∈ Mϕf (x). It follows that d ∈ co Mϕf (x) as desired, which
finishes the proof of assertion (a).

(b) Now suppose that f ϕ is Fréchet differentiable at x, and let y1, y2 ∈
Mϕ(co f )(x). Using the fact x∗ ∈ ∂ϕ(x−y1)∩∂ϕ(x−y2) for x∗ := DF f ϕ(x),
we easily see that

ϕ
(
x − (ty1 + (1 − t)y2)

) = tϕ(x − y1) + (1 − t)ϕ(x − y2), ∀t ∈ [0, 1],
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and consequently, by simple algebra, we obtain ty1+(1−t)y2 ∈ Mϕ(co f )(x).
Let us now prove that Mϕf (x) is at most a singleton when g is strictly

convex. So let us suppose that z1, z2 ∈ Mϕf (x), with z1 �= z2. Then x −
z1, x − z2 ∈ Q and Lemma 2.1(i) together with the subdifferential calculus
imply that

∂(g ◦ ‖·‖)(x − zi) + N(Q, x − zi) = ∂ϕ(x − zi) ⊂ {x∗}, i = 1, 2.

Thus N(Q, x − zi) = {0} and ∂(g ◦ ‖·‖)(x − zi) = {x∗}, for i = 1, 2, or
equivalently, ⋃

a∈∂g(‖x−zi‖)
a∂‖·‖(x − zi) = {x∗}.

Since z1 �= z2, we may suppose without loss of generality that x �= z2.
Applying Lemma 2.1(iv) with y = z2 and Proposition 3.8 with yi = z1 for all
i and y = z2, we deduce that

x − z1 = ‖x − z1‖
‖x − z2‖ (x − z2). (33)

Since ∂ϕ(x − z1) = ∂ϕ(x − z2) = {x∗} by Lemma 2.1 again, we have

x∗ = a1u
∗
1 = a2u

∗
2, (34)

with ak ∈ ∂g(‖x − zk‖) and u∗
k ∈ ∂‖·‖(x − zk), k = 1, 2. Using the fact that

‖u∗
1‖ = ‖u∗

2‖ = 1, the relation (34) implies that a1 = a2. Then, by the strict
convexity of g, we get ‖x − z1‖ = ‖x − z2‖. From the equality (33), it follows
that z1 = z2, a contradiction.

Finally, assume that Mϕf (x) is a singleton, say {y} = Mϕf (x). It follows
from Lemma 2.1(iv) that DF ϕ(x−y) = DF f ϕ(x), so N(Q, x−y) = {0}, see
Lemma 2.1(i). Let us take any maximizing sequence {yi}i∈N, that is, satisfy-
ing (7). It follows from Proposition 2.2 that (8) holds true, which implies that
the condition in (20) is fulfilled. Applying Proposition 3.8 we get that (21) holds
true, which ensures the existence of cluster points of the sequence {yi}i∈N. On
the other hand, each such cluster point belongs to Mϕf (x) according to the
reasoning at the end of the proof of assertion (a). Since Mϕf (x) is a singleton,
the set of cluster points of the sequence has to be singleton too, in other words
the sequence {yi}i∈N is strongly convergent. The proof is then complete.

Remark 4.1. Let us notice that to get Theorem 4.1(b) the NSLUC property
is only needed for the set {x − yi : i ∈ N}, where {yi}i∈N is a maximizing
sequence (in the proof of Proposition 3.8). We mean that for each bounded
maximizing sequence {yi}i∈N, the set {x−yi : i ∈ N} has the NSLUC property.
The strict convexity of the function g seems to be essential to guarantee that



THE ATTAINMENT SET OF THE ϕ-ENVELOPE 227

the set Mϕf (x) is at most a singleton. An example showing that the convexity
alone is not enough to yield the property is given below.

Example 4.2. Assume that X = R. Let us define ϕ(t) = |t | and f (t) =
t +δ{0,1}(t), for t ∈ R, where δ{0,1} is the indicator function of the set {0, 1}. By
an immediate computation, we get f ϕ(x) = |x| for every x ∈ R. The Fréchet
derivative of f ϕ exists at every x �= 0, but Mϕf (x) = {0, 1} for every x ≤ 0.
Then the set Mϕf (x) is not a singleton because the function g = IdR+ is not
strictly convex.

Remark 4.2. In Theorem 4.1(b) the convergence of maximizing sequences
is obtained for a function ϕ which is the composition of a strictly convex
function and the norm of the space. Below it is shown that the convergence
can be also obtained whenever ϕ is uniformly convex on bounded sets of a
Banach space. We recall the following notion, see for example [4, p. 241]: a
proper convex function h : X → R ∪ {+∞} is called uniformly convex on
bounded sets if for every bounded sequence {zi}i∈N we have

lim
m,n→∞ ‖zm − zn‖ = 0,

whenever

lim
m,n→∞ h

(
1
2 (zm + zn)

) − 1
2

(
h(zm) + h(zn)

) = 0.

For any normed space (X, ‖·‖) and any proper convex lower semicontinuous
function ϕ: X → R∪{∞}, which is uniformly convex, if {yi}i∈N is a bounded
maximizing sequence of f ϕ(x) ∈ R and the Fréchet derivative of f ϕ at x

exists, then the maximizing sequence is a Cauchy sequence. In order to prove
that, for each i ∈ N choose x∗

i ∈ ∂ϕ(x − yi) (recall that the convex function ϕ

is continuous at x − yi by Proposition 2.2(a)). Observe by Proposition 2.2(a)
again that

0 = lim
m,n→∞

〈
x∗

m − x∗
n, 1

4

(
x − yn − (x − ym)

)〉

≤ lim
m,n→∞

(
ϕ
(

1
2 (x − ym + x − yn)

) − 1
2

(
ϕ(x − ym) + ϕ(x − yn)

)) ≤ 0.

Hence

lim
m,n→∞

(
ϕ
(

1
2 (x − ym + x − yn)

) − 1
2

(
ϕ(x − ym) + ϕ(x − yn)

)) = 0,

so by the uniform convexity we get the statement. We point out that the strong
convergence, under the assumption of the uniform convexity, is a virtue which
is obtained without assuming a priori the non-emptiness of Mϕf (x), only
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the differentiability is supposed. When we admit additionally, that Mϕf (x)

is a non-empty set then the assumption on the function ϕ can be relaxed.
Following [5] let us recall that a proper convex function h: X → R ∪ {+∞}
is called totally convex at a point z belonging to the algebraic interior (also
called core) of dom h if, for every t > 0, we have

inf
{
h(v) − h(z) − h′(z; v − z) : ‖v − z‖ = t

}
> 0,

where h′(z; u) := limt↓0 t−1
(
h(z+tu)−h(z)

)
. If the function is totally convex

at any point of the algebraic interior of dom h, then the function is called
totally convex. For any normed space (X, ‖·‖) and any proper convex lower
semicontinuous function ϕ: X → R∪{+∞}, which is totally convex, if {yi}i∈N
is a bounded maximizing sequence of f ϕ(x) ∈ R and the Fréchet derivative
of f ϕ at x exists, then this maximizing sequence is a convergent sequence,
whenever Mϕf (x) �= ∅. In order to justify that, choose y ∈ Mϕf (x) and, for
each i ∈ N, choose also as above x∗

i ∈ ∂ϕ(x − yi). Put x∗ = DF f ϕ(x) and
note by Lemma 2.1(iv) that ϕ is Fréchet differentiable with DF ϕ(x −y) = x∗.
Then, by Proposition 2.2(a) we have

0 ≤ lim
i→∞

(
ϕ(x − yi) − ϕ(x − y) − 〈x∗, y − yi〉

) ≤ lim
i→∞〈x∗

i − x∗, y − yi〉 = 0,

thus by the total convexity of ϕ at x − y we get limi→∞ ‖yi − y‖ = 0.

Comments on the boundedness of the domain of f . For the Klee-
envelope, the condition on the boundedness of the domain of f in the above
theorem is quite natural, for example, when f is the indicator function of a
subset of X. The case when the domain is not a bounded set, can be reduced
to the first one; for example if the coercivity of f is assumed, then we can
restrict our considerations to a bounded set. A way of ensuring that reduction
is to require the condition

lim inf‖z‖→∞
f (z)

‖z‖p
> 1, (35)

with a real p ≥ 1 and, without loss of generality, we may assume that f (0) = 0.
This condition allows us to reduce the study to the bounded domain case,
whenever ϕ := ‖·‖p. Indeed, fix x ∈ X and take ε1 > 0, ε2 > 0 and A > 0
such that

f (z) ≥ (
(1 + ε1)

p−1 + ε2
)‖z‖p, ∀z ∈ X with ‖z‖ > A, (36)

and

‖x‖p

((
1 + ε1

ε1

)p−1

− 1

)
< ε2A

p. (37)
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Then
f ϕ(x) = sup

‖z‖≤A

(‖x − z‖p − f (z)
)
. (38)

Indeed, using the convexity of ‖·‖p, we obtain the inequality

‖x − z‖p ≤ (1 + ε1)
p−1‖z‖p +

(
1 + ε1

ε1

)p−1

‖x‖p, ∀z ∈ X.

Hence, subtracting f (z) in both sides and taking the supremum over z ∈ X,
with ‖z‖ > A, we obtain according to (36) that

sup
‖z‖>A

(‖x − z‖p − f (z)
) ≤ −ε2A

p +
(

1 + ε1

ε1

)p−1

‖x‖p.

Then, (37) yields

sup
‖z‖>A

(‖x − z‖p − f (z)
) ≤ ‖x‖p ≤ sup

‖z‖≤A

(‖x − z‖p − f (z)
)
,

where the latter inequality is due to the equality f (0) = 0. It results that (38)
holds true and M‖·‖pf (x) = M‖·‖p (f + δABX

)(x), and the reasoning used in
the case of the bounded domain can be applied.

Whence, relying on Remark 4.1, the following corollary can be derived.

Corollary 4.1. Let ϕ := ‖·‖p, with p > 1, let f : X → R ∪ {+∞} be
a lower semicontinuous function and x ∈ X be a point where f ϕ is Fréchet
differentiable. Suppose that condition (35) holds. Then the set Mϕf (x) is at
most a singleton and each maximizing sequence {yi}i∈N for f ϕ(x) is strongly
convergent provided that the set {x − yi : i ∈ N} has the NSLUC property and
Mϕf (x) �= ∅.

Proof. Using the previous comments (see relation (38)), we see that each
maximizing sequence {yi}i∈N for f ϕ(x) is bounded. Then the result follows
from Remark 4.1 and Theorem 4.1.

Let us continue with the same setting as in Corollary 4.1, that is, ϕ := ‖·‖p,
with p > 1. In Proposition 2.2 it is stated that the Fréchet differentiability of
f ϕ at x ensures the equality

‖·‖ lim sup
i→∞

∂δi
ϕ(x − yi) = {DF f ϕ(x)}

for each maximizing sequence {yi}i∈N for f ϕ(x) and any sequence {δi}i∈N of
non-negative real numbers, with limi→∞ δi = 0. Thus relation (11) is satisfied
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for the sequence {x−yi}i∈N at x−y, for any y ∈ Mϕf (x) since DF ϕ(x−y) =
DF f ϕ(x) for any such y according to Lemma 2.1. Then, if {yi}i∈N is bounded
and the LUR property holds at x − y, applying Proposition 3.6, it is clear
that the sequence {x − yi}i∈N satisfies the NSLUC property. So replacing the
NSLUC property by the LUR property at x − y, this allows us to extend the
result by Cibulka and Fabian [7] to the case where ϕ := ‖·‖p, with p > 1.

Corollary 4.2. Let the assumptions of Corollary 4.1 be satisfied. Then the
set Mϕf (x) is at most a singleton and each maximizing sequence {yi}i∈N for
f ϕ(x) is strongly convergent provided that the LUR property holds at x − y,
where y ∈ Mϕf (x).

Besides Theorem 4.1, when the Banach space X is reflexive and the set
x − dom f is NSLUC, we have the following list of equivalences with the
Fréchet differentiability of f ϕ at x.

Theorem 4.2. Assume that (X, ‖·‖) is a reflexive Banach space andf : X →
R ∪ {+∞} is a lower semicontinuous function such that x − dom f is a
non-empty bounded set which has the NSLUC property for some x ∈ X. Let
ϕ: X → R ∪ {+∞} be a lower semicontinuous function in the form

ϕ(·) = g(‖·‖) + δQ(·),
where Q is a non-empty convex subset with 0 ∈ Q and g: [0, ∞[ → [0, ∞[ is
an increasing convex function with g(0) = 0. Assume that f ϕ is finite at x and
either g is strictly convex or f is constant on its domain. Then the following
conditions are equivalent:

(i) the Fréchet derivative of f ϕ at x exists;

(ii) each maximizing sequence {yi}i∈N for f ϕ(x) is strongly convergent and
ϕ is Fréchet differentiable at any point of the set x − Mϕf (x) (which is
a singleton);

(iii) the set Mϕf (x) is a singleton, say Mϕf (x) = {y} and ϕ is Fréchet
differentiable at x − y, and

‖·‖Lim sup
u→x,ε↘0

Mε,ϕf (u) = ‖·‖Lim inf
u→x,ε↘0

Mε,ϕf (u) = Mϕf (x).

Proof. In order to prove the implication (i) ⇒ (ii) let us first observe that
it follows from Lemma 2.1 that ϕ is Fréchet differentiable at any point of the
set x − Mϕf (x). Let {yi}i∈N be a maximizing sequence for f ϕ(x). If {yik }k∈N
is a subsequence converging weakly to some y, then Proposition 2.2 ensures
that the sequences {ϕ(x − yik )}k∈N and {f (yik )}k∈N converge to ϕ(x − y)

and (co f )(y), respectively and the limit point y satisfies y ∈ Mϕ(co f )(x).
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By Proposition 2.1 we have the equality f ϕ(x) = (co f )ϕ(x), thus by the
definition ofϕ we get limk→∞ ‖x−yik‖ = ‖x−y‖. By the Kadec-Klee property
of x − dom f with respect to the norm, see Proposition 3.1, we get the strong
convergence of the subsequence {yik }k∈N to y, that is, limk→∞ ‖y − yik‖ = 0.
Suppose that w is a cluster point of the sequence {yi}i∈N (keep in mind that any
weak cluster point of the sequence is the strong limit of a subsequence). If g is
strictly convex, it follows from Theorem 4.1 that w = y. In the case when f is
constant on its domain we get ϕ(x − y) = ϕ(x − w). Hence, we derive from
Theorem 4.1 (we recall that the set Mϕ(co f )(x) is convex) that the function
ϕ is constant on the segment [x − y, x − w]. Let us recall that w, y ∈ dom f

and the norm is strictly convex on x − dom f , see Proposition 3.1, so using
the form of ϕ we get that w = y (keep in mind that ϕ is a sum of an indicator
function and a composition of an increasing convex function with the norm).
Thus, in any case the sequence {yi}i∈N has to be convergent to y.

The implication (ii) ⇒ (iii) is obvious.
To prove the last implication (iii) ⇒ (i) put x∗ := DF ϕ(x − y). For every

h ∈ X choose, by assumption (iii), some y(h) ∈ M‖h‖2,ϕf (x + h) with
y(h) → y and choose also some x∗

h ∈ ∂ϕ(x + h − y(h)). We then have

f ϕ(x + h) − f ϕ(x) − 〈x∗, h〉
≤ ϕ(x + h − y(h)) − f (y(h)) + ‖h‖2

− (
ϕ(x − y(h)) − f (y(h))

) − 〈x∗, h〉
= ϕ(x + h − y(h)) − ϕ(x − y(h)) + ‖h‖2 − 〈x∗, h〉
≤ 〈x∗

h, h〉 − 〈x∗, h〉 + ‖h‖2

≤ (‖h‖ + ε(h + y − y(h))
)‖h‖,

where ε(z) → 0 as z → 0 since ∂ϕ(u) −−−−→
u→x−y

{x∗} with respect to the

Hausdorff distance (see [2, Corollary 2 of Theorem 3]). It ensues that −x∗ ∈
∂F (−f ϕ)(x), hence Lemma 2.1(iii) yields that f ϕ is Fréchet differentiable
at x.

Taking ϕ := ‖·‖ and f := δS , the following result is obtained as a direct
consequence of Theorem 4.2. According to our notation κλ,pf for the Klee
function and writing κS instead of κ1,1δS , the farthest distance function from
the set S is the function κS defined by

κS(x) = κ1,1δS(x) = sup
y∈S

‖x − y‖ = (δS)
‖·‖(x).
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Corollary 4.3. Let (X, ‖·‖) be a reflexive Banach space and S ⊂ X be a
closed bounded set such that x − S has the NSLUC property for some x ∈ X.
Then the following assertions are equivalent:

(i) κS is Fréchet differentiable at x;

(ii) each maximizing sequence {yi}i∈N for κS(x) is strongly convergent and
‖·‖ is Fréchet differentiable at any point of the set x −M‖·‖δS(x) (which
is a singleton);

(iii) the set M‖·‖δS(x) is a singleton, say M‖·‖δS(x) = {y} and ‖·‖ is Fréchet
differentiable at x − y, and

‖·‖Lim sup
u→x,ε↘0

Mε,‖·‖δS(u) = ‖·‖Lim inf
u→x,ε↘0

Mε,‖·‖δS(u)

= M‖·‖δS(x).

As a consequence of Corollary 4.3 and Proposition 3.2, we recover a result
given by Ivanov, see [11, Theorem 1(a)–(e)]. In order to avoid introducing
additional notions, we restrict ourselves to statements (a)–(c) of Ivanov’s The-
orem.

Theorem 4.3 (Ivanov [11]). Suppose that (X, ‖·‖) is a reflexive, LUR
Banach space with Fréchet differentiable norm off the origin. Suppose that a
number r > 0 and a convex closed bounded set S ⊂ X are given. Then, the
following assertions are equivalent:

(a) the farthest distance function κS (denoted by fS in [11]) is Fréchet dif-
ferentiable on the set {u ∈ X : κS(u) > r};

(b) for any vectorx ∈ {u ∈ X: κS(u) > r}, any sequence {ak}k∈N of elements
of S such that limk→∞ ‖ak − x‖ = κS(x) is strongly convergent;

(c) the attainment set M‖·‖δS(·) (the farthest point mapping of S also called
the metric antiprojection) is single-valued and continuous on the set
{u ∈ X : κS(u) > r}.

5. Genericity of non-emptiness of the attainment set

In Theorem 4.1 it is assumed that ϕ is in the form ϕ = g(‖·‖) + δQ, where g

is strictly convex, in order to derive the strong convergence of the maximizing
sequence. In this section, to study the genericity in X of dom Mϕf we consider
a suitable class of functions ϕ. The class encompasses the sublinear functions,
thus allowing to recover the case ϕ = ‖·‖ as a particular instance. Let us
establish first the following fundamental lemma.
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Lemma 5.1. Let (X, ‖·‖) be a normed space and ϕ: X → R ∪ {+∞} be
a convex function with ϕ(0) = 0. Let f : X → R ∪ {+∞} be a function such
that f ϕ is finite-valued and continuous and assume that for each ε > 0 and
x ∈ X, the set Mε,ϕf (x) is bounded. Then the set{

x ∈ X : ∃ x∗ ∈ ∂f ϕ(x), sup
y∈X

(〈x∗, x − y〉 − f (y)
)

< f ϕ(x)
}

is of first category in X, that is, a countable union of closed sets with empty
interior.

Proof. For each integer n ∈ N denote

An :=
{
x ∈ X : ∃ x∗ ∈ ∂f ϕ(x), sup

y∈X

(〈x∗, x − y〉 − f (y)
) ≤ f ϕ(x) − 1

n

}
,

so the set of the lemma obviously coincides with
⋃

n∈N An.
Let us first fix n ∈ N and show that An is closed. Consider any sequence

{xi}i∈N in An converging to some x ∈ X, and for each i ∈ N choose by
definition of An some x∗

i ∈ ∂f ϕ(xi) satisfying

sup
y∈X

(〈x∗
i , xi − y〉 − f (y)

) ≤ f ϕ(xi) − 1

n
.

The continuous function f ϕ is convex by the convexity of ϕ, so it is locally
Lipschitz on X. This local Lipschitz property of f ϕ ensures that the sequence
{x∗

i }i∈N is bounded. By the Banach-Alaoglu Theorem, see [16, Theorem 3.15,
p. 66] for example, we have⋂

i∈N
(w∗-cl){x∗

i , x∗
i+1, . . .} �= ∅,

where (w∗-cl) stands for the weak∗ closure. Take

x∗ ∈
⋂
i∈N

(w∗-cl){x∗
i , x∗

i+1, . . .}.

In order to prove that x∗ ∈ ∂f ϕ(x), let us fix any h ∈ X. Choose ik ≤ ik+1

such that k ≤ ik and |〈x∗
ik

− x∗, h〉| ≤ 2−k for all k ∈ N (this is possible since
x∗ ∈ (w∗-cl){x∗

k , x∗
k+1, . . .}). Thus we have

lim
k→∞〈x∗

ik
, h〉 = 〈x∗, h〉

and observe that, by the continuity of f ϕ , we get

〈x∗, h〉+f ϕ(x) = lim
k→∞

(〈x∗
ik
, h〉+f ϕ(xik )

) ≤ lim
k→∞ f ϕ(xik +h) = f ϕ(x +h).
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This implies x∗ ∈ ∂f ϕ(x), since h is arbitrary. In the same manner as above,
for every y ∈ X, using the inequality

〈x∗
i , xi − y〉 − f (y) ≤ f ϕ(xi) − 1

n

and the continuity of f ϕ again, we get also

〈x∗, x − y〉 − f (y) ≤ f ϕ(x) − 1
n
.

It follows that x ∈ An, justifying the closedness of An.
It remains to prove that all An have empty interior. Suppose, for some n ∈ N,

that int An �= ∅ and take some x ∈ X and r > 0 such that B[x, r] ⊂ An. Since
the set of approximate maximizers M1,ϕf (x) is non-empty and bounded, we
can define the real γ := sup

{‖x − y‖ : y ∈ M1,ϕf (x)
}
. For ε := (2n(γ +

r))−1r , there exists by (5) and by definition of f ϕ some y ∈ Mε,ϕf (x) ⊂
M1,ϕf (x) ⊂ dom f (with both f (y) and ϕ(x − y) finite) satisfying

f ϕ(x) − ε ≤ ϕ(x − y) − f (y) ≤ f ϕ(x). (39)

Define t := r/γ and u := x + t (x − y) ∈ B[x, r], so u ∈ An. From the
definition of An there is some u∗ ∈ ∂f ϕ(u) such that

sup
y∈X

(〈u∗, u − y〉 − f (y)
) ≤ f ϕ(u) − 1

n
. (40)

On the other hand, by (39) and the equality (u − y) = (1 + t)(x − y), we also
have, according to the equality ϕ(0) = 0,

f ϕ(x) − f ϕ(u) ≤ ϕ(x − y) − f (y) + ε − f ϕ(u)

≤ 1

(1 + t)
ϕ(u − y) − f (y) + ε − f ϕ(u)

≤ 1

1 + t

(
ϕ(u − y) − f (y)

) − t

1 + t
f (y) + ε − f ϕ(u),

which ensures by the definition of f ϕ and by (40)

f ϕ(x) − f ϕ(u) ≤ 1

1 + t
f ϕ(u) − t

1 + t
f (y) + ε − f ϕ(u)

= −t

1 + t
f ϕ(u) − t

1 + t
f (y) + ε

≤ t

1 + t

(〈u∗, y − u〉 + f (y)
) − t

1 + t
f (y) + ε − t

n(1 + t)

= t

1 + t
〈u∗, y − u〉 + ε − r

n(γ + r)
.
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Hence, taking the equality y − u = 1+t
t

(x − u) into account, we obtain

f ϕ(x) − f ϕ(u) ≤ 〈u∗, x − u〉 + ε − r

n(γ + r)
.

Since ε < (n(γ + r))−1r , we deduce that

f ϕ(x) − f ϕ(u) < 〈u∗, x − u〉,
which contradicts the inclusion u∗ ∈ ∂f ϕ(u), completing the proof.

Remark 5.1. If infy∈X f ϕ(y) + f (y) ≤ 0, then the set{
x ∈ X : ∃ x∗ ∈ ∂f ϕ(x), sup

y∈X

(〈x∗, x − y〉 − f (y)
)

< f ϕ(x)
}

is empty. Indeed, let us argue by contraposition and assume that there exist
x ∈ X and x∗ ∈ ∂f ϕ(x) such that supy∈X

(〈x∗, x −y〉−f (y)
)

< f ϕ(x). Thus
the following inequalities hold true

sup
y∈X

(
f ϕ(x) − f ϕ(y) − f (y)

) ≤ sup
y∈X

(〈x∗, x − y〉 − f (y)
)

< f ϕ(x),

which implies that supy∈X(−f ϕ(y) − f (y)) < 0 and finally infy∈X f ϕ(y) +
f (y) > 0.

In Lemma 5.1 it is established that the set{
x ∈ X : ∃ x∗ ∈ ∂f ϕ(x), sup

y∈X

(〈x∗, x − y〉 − f (y)
)

< f ϕ(x)
}

is of first category, thus its complement is a dense set of Gδ-type, whenever
the space is complete. Hence if we are able to guarantee the inclusion

∅ �= {
x ∈ X : ∃ x∗ ∈ ∂ϕ(0), sup

y∈X

(〈x∗, x−y〉−f (y)
) ≥ f ϕ(x)

} ⊂ dom Mϕf,

on an open set V , then for a generic subset of points from the set, say x ∈ V , we
have the non-emptiness of Mϕf (x). In the lemma below, an inclusion of this
type is established and applied in the next theorem to derive the non-emptiness
of the attainment set.

Lemma 5.2. Let (X, ‖·‖) be a normed space and let ϕ: X → R∪ {+∞} be
a convex function with ϕ(0) = 0. Let f : X → R be a function such that, for
each x∗ ∈ ∂ϕ(0), the infimum of the function f + 〈x∗, ·〉 is attained. Then the
following inclusion holds{

x ∈ X : ∃ x∗ ∈ ∂ϕ(0), sup
y∈X

(〈x∗, x − y〉 − f (y)
) ≥ f ϕ(x)

} ⊂ dom Mϕf.
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Proof. Let x ∈ X and x∗ ∈ ∂ϕ(0) be such that supy∈X

(〈x∗, x − y〉 −
f (y)

) ≥ f ϕ(x). In view of the attainment assumption, there exists y ∈ X

such that
sup
y∈X

(〈x∗, x − y〉 − f (y)
) = 〈x∗, x − y〉 − f (y).

Since x∗ ∈ ∂ϕ(0) and ϕ(0) = 0, it ensues that

f ϕ(x) ≤ 〈x∗, x − y〉 − f (y) ≤ ϕ(x − y) − f (y) ≤ f ϕ(x).

We conclude that f ϕ(x) = ϕ(x −y)−f (y), hence y ∈ Mϕf (x) and therefore
x ∈ dom Mϕf .

A theorem on the genericity of non-emptiness of the attainment set is given
below.

Theorem 5.1. Let (X, ‖·‖) be a Banach space and let ϕ: X → R ∪ {+∞}
be a convex function such that ϕ(0) = 0. Let f : X → R∪{+∞} be a function
such that f ϕ is finite-valued and continuous and assume that for each ε > 0
and x ∈ X, the set Mε,ϕf (x) is bounded. Suppose additionally that for each
x∗ ∈ ∂ϕ(0), the infimum of the function f + 〈x∗, ·〉 is attained and that

∀x ∈ X, ∂f ϕ(x) ∩ ∂ϕ(0) �= ∅. (41)

Then the set dom Mϕf contains a dense Gδ subset of X.

Proof. In view of assumption (41), we have
{
x ∈ X : ∀x∗ ∈ ∂f ϕ(x), sup

y∈X

(〈x∗, x − y〉 − f (y)
) ≥ f ϕ(x)

}

⊂ {
x ∈ X : ∃ x∗ ∈ ∂ϕ(0), sup

y∈X

(〈x∗, x − y〉 − f (y)
) ≥ f ϕ(x)

}
.

From Lemma 5.1, the first set above is a countable intersection of dense open
sets, hence is a dense Gδ-set (recall that the space X is complete). On the other
hand, Lemma 5.2 shows that the second set above is included in dom Mϕf .
The proof is complete.

Now assume that the functionϕ: X → R∪{+∞} is subadditive andf : X →
R ∪ {+∞} is a proper function. By simple algebra, we get

f ϕ(x ′) ≤ f ϕ(x) + ϕ(x ′ − x). (42)

In particular, if f ϕ(x) ∈ R, this ensures that, for any x∗ ∈ ∂f ϕ(x),

〈x∗, x ′ − x〉 ≤ f ϕ(x ′) − f ϕ(x) ≤ ϕ(x ′ − x), for all x ′ ∈ X,
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so x∗ ∈ ∂ϕ(0), whenever ϕ is convex and ϕ(0) = 0. Consequently,

∂f ϕ(x) ⊂ ∂ϕ(0), for all x ∈ X.

Corollary 5.1. Let (X, ‖·‖) be a Banach space and let ϕ: X → R∪{+∞}
be a sublinear function such that ϕ(0) = 0. Let f : X → R ∪ {+∞} be a
function such that f ϕ is finite-valued and continuous and assume that for each
ε > 0 and x ∈ X, the set Mε,ϕf (x) is bounded. Suppose additionally that for
each x∗ ∈ ∂ϕ(0), the infimum of the function f + 〈x∗, ·〉 is attained. Then the
set dom Mϕf contains a dense Gδ-subset of X.

Proof. The subadditivity of ϕ implies that ∂f ϕ(x) ⊂ ∂ϕ(0) for every
x ∈ X. Since the functionf ϕ is assumed to be continuous, we have ∂f ϕ(x) �= ∅
for every x ∈ X. It ensues immediately that condition (41) is satisfied, hence
Theorem 5.1 applies.

The continuity of f ϕ is a key assumption in Lemma 5.1 and Theorem 5.1.
The next proposition gives several conditions on ϕ and f which ensure the
uniform continuity or the global Lipschitz continuity of the function f ϕ .

Let us first observe that a subadditive function which is Lipschitz continuous
around the origin is globally Lipschitz continuous, whenever its value at the
origin amounts zero.

Lemma 5.3. Let (X, ‖·‖) be a normed space and ϕ: X → R be Lipschitz
continuous around 0, subadditive on the whole space and such that ϕ(0) = 0.
Then ϕ is globally Lipschitz continuous on X.

Proof. Note first that ϕ(x) > −∞ for all x ∈ X, since ϕ is finite on some
neighborhood of the origin and subadditive on the whole space. On the other
hand, take k ≥ 0 and r > 0 such that |ϕ(u)| ≤ k‖u‖ for every u ∈ B(0, r).
The subadditivity of ϕ implies that, for any x, x ′ ∈ X with ‖x ′ − x‖ < r ,

ϕ(x ′) ≤ ϕ(x) + ϕ(x ′ − x) ≤ ϕ(x) + k‖x ′ − x‖, (43)

and symmetrically
ϕ(x ′) ≥ ϕ(x) − k‖x ′ − x‖. (44)

If ϕ(x) ∈ R then ϕ(x ′) ∈ R for every x ′ ∈ B(x, r), thus the set ϕ−1(R) is open.
It follows from (44) that the set ϕ−1(+∞) is open too (taking ϕ(x) = +∞ we
have ϕ(x ′) = +∞ for x ′ ∈ B(x, r)). Finally, the space X can be decomposed
as the union of the two open disjoint sets ϕ−1(R) and ϕ−1(+∞). Since the
space X is connected, we deduce that each of these sets is either empty or equal
to X. Since ϕ is finite at 0, we deduce that ϕ is finite-valued on X. In view
of (43)–(44), we conclude that |ϕ(x ′) − ϕ(x)| ≤ k‖x ′ − x‖ for all x, x ′ ∈ X

such that ‖x ′ − x‖ < r , which implies that ϕ is globally Lipschitz with the
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constant k, since ϕ is finite-valued on the whole space and locally Lipschitz
with the same constant invariant under the shifting of arguments.

Proposition 5.1. Let (X, ‖·‖) be a normed space and f , ϕ: X → R be
such that f ϕ �= ±ωX.

(i) If ϕ (resp. −f ) is globally Lipschitz continuous on X, then f ϕ is globally
Lipschitz continuous on X.

(ii) If ϕ (resp. −f ) is Lipschitz continuous around 0, subadditive on the
whole space and such that ϕ(0) = 0 (resp. f (0) = 0), then f ϕ is
globally Lipschitz continuous on X.

(iii) If ϕ (resp. −f ) is upper semicontinuous at 0, subadditive and such that
ϕ(0) = 0 (resp. f (0) = 0), then f ϕ is uniformly continuous on X.

Proof. Noticing that f ϕ = (−ϕ)−f it suffices to proceed with merely the
case of the function ϕ in each one of the assertions of the proposition.

(i) Assume that ϕ is k-Lipschitz continuous on X, for some k ≥ 0. Then
we have for all x, x ′ ∈ X and y ∈ X,

ϕ(x ′ − y) − f (y) ≤ ϕ(x − y) − f (y) + k‖x ′ − x‖
and f (y) > −∞ (otherwise f ϕ = ωX). Taking the supremum over y ∈ X,
we find for all x, x ′ ∈ X

f ϕ(x ′) ≤ f ϕ(x) + k‖x ′ − x‖. (45)

By interchanging the roles of x and x ′, we obtain

f ϕ(x ′) ≥ f ϕ(x) − k‖x ′ − x‖. (46)

If f ϕ(x) = −∞ (or f ϕ(x) = ∞) for some x ∈ X, we deduce from (45) that
f ϕ = −ωX (resp. f ϕ = ωX), a contradiction. It ensues that f ϕ is finite-valued
and we conclude in view of (45)–(46) that f ϕ is k-Lipschitz continuous.

(ii) This is a simple consequence of Lemma 5.3 and statement (i).
(iii) Let us point out that any subadditive function h, which is upper semi-

continuous at the origin with h(0) = 0 is finite in a neighborhood of the origin,
and hence is continuous on the neighborhood. Thus for all real ε > 0 there is
some δ > 0 such that |h(u)| < ε for any u ∈ B(0, δ). Applying this to ϕ, by a
similar reasoning as in (i) we obtain

f ϕ(x) − ε ≤ f ϕ(x ′) ≤ f ϕ(x) + ε, (47)

for all x, x ′ ∈ X with ‖x ′ − x‖ < δ, and (f ϕ)−1(R) = X. From (47) we
deduce that f ϕ is uniformly continuous.
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6. Links between ϕ-envelopes and marginal inf-value functions of ϕ

Given a subset S of X, for convenience and mimicking the notation of the
distance function, let us denote by ϕS the function defined by

ϕS(x) := inf
y∈S

ϕ(y − x), for all x ∈ X.

We say that ϕS is the marginal inf-value function of ϕ over the set S. Our
objective in this section is to show that the techniques of [12, §7] can be
adapted to provide a link between the ϕ-envelope of a function f : X → R and
the marginal inf-value function of ϕ over suitable level set of the function f .

Let us start with the following lemma.

Lemma 6.1. Let ϕ, f : X → R be two extended real-valued functions. As-
sume that ϕ(x) ≥ 0 for every x ∈ X. Then we have

inf
X

f ϕ ≥ − inf
X

f.

Moreover, the following inclusion holds

{x ∈ X : f ϕ(x) = −f (x)} ⊂ argmin f ∩ argmin f ϕ.

Proof. Since ϕ ≥ 0, we have for all x, y ∈ X,

f ϕ(x) ≥ ϕ(x − y) +. (−f (y))

≥ −f (y). (48)

Taking the infimum over x ∈ X and then the supremum over y ∈ X, we derive
infX f ϕ ≥ supX(−f ) = − infX f .

Fix x ∈ X and assume that f ϕ(x) = −f (x). We deduce from (48) that
f (x) ≤ f (y) for every y ∈ X, hence x ∈ argmin f . This proves the inclusion

{x ∈ X : f ϕ(x) = −f (x)} ⊂ argmin f.

Let us now return to (48) and fix y ∈ X such that f ϕ(y) = −f (y). We infer
from (48) that f ϕ(x) ≥ f ϕ(y) for every x ∈ X, hence y ∈ argmin f ϕ . The
inclusion {x ∈ X : f ϕ(x) = −f (x)} ⊂ argmin f ϕ

is shown, which ends the proof.

Let us notice that assuming f �= ωX, under the assumptions of Lemma 6.1,
we get infX f ϕ > −∞. It is easy to notice also that the coercivity assumption
on f ϕ , that is lim‖y‖→+∞ f ϕ(y) = +∞, implies f �= ωX, thus the coercivity
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of f ϕ implies infX f ϕ > −∞, whenever the assumptions of Lemma 6.1 are
fulfilled.

For convenience, given a function g: X → R and a real β, we will use the
notations {g = β} := {x ∈ X : g(x) = β},

{g < β} := {x ∈ X : g(x) < β},
{g ≤ β} := {x ∈ X : g(x) ≤ β},

and the corresponding notations for upper level sets. For each α > 0, put
mα = α + infX f ϕ and define the sets

Dα = {f ϕ ≤ mα} and Cα = {x ∈ Dα : f ϕ(x) �= −f (x)}. (49)

Suppose that ϕ(x) ≥ 0 for all x ∈ X. It follows from Lemma 6.1 that

Dα \ argmin f ⊂ Cα and Dα \ argmin f ϕ ⊂ Cα.

The second inclusion means equivalently that {x ∈ X : infX f ϕ < f ϕ(x) ≤
mα} is included in Cα . If ϕ(x) > 0 for all x �= 0 and argmin f is not a singleton,
it is not difficult to see that {x ∈ X : f ϕ(x) = −f (x)} = ∅, thus Cα = Dα .
In order to see this, fix x and insert two different elements from argmin f , say
y1, y2, in to the right-hand side of the inequality in (48). For one of them, say
y1, the inequality has to be strict, so f ϕ(x) > −f (y1) = − infy∈X f (y). The
emptiness of the set {x ∈ X : f ϕ(x) = −f (x)} follows immediately.

Our aim is to show that the sum of the marginal inf-value function of
ϕ and the ϕ-envelope of f is a constant function on some “large” set. In
the proposition below an inequality is obtained and next in Theorem 6.1 the
equality is established.

Recall that g is positively homogeneous of degree γ if g(tx) = tγ g(x), for
all x ∈ X and t > 0.

Proposition 6.1. Let (X, ‖·‖) be a normed space and let f : X → R,
ϕ: X → [0, ∞]. Suppose that ϕ is positively homogeneous of degree γ ≥ 1
and proper. Assume that f ϕ is real-valued and continuous on X and satisfies
lim‖y‖→+∞ f ϕ(y) = +∞. Then the following hold:

(i) For all x ∈ Cα , we have

mα ≥ f ϕ(x) + ϕ{f ϕ=mα}(x). (50)

(ii) The set Cα is dense in Dα . If the function x 
→ ϕ{f ϕ=mα}(x) is lower
semicontinuous on Dα , then the inequality (50) holds for all x ∈ Dα .

Proof. Keep in mind that mα is a well-defined real number, see the com-
ments following Lemma 6.1.
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(i) Let x ∈ Cα and {yn}n∈N be a sequence (see (5)) such that

∀n ≥ 1, f ϕ(x) − 1

n
< ϕ(x − yn) − f (yn) ≤ f ϕ(x).

Note that, by the definition of the set Cα , we get x �= yn for n large enough,
and so we may assume that x �= yn for every n ≥ 1. Using the continuity
and the coercivity of f ϕ , the intermediate value theorem gives the existence
of tn ≥ 0 such that

f ϕ(zn) = mα, where zn := x + tn(x − yn).

Thus
mα − f ϕ(x) + 1

n
= f ϕ(zn) − f ϕ(x) + 1

n

≥ f ϕ(zn) + f (yn) − ϕ(x − yn)

≥ ϕ(zn − yn) − ϕ(x − yn)

= ϕ
(
(1 + tn)(x − yn)

) − ϕ(x − yn).

Since ϕ is positively homogeneous of degree γ , this implies that

mα − f ϕ(x) + 1

n
≥ (1 + tn)

γ ϕ(x − yn) − ϕ(x − yn)

≥ (1 + tγn )ϕ(x − yn) − ϕ(x − yn) because γ ≥ 1

= tγn ϕ(x − yn)

= ϕ(zn − x).

Recalling that f ϕ(zn) = mα , it follows that

mα − f ϕ(x) + 1

n
≥ ϕ{f ϕ=mα}(x).

The desired inequality (50) is obtained by taking the limit as n → ∞.
(ii) Now let us show that the set Cα is dense in Dα . So suppose the contrary,

that is, there exist y0 ∈ Dα and r > 0 such that

B(y0, r) ∩ Dα ⊂ {x ∈ X : f ϕ(x) = −f (x)}. (51)

Lemma 6.1 implies that

{x ∈ X : f ϕ(x) = −f (x)} ⊂ argmin f ϕ ⊂ {f ϕ < mα} ⊂ int Dα,
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where the last inclusion is a consequence of the continuity of f ϕ . In view
of (51), we deduce that y0 ∈ int Dα , hence there exists a real 0 < r ′ < r such
that the inclusion B(y0, r

′) ⊂ Dα holds. This and (51) again yield that

B(y0, r
′) ⊂ {x ∈ X : f ϕ(x) = −f (x)}.

Recalling Lemma 6.1, we infer that f and f ϕ are constant and finite on
B(y0, r

′), with respective values infX f and infX f ϕ . Thus we have

−f (y0) = f ϕ(y0) ≥ sup
y∈B(y0,r ′)

(
ϕ(y0 − y) − f (y)

)

= sup
y∈B(y0,r ′)

ϕ(y0 − y) − f (y0)

= sup
z∈B(0,r ′)

ϕ(z) − f (y0).

This implies that supz∈B(0,r ′) ϕ(z) ≤ 0, and hence ϕ(z) = 0 for every z ∈
B(0, r ′). Because of the homogeneity of ϕ, we conclude that ϕ ≡ 0. This
implies in turn that f ϕ ≡ supX(−f ) = − infX f ∈ R, but this contradicts
the coercivity of f ϕ . The density of Cα in Dα is then established. Finally, the
second conclusion in (ii) follows directly from (i) and the above density.

Remark 6.1. The coercivity of ϕ ensures that of f ϕ , whenever f �= ωX.
Indeed, given x ∈ dom f , we have f ϕ(x) ≥ ϕ(x − x) +. (−f (x)) for every
x ∈ X, hence lim‖x‖→+∞ f ϕ(x) = +∞.

Remark 6.2. The lower semicontinuity of the function x 
→ ϕ{f ϕ=mα}(x) ∈
[0, ∞] is fulfilled in anyone of the following situations:

(i) ϕ is subadditive, continuous at 0 and such that ϕ(0) = 0 (see the proof
of Theorem 6.1 below);

(ii) ϕ = ‖·‖γ (γ ≥ 1);

(iii) the set {f ϕ = mα} is compact and ϕ is lower semicontinuous;

(iv) X is finite dimensional, lim‖y‖→+∞ ϕ(y) = +∞ and ϕ is lower semi-
continuous.

Let us now state and prove the theorem establishing the link between the
ϕ-envelope of f and the marginal inf-value function of ϕ over suitable level
set of f .

Theorem 6.1. Let (X, ‖·‖) be a normed space and let f : X → R. Let
ϕ: X → [0, ∞[ be a continuous and sublinear function. Assume that
lim‖y‖→+∞ f ϕ(y) = +∞. Then, for all x ∈ Dα one has

mα = f ϕ(x) + ϕ{f ϕ=mα}(x) = f ϕ(x) + ϕ{f ϕ≥mα}(x),
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or equivalently

mα = f ϕ(x) + inf
y∈{f ϕ=mα} ϕ(y − x) = f ϕ(x) + inf

y∈{f ϕ≥mα} ϕ(y − x).

Proof. First observe that the above equalities are trivially true if f ϕ = ωX.
From now on, let us assume that f ϕ �= ωX, which implies f (y) > −∞ for all
y ∈ X. In order to prove the inequality

mα ≥ f ϕ(x) + inf
y∈{f ϕ=mα} ϕ(y − x), (52)

for every x ∈ Dα , let us check that the hypotheses of Proposition 6.1 are
fulfilled. Since the function ϕ is subadditive and continuous at 0, and since
f ϕ �= ±ωX (note that f ϕ �= −ωX by the coercivity assumption of f ϕ),
Proposition 5.1(iii) ensures that the function f ϕ is continuous on X. Let us now
prove that the functionx 
→ infy∈{f ϕ=mα} ϕ(y−x) is lower semicontinuous. Let
x ∈ X and {xk}k∈N be a sequence in X converging to x. Since ϕ is subadditive
(and finite-valued), one has

ϕ(y − x) ≤ ϕ(y − xk) + ϕ(xk − x),

and hence
ϕ(y − xk) ≥ ϕ(y − x) − ϕ(xk − x).

Taking the infimum over y ∈ {f ϕ = mα}, we obtain

inf
y∈{f ϕ=mα} ϕ(y − xk) ≥ inf

y∈{f ϕ=mα} ϕ(y − x) − ϕ(xk − x).

Using the continuity of ϕ at 0, we deduce that

lim inf
k→+∞ inf

y∈{f ϕ=mα} ϕ(y − xk) ≥ inf
y∈{f ϕ=mα} ϕ(y − x),

which shows that the function x 
→ infy∈{f ϕ=mα} ϕ(y − x) is lower semicon-
tinuous. We can then apply Proposition 6.1(ii) to obtain that the inequality (52)
is valid for every x ∈ Dα .

To finish the proof, observe that the subadditivity of ϕ implies that, for all
x, y ∈ X

f ϕ(y) ≤ f ϕ(x) + ϕ(y − x),

see (42). It ensues that, for all x ∈ X and y ∈ {f ϕ ≥ mα},
mα ≤ f ϕ(y) ≤ f ϕ(x) + ϕ(y − x),
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and hence for every x ∈ X

mα ≤ f ϕ(x) + inf
y∈{f ϕ≥mα} ϕ(y − x) ≤ f ϕ(x) + inf

y∈{f ϕ=mα} ϕ(y − x),

and the proof is complete.

Remark 6.3. Putting ϕ−(u) := ϕ(−u) for all u ∈ X, the equality mα =
f ϕ(x) + infy∈{f ϕ=mα} ϕ(y − x) can be rewritten as

f ϕ(x) = mα + sup
y∈{f ϕ=mα}

−ϕ(y − x)

= mα + sup
y∈X

(−ϕ−(x − y) − δ{f ϕ=mα}(y)
)

= mα + (
δ{f ϕ=mα}

)−ϕ−
(x).

It ensues that the result of Theorem 6.1 can be interpreted as follows

f ϕ = mα + (
δ{f ϕ=mα}

)−ϕ− = mα + (
δ{f ϕ≥mα}

)−ϕ− on Dα.

Note that Theorem 6.1 with ϕ = 1
λ
‖·‖, λ > 0, corresponds to the following

result in [12, Theorem 4].

Corollary 6.1. Let λ > 0 and f : X → R. For every x ∈ Dα = {x ∈ X :
κλ,1f (x) ≤ mα}, we have

mα = κλ,1f (x)+ 1

λ
d
(
x, {κλ,1f = mα}) = κλ,1f (x)+ 1

λ
d
(
x, {κλ,1f ≥ mα}).

Proof. The function ϕ = 1
λ
‖·‖ satisfies all the requirements of The-

orem 6.1. If f �= ωX, the coercivity of ‖·‖ implies that of κλ,1f , cf. Re-
mark 6.1. It suffices then to apply Theorem 6.1. If f = ωX, then κλ,1f = −ωX

and mα = −∞, hence the announced equalities are satisfied.

Finally, as in [12, Theorem 5], for each x ∈ Cα we show that the infimum
in the definition of ϕ{f ϕ=mα}(x) is attained whenever the supremum in the
definition of f ϕ(x) is attained.

Corollary 6.2. Let the assumptions of Theorem 6.1 be satisfied, and let
x ∈ Cα be such that Mϕf (x) �= ∅. Then there exists u ∈ {f ϕ = mα} such that

ϕ(u − x) = inf
y∈{f ϕ≥mα} ϕ(y − x).

Proof. Let s ∈ Mϕf (x). Then, since x ∈ Cα and f ϕ(x) = ϕ(x−s)−f (s),
we have x �= s. By the coercivity of f ϕ and the inequality f ϕ(x) ≤ mα (by
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the definition of Dα in (49) and the inclusions x ∈ Cα ⊂ Dα), we have(
x + R+(x − s)

) ∩ {f ϕ = mα} �= ∅. So let u ∈ (
x + R+(x − s)

) ∩ {f ϕ =
mα} �= ∅. By Theorem 6.1, f ϕ(u) = f ϕ(x) + infy∈{f ϕ≥mα} ϕ(y − x), and
hence, because f ϕ(x) = ϕ(x − s) − f (s) (as seen above),

ϕ(x − s) − f (s) + inf
y∈{f ϕ≥mα} ϕ(y − x) = f ϕ(u) ≥ ϕ(u − s) − f (s).

Thus
inf

y∈{f ϕ≥mα} ϕ(y − x) ≥ ϕ(u − s) − ϕ(x − s)

and by taking into account that u ∈ x+R+(x−s), we get ϕ(u−s)−ϕ(x−s) =
ϕ(u − x) which allows us to obtain

inf
y∈{f ϕ≥mα} ϕ(y − x) ≥ ϕ(u − x)

and to complete the proof.
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