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PRIMITIVE IDEALS IN TENSOR PRODUCTS
OF BANACH ALGEBRAS

JUN TOMIYAMA

Let 4 and B be Banach algebras. Recently Laursen [1] has established
a bijection
MAR,B) — MA)x M(B)

when one of 4 or B is commutative. Here we mean by .#(4 ®,B) the
set of maximal modular ideals of 4 ®, B, the greatest cross norm tensor
product of A and B and by .#(A) and .#(B) the sets of those ideals in 4
and B. The result extends the fact which is previously known in case
where both 4 and B are commutative. However, in the latter case it is
also known that there exists a bijection

M(A®,B) — M(A)x M(B)

for an arbitrary compatible cross norm f§ (cf. [6]). Thus we may expect
the same result for 4 ®,B in the former case. In the present article we
shall show that this is actually the case. The proof is a direct modifica-
tion of the method employed in [6] and does not depend on the presence
of a unit, which will show an advantage of our proof. The result for
strong semisimplicity of product algebras will be also naturally extended
to this situation, so that it may cover the cases such as (X, B) where X
is a compact Hausdorff space, etc.

A cross norm 8 in A®B, algebraic tensor product of A and B, which
is not less than the A-norm (cf. [4]) is called a compatible norm if it is
compatible with multiplications in A@©B, that is,

lzylls = liellsllylls

for any z,y € AOB. In this case 4 ®;B becomes a Banach algebra.
Take a bounded linear functional ¢ of A and define the mapping R,
on A®B by

B (371 a,®b;) = 37, <a;,@)b; .
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Since g2 4 it will be easily seen that this mapping is continuous and can
be extended to 4 ®,;B. We can also define the mapping
L, AR,B~—~ A4
for a bounded linear functional v on B by
L (%51 a:@b;) = 271 <biy)a; .
These mappings concern each other in the following way:

(x,9@p) = (B,(2),p) = (L,(x),p)

for any x € A ®,B where p®@y means a product functional. We call this
equality Fubini type principle and those mappings right and left Fubini
mappings.

Fubini mappings have been defined in [6].

Let IT(A) be the set of modular primitive ideals in 4. We shall state
our result in the following way.

THEOREM 1. Suppose that A is a commutative Banach algebra and § o
compatible cross norm, then there is a bijection

114 ®5B) o I1,(A) x I1(B)

given by P=R Y Pg) where P e Il(A ®;B), Pgelly(B), and R, is a
right Fubint mapping induced by a homomorphism ¢ on A. The restriction
of the above mapping to the sets of maximal modular ideals yields a bijection

M(A®,B) « M(A)x M(B).

Proor. We notice first that B, is a homomorphism from 4 ®,B onto
B. Take an ideal Py e II(B) and ¢ € Il (4)=.#(A) (identifying homo-
morphisms and modular maximal ideals) and put

P = R, \(Pp).

Then the quotient algebra A ®,B[P is isomorphic to B/Py by the iso-
morphism induced by E_, hence P is also a modular primitive ideal.

Suppose we have
P = R.(P'p)

for a homomorphism ¢, and an ideal P’z € IT(B). If ¢ ¢, there exists
an element a € A such that {(a,¢>=0 and {a,¢;)+0. Take be B so
that b ¢ P'p. Then applying R, and B, to a®b we see that

a®b € P and a®b ¢ P,
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a contradiction. Therefore ¢ =¢,, and Pp=P'p, that is, the above ex-
pression is unique.

Now take an element P € I](4 ®;B) and let 7w be the quotient mapping
to A @,B[P, which is a Banach algebra containing a unit. We choose
an element k=37_,a;Qb; such that z(k) is invertible and write as

o@) = m (X, xa;®b;) n(k)~

for x € A. We note first that o(z) commutes with z(k), hence with s(k)—!
too. Clearly ¢ is a linear mapping from 4 into 4 ®,B[P. For z,y € A
we have

(25, ""“i®bi) n(k) 7‘(2';1 ya;®@b;) (k)™
(2 j 2yaa;Qb;b;) (k)2
n(Xioq wya,Qb;) n(k)~t = o(xy)

o(@) e(y)

and moreover
a(yQRbelo(x) = n(D 7, xya;Qbeb;) n(k)~! = n(ryQbc)

for arbitrary elements z,y € A and b,c € B. Therefore p is a non-zero
homomorphism from 4 to 4 ®,B/P. We shall show that g(4) is con-
tained in the center. In fact,

n(yRb) o(x) = #(xyRb) = n(k) n(k) n(xyRb)
= a(k)™ n(2i-1 7ya; ®bb) = o(x) n(yRb)
for any y € 4 and b € B. Since 4 ®;B/P is a primitive algebra, o(4) is

isomorphic to the complex number field (cf. [3, p. 61]) and there is a
(complex valued) homomorphism ¢ such that

e(®) = (z,9)1
where 1 is the identity in the algebra. Take an element e € 4 such as
{e,p)=1 and put

ng(x) = n(e®x) for zeB.
We have
mp(ey) = #(e@zy) = n(*Qxy)

= 7(e®%) n(e®Y) = 7p(x) 7p(y) .
Hence =y is a continuous homomorphism from B to A ®,B/P, and
moreover we get the following relation,

7(a@b) = n(ae®@b) = n(e@b)o(a)

= {a,p)mp(b)
= np({a,p)b) = mgoR (a®b) .
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Hence,
n = ngoR,.

Putting Pgz=n5"1(0), we have Py e I1,(B) and the expression
P = R,"Y(Pp).

Finally, the canonical isomorphism between 4 ®,B/P and B/Py shows
that the restriction of the above bijection induces a bijection.

M(ARyB) « M(A)x .#(B).
This completes the proof.

The above theorem shows that when both 4 and B have units there
is a bijection
II(A ®3B) « II(A)xII(B),
where II(A ®;B) is the structure space of 4 ®;B, and II(4) and II(B)
show the structure spaces of A and B. If we consider the correspondance
between primitive ideals and maximal left ideals we can deduce Lebow’s
result [2] from the above bijection.

CoROLLARY. In the above notations, suppose both A and B have units,
then a maximal left ideal L in A ®,B is expressed uniquely as

L = B, (L)

where @ 1s a homomorphism of A and Lg is a maximal left ideal of B.

Proor. We may proceed the arguments about the uniqueness of ex-
pressions and the maximality of the left ideal K, ~(Ly) along the same
line as in the beginning of the proof of Theorem 1, so that it is enough
to show how to determine ¢ and L. For a maximal left ideal L, let o
be the canonical irreducible representation of 4 ®sB on E=4 ®ﬁB/L.
We put P=p-1(0), then P is a primitive ideal and there exist a homo-
morphism ¢ and a primitive ideal Py such that

P = RYPp).
This shows that we can find a (continuous) irreducible representation
op of B such that ¢5~1(0)=Pp and p=pgoR,. Let & be the canonical
image of the identity of 4 ®,B in E. We have
L = {xe A®yB| o(x)§,=0}.
Put
Lp = {beB| op(b)§,=0}.

Then L=R,"(Lg) and Ly is clearly a maximal left ideal of B.
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Now Theorem 1 will lead us to a natural generalization of [1, Theorem
2] to the case 4 ®,B. For the sake of completeness we shall give the
proof of our arguments.

THEOREM 2. In the above notations, suppose A and B are strongly semi-
simple, then A @,B s strongly semisimple if and only if the canonical
mapping

;. AR,B - A®,B
18 one-to-one.

Proor. We shall show that the strong radical R, of 4 ®,B coin-
cides with =1(0). In fact, we have the following equivalence:
re Ry, < R (x)e Mgz for any pe #(4A) and Mpe #(B)
<> R (x) = 0 for any pe.#(4).

Since for an € B*, by Fubini type principle
Yy y ype P p
<R.p(x),’l’> = <Lw(x)9q)> =0,

the above equivalence can be transferred to the identity,

(Ly(x), ) = (x,9Qy) = (7(x),pQy) = 0
for any ¢ € A* and y € B*. This is equivalent to t(z)=0.

Theorem 2 covers, for example, the case Cy(X,B), the space of all
B-valued continuous functions on a locally compact space X vanishing
at infinity as well as the case L'(G, B) where G is a locally compact
abelian group and B is a Banach algebra, to the extent that they are
strongly semi-simple if and only if B is strongly semisimple.

For an another special compatible norm such as C*-cross norm more
general results are known. For example, if we take 4 a separable type I
C*-algebra then for an arbitrary separable C*-algebra B and the least
C*-cross norm « we get a bijection

II(4A ®,B) < II(4)x II(B)

and this correspondance is actually a homeomorphism with respect to
hull-kernel topology (cf. [7, p. 225]).

REFERENCES

1. K. B. Laursen, Mazimal two sided ideals in tensor products of Banach algebras, Proc.
Amer. Math. Soc. 25 (1970), 475-480.



262 JUN TOMIYAMA

2. A. Lebow, Maximal ideals in tensor products of Banach algebras, Bull. Amer. Math. Soc.
74 (1968), 1020-1022.

3. C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton 1960.

4. R. Schatten, A theory of cross-spaces (Ann. of Math. Studies, 26), Princeton University
Press, Princeton, 1950.

5. 1. E. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61
(1947), 69-105.

6. J. Tomiyama, Tensor products of commutative Banach algebras, Tohoku Math. J. 12
(1960), 147-154.

7. J. Tomiyama, Applications of Fubini type theorem to the tensor products of C*-algebras,
Téhoku Math. J. 19 (1967), 213-226.

UNIVERSITY OF COPENHAGEN, COPENHAGEN, DENMARK
AND
YAMAGATA UNIVERSITY, YAMAGATA, JAPAN



