
MATH. SCAND. 124 (2019), 247–262

A GENERAL ONE-SIDED COMPACTNESS RESULT FOR
INTERPOLATION OF BILINEAR OPERATORS

EDUARDO BRANDANI DA SILVA and DICESAR LASS FERNANDEZ

Abstract
The behavior of bilinear operators acting on the interpolation of Banach spaces in relation to
compactness is analyzed, and an one-sided compactness theorem is obtained for bilinear operators
interpolated by the ρ interpolation method.

1. Introduction

Multilinear operators appear naturally in several branches of classical harmonic
analysis and functional analysis, including the theory of ideals of operators
in Banach spaces. Recently, several singular multilinear operators have been
intensively studied and the research on the bilinear Hilbert transform (see [23])
has shown the need for new results for bilinear operators; see, for example,
the paper by L. Grafakos and N. Kalton [18].

A related question is: when is it possible to extend to bilinear operators
the classical results for linear operators in interpolation theory? It must be
observed that interpolation of bilinear operators is a classical problem in in-
terpolation theory, and some results appear in the fundamental article of Lions
and Peetre [24]. Several results on bilinear operators and interpolation were
further obtained in several directions; see, for example, [19] and [26]. Some
of these results have been applied in the general theory of Banach spaces,
see [29], and in the theory of multilinear p-summing operators [1]. But, not
all results for the linear case generalize to the bilinear case; for instance, the
linear Marcinkiewicz multiplier theorem, whose natural bilinear version fails,
as shown by Grafakos and Kalton in [18].

We are interested in this essay in the behavior of compactness for bilinear
operators under interpolation by the real method. The study of the behavior of
linear compact operators under interpolation has its origin in the classical work
of M. A. Krasnoselskii, for Lp spaces. Afterwards, several authors worked on
the general question of compactness of operators for interpolation of abstract
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Banach spaces. The first main authors were J. L. Lions and J. Peetre [24]
and A. Calderón [3]. The proof that the real method preserves compactness
with only a compact restriction in the extreme spaces was given independently
in [9] and [11]. That research continued in the last years not only for more
general interpolation methods (see e.g. [4], [6]) but also for the measure of non-
compactness (see e.g. [33], [7], [17], [30], [5]) and entropy and approximation
numbers (see e.g. [12], [13], [32], [31]).

For the real method, if E = (E0, E1), F = (F0, F1) and G = (G0, G1)

are Banach couples, a classical result by Lions-Peetre asserts that if T is a
bounded bilinear operator from (E0 + E1) × (F0 + F1) into G0 + G1, whose
restrictions T |Ek×Fk

(k = 0, 1) are also bounded from Ek × Fk into Gk (k =
0, 1), then T is bounded from Eθ,p;J × Fθ,q;J into Gθ,r;J , where 0 < θ < 1
and 1/r = 1/p + 1/q − 1. Subsequently several authors have obtained new
and more general results about boundedness for the interpolation of bilinear
and multilinear operators. For example, see [25], and [26].

For the multilinear case, the study on the behavior of compact operators in
the interpolation spaces goes back to A. P. Calderón [3, p. 119–120]. Under
an approximation hypothesis, Calderón established a one-sided type general
result, but restricted to complex interpolation spaces. On the other hand, the
behavior of compact multilinear operators under real interpolation functors
until recently had not been investigated. In the paper [14], generalizations
of Lions-Peetre compactness theorems [24, Theorem V.2.1] (the one with the
same departure spaces) and [24, TheoremV.2.2] (the one with the same arriving
spaces), Hayakawa’s (i.e. a two-side result without approximation hypothesis)
and a compactness theorem of Persson type were obtained. Similar results for
more general interpolation methods were obtained in [16].

A natural question put by C. Michels in his report [27] asks whether a Cwikel
type result is valid for bilinear operators? In current research, mixing ideas
from [14] and [9] with new ones, a bilinear version of Cwikel’s compactness
theorem is obtained for the first time in the literature. The result is presented
for the more general ρ method of interpolation. We call the attention that the
results of this work, without the proofs, were presented in a talk at FSDONA
conference held in Germany in 2011 [15]. Since that time many researchers in
the area know the result, but here we present the full ideas and proofs.

2. Function parameters and interpolation spaces

We shall say that a Banach space is an intermediate space with respect to a
Banach couple E = (E0, E1) if

E0 ∩ E1 ↪→ E ↪→ E0 + E1
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with ↪→ denoting bounded embeddings. By a function parameter ρ we shall
mean a continuous and positive function on R+. We shall say that a function
parameter ρ belongs to the class B, if it satisfies ρ(1) = 1 and

ρ(s) = sup
t>0

ρ(st)

ρ(t)
< +∞, s > 0.

Also, we shall say that a function parameter ρ ∈ B belongs to the class B+−
if it satisfies ∫ ∞

0
min

(
1,

1

t

)
ρ(t)

dt

t
< +∞.

The function parameter ρθ (t) = t θ , 0 ≤ θ ≤ 1, belongs to B. It corresponds
to the usual parameter θ . Further, ρθ ∈ B+− if 0 < θ < 1, but ρ0, ρ1 �∈ B+−.

If ρ ∈ B+−, it may be considered an increasing parameter, and ρ(t)/t a
decreasing one. Furthermore, ρ may be considered non-decreasing, and ρ(t)/t

non-increasing. Consequently, if ρ ∈ B+− and 0 < q ≤ ∞, we have

‖ρ−1(t) min(1, t)‖L
q∗ < ∞.

(See [20] for more information about interpolation theory and interpolation
with function parameter.)

Let {E0, E1} and {F0, F1} be Banach couples and let L({E0, E1}, {F0, F1})
be the family of all linear maps T : E0 + E1 → F0 + F1 such that T |Ek

is
bounded from Ek to Fk , k = 0, 1.

If E and F are intermediate spaces with respect to {E0, E1} and {F0, F1},
respectively, we say that E and F are interpolation spaces of type ρ where
ρ ∈ B+−, if given any T ∈ L({E0, E1}, {F0, F1}) we have

‖T ‖L(E,F ) ≤ C‖T ‖0ρ

(‖T ‖1

‖T ‖0

)
,

where ‖T ‖k = ‖T ‖L(Ek,Fk) (k = 0, 1), and C > 0 is a constant.
Let {E0, E1} be a Banach couple. The functionals J and K are defined by

J (t, x) = J (t, x; E) = max
{‖x‖E0 , t‖x‖E1

}
, x ∈ E0 ∩ E1,

K(t, x) = K(t, x; E) = inf
x=x0+x1

{‖x0‖E0 + t‖x1‖E1

}
,

respectively, where in K(t, x), x0 ∈ E0 and x1 ∈ E1. Then, we can define the
following interpolation spaces.

The space (E0, E1)ρ,q,K , ρ ∈ B+− and 0 < q ≤ +∞, consists of all
x ∈ E0 + E1 for which the norm

‖x‖ρ,q;K = ∥∥(
ρ(2n)−1K(2n, x; E)

)
n∈Z

∥∥
�q (Z)

is finite.
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The space (E0, E1)ρ,q;J , ρ ∈ B+−, consists of all x ∈ E0 + E1 that have
a representation x = ∑∞

n=−∞ un, where (un) ∈ E0 ∩ E1 and converges in
E0 + E1, and the norm

‖x‖ρ,q;J = inf
∥∥(

ρ(2n)−1J (2n, un; E)
)
n∈Z

∥∥
�q (Z),

is finite, where the infimum is taken over all representations x = ∑
un. Be-

sides, in the case of the interpolation space (E0, E1)ρ,q,J , if x ∈ E0 ∩ E1,
then

‖x‖E ≤ C‖x‖0ρ

(‖x‖1

‖x‖0

)
.

For 0 < q ≤ +∞, the Equivalence Theorem between the J and K method
holds, that is,

(E0, E1)ρ,q;J = (E0, E1)ρ,q;K.

Let E be an intermediate space with respect to a Banach couple E =
(E0, E1) and ρ ∈ B+−. We say that E is an intermediate space of class
Jρ(E0, E1) if the following embedding holds

(E0, E1)ρ,1;J ↪→ E,

and we say that E is an intermediate space of class Kρ(E0, E1) if the following
embedding holds

E ↪→ (E0, E1)ρ,∞;K.

We note that E is of class Jθ (E0, E1) if, and only if, for all x ∈ E0 ∩ E1,
we have

‖x‖E ≤ C‖x‖E0ρ

(‖x‖E1

‖x‖E0

)
.

To obtain our main result, we will use the following sequence spaces. Let
G be a linear space and let (‖ · ‖n)n∈Z be a sequence of norms on G. For
each n ∈ Z, we shall denote by Gn the space G equipped with the norm ‖·‖n:
Gn = (G, ‖·‖n). Let ρ be any function parameter and 0 < q ≤ ∞. We shall
denote by �

q
ρ(Gn) the linear space of all sequences (an)n∈Z, in G, such that

|||(an)|||ρ,q := ‖(an)n∈Z‖�
q
ρ(Gn)

=
[ ∑

n∈Z
[ρ(2−n)‖an‖n]q

]1/q

< +∞.

If ρ(t) = 1 then �
q
ρ(Gn) is denoted by �

q

0(Gn) and if ρ(t) = t , it is denoted
by �

q

1(Gn). The functional |||·|||ρ,q is a norm on �
q
ρ(Gn).

The spaces �
q
ρ(Gn) are related to interpolation by the following result [20]:
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Theorem 2.1. For the above norm |||·|||ρ,q and ρ ∈ B+−, one has(
�

q0
0 (Gm), �

q1
1 (Gm)

)
ρ,q

= �
q

f (Gm),

where 0 < q, q0, q1 ≤ ∞ and f (t) = 1/ρ(t−1).

For each m ∈ Z, let us set �m = �mE = E0 ∩ 2−mE1, i.e., we take �m to
be the space E0 ∩ E1 equipped with the norm J (2−m, ·).

Given ρ ∈ B+−, for f (t) = 1/ρ(t−1), every sequence {um} in �
q

f (�m) is
summable in E0 + E1. Then, setting

σ({um}) =
∞∑

m=−∞
um, (2.1)

by Theorem 2.1, we see that the mapping σ : �q

f (�m) → (E0, E1)ρ,q;J is
bounded and (E0, E1)ρ,q;J = �

q

f (�m)/σ−1(0). Moreover, it may be proved
that �

q

f (�m) ⊂ (
�1

0(�m), �1
1(�m)

)
ρ,q

.

3. Bilinear operators and compactness

Given X, Y and Z Banach spaces and a bilinear operator T : X × Y → Z, the
norm of T is defined by

‖T ‖Bil(X×Y,Z) = sup
{‖T (x, y)‖Z : (x, y) ∈ UX×Y

}
,

where UX×Y is the unit closed ball in X×Y with respect to the norm ‖(x, y)‖ =
max{‖x‖X, ‖y‖Y }. We denote by Bil(X × Y, Z) the space of all bounded
bilinear operators from X × Y into Z.

If the norm of T is defined using the open unit ball, denoted by ŮX×Y , we
will have the same norm. The following lemmas will be important in what
follows.

Lemma 3.1. Given X, Y and Z Banach spaces, if A ⊂ X and B ⊂ Y are
dense subsets and T ∈ Bil(X × Y, Z), then

|||T |||Bil(X×Y,Z) = sup
{‖T (a, b)‖Z : (a, b) ∈ A × B with (a, b) ∈ ŮX×Y

}
,

is a norm on Bil(X × Y, Z) and |||T |||Bil(X×Y,Z) = ‖T ‖Bil(X×Y,Z).

Lemma 3.2. Given Banach spaces X, Y and Z, and A × B ⊂ X × Y

a dense subset, let Tn ∈ Bil(X × Y, Z), n ∈ N be a sequence of bilinear
operators such that limn→∞|||Tn|||Bil(X×Y,Z) = λ. Then, there exits a sequence

(xn, yn) ⊂ (A × B) ∩ ŮX×Y such that

lim
n→∞ ‖Tn(xn, yn)‖Z = λ.
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Given Banach couples E = (E0, E1), F = (F0, F1) and G = (G0, G1), we
shall denote by Bil(E × F, G) the set of all bounded bilinear mappings from
(E0 +E1)× (F0 +F1) to G0 +G1 such that T |EK×Fk

is bounded from Ek ×Fk

into Gk , k = 0, 1.
Given Banach couples E = (E0, E1), F = (F0, F1), and G = (G0, G1)

and intermediate spaces E, F and G respectively, we shall say that the pair
(E ×F, G) is a bilinear interpolation pair of type ρ, if for all bilinear operator
T from (E0 + E1) × (F0 + F1) into G0 + G1 such that T : E × F → G one
has

‖T ‖Bil(E×F ;G) ≤ C‖T ‖Bil(E0×F0,G0)ρ

(‖T ‖Bil(E1×F1,G1)

‖T ‖Bil(E0×F0,G0)

)
.

The following result characterizes the bilinear interpolation operators which
are of our interest. For the classical θ method this property was first established
by Lions-Peetre [24, Th.I.4.1]. Here, we use the function parameter version
from [14].

Theorem 3.3. Let T be a bounded bilinear operator from (E0 + E1) ×
(F0 + F1) into G0 + G1 whose restrictions T |Ek×Fk

(k = 0, 1) are bounded
from Ek × Fk into Gk (k = 0, 1). Then, for ρ ∈ B+−, one has

T : Eγ,p × Fρ,q → Gρ,r ,

where γ (t) = ρ(t−1)−1 ∈ B+−, 1/r = 1/p + 1/q − 1 and

‖T ‖Bil(Eγ,p×Fρ,q ,Gρ,r ) ≤ C‖T ‖Bil(E0×F0,G0)ρ

(‖T ‖Bil(E1×F1,G1)

‖T ‖Bil(E0×F0,G0)

)
,

where C > 0 is a constant.

We also quote the following useful lemma, which is easy to prove.

Lemma 3.4. Let E = (E0, E1) and F = (F0, F1) be Banach couples and G

be any Banach space. If T ∈ Bil(Ek × Fk; G), k = 0, 1, then T ∈ Bil((E0 ∩
E1) × (F0 + F1), G) and T ∈ Bil((E0 + E1) × (F0 ∩ F1), G).

For more on bilinear interpolation, see L. Maligranda [25] and M. Mas-
tyło [26].

Given Banach spaces E, F and G, a bounded bilinear mapping T from
E × F into G is compact if the image of the set M = {

(x, y) ∈ E × F :
max{‖x‖E, ‖y‖F } ≤ 1

}
is a totally bounded subset of G.

Let us quote a few examples of bilinear compact operators.

Example 3.5. In [28, p. 274] a compact bilinear operator is defined in
Bil(H 2(
) × H 2(
), H 2

0 (
)), where 
 is a bounded and simply connected
domain in R2.
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Example 3.6. Related questions on multilinear forms are studied in [8],
where several examples of forms are given. Also in [21, p. 925] an interesting
example of a Hilbert-Schmidt bilinear form is presented.

Example 3.7. Even though a bilinear operator T (x, y) is compact in each
coordinate, it may not be a bilinear compact operator. This question has been
studied in [22] and [2], where examples are also given.

Versions of Lions-Peetre Theorems about compactness of bilinear operators
in interpolated spaces by the ρ method are given below. For the proofs, see [14].

Theorem 3.8. Let E and F be Banach spaces, G = (G0, G1) a Banach
couple and G a Banach space of class Jρ(G0, G1), ρ ∈ B+−. Given a bounded
bilinear operator T from E×F into G0 +G1, such that T (E×F) ⊂ G0 ∩G1,
T is compact from E × F into G0 and bounded from E × F into G1, then T

is also compact from E × F into G.

Theorem 3.9. Let Banach couples E = (E0, E1) and F = (F0, F1), G any
Banach space and T ∈ Bil((E0 + E1) × (F0 + F1), G) be given. If ρ ∈ B+−,
γ (t) = 1/ρ(t−1) and T is compact from E0×F0 into G, then T is also compact
from E × F into G, where E = (E0, E1)γ,p and F = (F0, F1)ρ,q .

4. A one-sided bilinear compactness theorem

In this section we shall establish a bilinear version, for the ρ method, of the
linear one-sided compactness theorem (see [9] and [11]), in which we assume
compactness just in one of the departure spaces. We begin with a preliminary
result which depends on an approximation hypothesis. This hypothesis was
also used in [14] and has its origin in [10].

Approximation Hypothesis. A Banach couple X = (X0, X1) satisfies the
Approximation Hypothesis (AP) if there exists a sequence {Pn} in L(X , X ),
with Pn(X0 + X1) ⊂ X0 ∩ X1, and two other sequences {P +

n } and {P −
n } in

L(X , X ), such that

(AP1) the sequences are uniformly bounded in L(X , X );

(AP2) I = Pn + P +
n + P −

n , n ∈ N;

(AP3) P +
n = P +

n |X0 ∈ L(X0, X1), P −
n = P −

n |X1 ∈ L(X1, X0), and

lim
n→∞ ‖P +

n ‖L(X0,X1) = lim
n→∞ ‖P −

n ‖L(X1,X0) = 0.

The notation X◦
k (k = 0, 1) stands for the closure of X0 ∩ X1 in Xk , (k =

0, 1), and X θ,q stands for the closure of X0 ∩X1 in (X0, X1)θ,q . The following
lemma, due to [10] is required.
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Lemma 4.1. Let E = (E0, E1) be a Banach couple which satisfies the
Approximation Hypothesis (AP). Then,

(i) lim
n→∞ ‖P −

n x‖E0 = 0, if x ∈ E◦
0;

(ii) lim
n→∞ ‖P +

n x‖E1 = 0, if x ∈ E◦
1 .

The next theorem is the core for our main result.

Theorem 4.2. Let us assume that E = (E0, E1), F = (F0, F1) and G =
(G0, G1) are Banach couples which satisfy the Approximation Hypothesis
(AP). Let T be a bounded bilinear operator from (E0 + E1) × (F0 + F1) into
G0 +G1 whose restrictions T |Ek×Fk

(k = 0, 1) are bounded from Ek ×Fk into
Gk (k = 0, 1) and T |E0×F0 is compact.

Given ρ ∈ B+−, put γ (t) = 1/ρ(t−1) ∈ B+− and 1/r = 1/p + 1/q − 1.
If E = (E0, E1)γ,p, F = (F0, F1)ρ,q and G = (G0, G1)ρ,r , then considering
the decompositions I = Rn + R+

n + R−
n ∈ L(G, G), I = Qn + Q+

n + Q−
n ∈

L(F, F ) and I = Pn + P +
n + P −

n ∈ L(E, E) given by (AP2), we have that

(1) each of the operators T (Pn, Qn), RnT (Pn, Q
−
n ) and RnT (P −

n , Q−
n ) is

compact from E × F to G, for all n;

(2) each of the sequence of norms

{‖T (Pn, Q
+
n )‖Bil(E×F,G)}, {‖R−

n T (Pn, Q
−
n )‖Bil(E×F,G)},

{‖T (P +
n , Qn)‖Bil(E×F,G)}, {‖T (P +

n , Q+
n )‖Bil(E×F,G)},

{‖T (P +
n , Q−

n )‖Bil(E×F,G)}, {‖T (P −
n , Qn)‖Bil(E×F,G)},

{‖T (P −
n , Q+

n )‖Bil(E×F,G)}, {‖R+
n T (P −

n , Q−
n )‖Bil(E×F,G)}

and {‖R−
n T (P −

n , Q−
n )‖Bil(E×F,G)}

converges to zero, when n → ∞.

Proof. Step 1: For T (Pn, Qn), we factorize it using the following diagram:

E × F
(Pn,Qn)−−−−→ (E0 ∩ E1) × (F0 ∩ F1) ↪→ Ej × Fj

T−→ Gj,

for j = 0, 1.
Since T is compact from E0 × F0 into G0, it follows, by Theorem 3.8, that

T ◦ (Pn, Qn) is compact from E × F into G.
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Step 2: We want to show that

lim
n→∞ ‖T ◦ (Pn, Q

+
n )‖Bil(E×F,G) = 0.

Since

‖T (Pn, Q
+
n )‖Bil(E×F,G) ≤ C‖T (Pn, Q

+
n )‖0ρ

( ‖T (Pn, Q
+
n )‖1

‖T (Pm, Q+
n )‖0

)

≤ Cρ(‖T ‖1)
ρ
(
1/‖T (Pn, Q

+
n )‖0

)
1/‖T (Pn, Q

+
n )‖0

,

where ‖·‖k = ‖·‖Bil(Ek×Fk,Gk) (k = 0, 1), it is enough to show that
‖T (Pn, Q

+
n )‖0 → 0, as n → ∞.

Aiming for a contradiction, let us suppose that ‖T (Pn, Q
+
n )‖Bil(E0×F0,G0)

converges to λ > 0. Since {Pn} and {Q+
n } are uniformly bounded in E0 ×

F0, by Lemma 3.2 there exists a sequence {(an, bn)} ∈ UE0 × UF0 and a
subsequence {n′}, such that ‖T (Pn′ , Q+

n′)‖Bil(E0×F0,G0) → λ > 0 and

‖T (Pn′an′ , Q+
n′bn′)‖G0 → λ as n′ → ∞.

By the compactness assumption on T : E0×F0 → G0 we may assume, passing
the another subsequence if necessary, that {T (Pn′an′ , Q+

n′bn′)} converges to
some element b in G0, so that ‖b‖G0 = λ. But

‖T (Pn′an′ , Q+
n′bn′)‖G0+G1

≤ C‖T ‖Bil((E0+E1)×(F0+F1),G0+G1)‖Pn′an′ ‖E0+E1‖Q+
n′bn′ ‖F0+F1

≤ C‖Pn′an′ ‖E0‖Q+
n′bn′ ‖F1

≤ C‖Pn′ ‖L(E0,F0)‖an′ ‖E0‖Q+
n′ ‖L(F0,F1)‖bn′ ‖F0 .

Since limn′→∞ ‖Q+
n′ ‖L(F0,F1) = 0, it follows that T (Pn′an′ , Q+

n′bn′) → 0 in
G0 + G1, as n → ∞. Consequently b = 0, and λ = 0, which is not the case.

Step 3: For the compactness of RnT (Pn, Q
−
n ), for all n, let us consider the

diagram

Ek × Fk

T (Pn,Q
−
n )−−−−−→ Gk

Rn−→ G0 ∩ G1 ↪→ G,

for k = 0, 1.
Thus, by Theorem 3.9, RnT (Pn, Q

−
n ): E × F → G is compact.
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Step 4: For R−
n T (Pn, Q

−
n ), since

‖R−
n T (Pn, Q

−
n )‖Bil(E×F,G)

≤ C‖R−
n T (Pn, Q

−
n )‖0ρ

( ‖R−
n T (Pn, Q

−
n )‖1

‖R−
n T (Pm, Q−

n )‖0

)

≤ Cρ
(‖R−

n T (Pn, Q
−
n )‖1

)ρ
(
1/‖R−

n T (Pn, Q
−
n )‖0

)
1/‖R−

n T (Pn, Q
−
n )‖0

≤ Cρ(‖T ‖1)
ρ
(
1/‖R−

n T (Pn, Q
−
n )‖0

)
1/‖R−

n T (Pn, Q
−
n )‖0

,

where ‖·‖k = ‖·‖Bil(Ek×Fk,Gk), k = 0, 1, and by the fact that the sequences
{R−

n }, {Pn} and {Q−
n } are uniformly bounded, it is enough to prove that

‖R−
n T (Pn, Q

−
n )‖0 → 0, for n → ∞.

From properties of the ρ-method (see [12] and [13]), one has that E =
(E0, E1)γ,p = (E◦

0 , E1)γ,p and F = (F0, F1)ρ,q = (F ◦
0 , F1)ρ,q , then by

Lemma 3.1 it follows that ‖R−
n T (Pn, Q

−
n )‖0 = |||R−

n T (Pn, Q
−
n )|||Bil(E◦

0×F ◦
0 ,G0)

.
Let us suppose that |||R−

n T (Pn, Q
−
n )|||0 does not converge to zero. Then, there

exists a subsequence {R−
n′T (Pn′ , Q−

n′)} such that |||R−
n′T (Pn′ , Q−

n′)|||G0
→ λ1 >

0. By the Lemma 3.2, there exists a sequence (xn, yn), with xn ∈ UE0 ∩E1 and
yn ∈ UF0 ∩ F1, such that ‖R−

n′T (Pn′xn′ , Q−
n′yn′)‖G0 → λ1 > 0 for n′ → ∞.

Since the sequence {(Pn′xn′ , Q−
n′yn′)} is bounded in E0 × F0, the compact-

ness of T : E0×F0 → G0 guarantees another subsequence {T (Pn′′xn′′ , Q−
n′′yn′′)}

which converges for some z0 ∈ G0. Then, for n′′ being great enough, one has

‖R−
n′′z0‖G0 >

λ1

2
.

However, since (xn, yn) ∈ (E0 ∩ E1) × (F0 ∩ F1), then {T (Pn′′xn′′ ,

Q−
n′′yn′′)} ⊂ G0 ∩ G1, for all n′′. Given that z0 = limn′′→∞ T (Pn′′xn′′ , Q−

n′′yn′′)

then, z0 ∈ G0 ∩ G1
0
, therefore by the Lemma 3.4 one has lim

n′′→∞‖R−
n′′z0‖G0 =

0, which is a contradiction.

Step 5: To prove that

lim
n→∞ ‖T (P +

n , Qn)‖ = lim
n→∞ ‖T (P +

n , Q+
n )‖ = lim

n→∞ ‖T (P +
n , Q−

n )‖
= lim

n→∞ ‖T (P −
n , Qn)‖ = lim

n→∞ ‖T (P −
n , Q+

n )‖ = 0,

it is enough to follow Step 2.
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Step 6: For compactness of RnT (P −
n , Q−

n ), we factorize it using the fol-
lowing diagram:

Ej × Fj

(P −
n ,Q−

n )−−−−−→ Ej × Fj
T−→ Gj

Rn−→ G0 ∩ G1 ↪→ G,

for j = 0, 1.
Since T is compact from E0 × F0 into G0, it follows by Theorem 3.9 that

RnT (P −
n , Q−

n ) is compact from E × F into G.

Step 7: For R+
n T (P −

n , Q−
n ), we have

‖R+
n T (P −

n , Q−
n )‖Bil(E×F,G)

≤ C‖R+
n T (P −

n , Q−
n )‖0ρ

( ‖R+
n T (P −

n , Q−
n )‖1

‖R+
n R+

n T (P −
n , Q−

n )‖0

)

≤ Cρ
(‖R+

n T (Pn, Q
−
n )‖1

)ρ
(
1/‖R+

n T (P −
n , Q−

n )‖0
)

1/‖R+
n T (P −

n , Q−
n )‖0

≤ C
ρ
(
1/‖T ‖0

)
1/‖T ‖0

ρ
(‖R+

n T (P −
n , Q−

n )‖1
)
.

Since the sequences {R+
n }, {P −

n } and {Q−
n } are uniformly bounded, it is

enough to prove that ‖R+
n T (P −

n , Q−
n )‖1 → 0. Considering the diagram

E1 × F1
(P −

n ,Q−
n )−−−−−→ E0 × F0

T−→ G0
R+

n−→ G1,

we have

‖R+
n T (P −

n , Q−
n )‖1 ≤ ‖R+

n ‖L(G0,G1)‖T ‖0‖P −
n ‖L(E1,E0)‖Q−

n ‖L(F1,F0).

By (AP3) we obtain the convergence to zero.

Step 8: For R−
n T (P −

n , Q−
n ) it is enough to follow the reasoning in Step 4.

The proof is complete.

Now, our main goal will be dealt with. We shall state a bilinear version of
Cwikel’s compactness theorem.

Theorem 4.3. Let E = (E0, E1), F = (F0, F1) and G = (G0, G1) be
Banach couples. Let T ∈ Bil(E × F, G) be given, such that the restriction
T |E0×F0 is compact from E0 ×F0 into G0. Then, given ρ ∈ B+−, T is compact
from Eγ,p ×Fρ,q into Gρ,r , where γ (t) = 1/ρ(t−1) and 1/r = 1/p+1/q −1.

Proof. For each m ∈ Z, let �mE = E0 ∩ 2−mE1 be the space E0 ∩ E1

equipped with the norm J (2−m, ·), and �mF defined in a similar way. Let
�mG = G0+2−mG1 be the space G0+G1 equipped with the norm K(2−m, ·).
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Let σ : �1
k(�mE) → Ek , k = 0, 1 be the operator given in (2.1) (and the

same for the space �1
k(�mF)) and let j : Gk → �∞

k (�mG), k = 0, 1 be the map
given by

j : b −→ (b) = (. . . , b, b, b, b, . . .).

To prove that the bounded bilinear mapping

T : Eγ,p × Fρ,q → Gρ,r

is compact, if T̃ = j ◦ T ◦ (σ, σ ), it is enough to show that

T̃ :
(
�1

0(�mE), �1
1(�mE)

)
γ,p

× (
�1

0(�mF), �1
1(�mF)

)
ρ,q

−→ (
�∞

0 (�mG), �∞
1 (�mG)

)
ρ,r

is compact. Indeed, from Theorem 2.1 one has that(
�1

0(�mE), �1
1(�mE)

)
γ,p

= �
p

f1
(�mE),(

�1
0(�mF), �1

1(�mF)
)
ρ,q

= �
q

f2
(�mF)

and
(
�∞

0 (�mG), �∞
1 (�mG)

)
ρ,r

= �
q

f2
(�mG),

where f1(t) = 1/γ (t−1) and f2(t) = 1/ρ(t−1). Since (E0, E1)γ,p;J =
�

p

f1
(�mE)/σ−1(0), (F0, F1)ρ,q;J = �

q

f2
(�mE)/σ−1(0) and j is a metric in-

jection, then it will follow that the mapping T is compact.
Now, we need verify that the Banach couples (�1

0(�mX), �1
1(�mX)), where

either X = E or X = F, and (�∞
0 (�mG), �∞

1 (�mG)) satisfy the Approxima-
tion Hypothesis (AP).

For each n ∈ N, let us consider the cutting operators Pn, P +
n and P −

n ,
defined on �1

0(�mX) + �1
m(�mX) by

Pn(um) = {. . . , 0, 0, u−n, u−n+1, . . . , u0, . . . , un−1, un, 0, 0, . . .},
P +

n (um) = {. . . , 0, 0, un+1, un+2, . . .},
P −

n (um) = {. . . , u−n−2, u−n−1, 0, 0, . . .}.
We see that the identity operator I on �1

k(�mX) (k = 0, 1), may be written
as I = Pn + P +

n + P −
n and Pn, P +

n and P −
n are uniformly bounded, with

norm 1. Moreover, P +
n : �1

1(�m) → �1
0(�m) and P −

n : �1
0(�m) → �1

1(�m), and
their norms are bounded by 2−(n+1). Also, Pn: �1

0(�m)+ �1
1(�m) → �1

0(�m)∩
�1

1(�m) and its norm is bounded by 2n from �1
0(�m) to �1

1(�m) and from
�1

1(�m) to �1
0(�m). Hence the Banach couple (�1

0(�mX), �1
1(�mX))verifies the

Approximation Hypothesis (AP). With a similar reasoning, we verify that the
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couple (�∞
0 (�mG), �∞

1 (�mG)) also satisfies the Approximation Hypothesis
(AP) and, if I = Rn +R+

n +R−
n we have the same boundedness for the norms

of Rn, R+
n and R−

n in (�∞
0 (�mG), �∞

1 (�mG)).
Now, let us consider the following decomposition

T̃ = T̃ (I, I ) = T̃ (Pn + P +
n + P −

n , Qn + Q+
n + Q−

n )

= T̃ (Pn, Qn) + T̃ (Pn, Q
+
n ) + T̃ (Pn, Q

−
n ) + T̃ (P +

n , Qn) + T̃ (P +
n , Q+

n )

+ T̃ (P +
n , Q−

n ) + T̃ (P −
n , Qn) + T̃ (P −

n , Q+
n ) + T̃ (P −

n , Q−
n )

= T̃ (Pn, Qn) + T̃ (Pn, Q
+
n ) + (Rn + R+

n + R−
n )T̃ (Pn, Q

−
n )

+ T̃ (P +
n , Qn) + T̃ (P +

n , Q+
n ) + T̃ (P +

n , Q−
n )

+ T̃ (P −
n , Qn) + T̃ (P −

n , Q+
n ) + (Rn + R+

n + R−
n )T̃ (P −

n , Q−
n )

= T̃ (Pn, Qn) + T̃ (Pn, Q
+
n ) + RnT̃ (Pn, Q

−
n ) + R+

n T̃ (Pn, Q
−
n )

+ R−
n T̃ (Pn, Q

−
n ) + T̃ (P +

n , Qn) + T̃ (P +
n , Q+

n ) + T̃ (P +
n , Q−

n )

+ T̃ (P −
n , Qn) + T̃ (P −

n , Q+
n ) + RnT̃ (P −

n , Q−
n ) + R+

n T̃ (P −
n , Q−

n )

+ R−
n T̃ (P −

n , Q−
n ).

Since the mapping

�1
0(�mE) × �1

0(�mF)
(σ,σ )−−→ E0 × F0

T−→ G0
j−→ �∞

0 (�mG)

is compact, and the sequence spaces satisfy (AP), Theorem 4.2 may be applied,
and it follows that each one of the operators T̃ (Pn, Qn), RnT̃ (Pn, Q

−
n ) and

RnT̃ (P −
n , Q−

n ) are compact from �
p

f1
(�mE) × �

q

f2
(�mF) to �r

f2
(�mG), for all

n; and that each one of the sequence of norms

{‖T̃ (Pn, Q
+
n )‖}, {‖R−

n T̃ (Pn, Q
−
n )‖}, {‖T̃ (P +

n , Qn)‖},
{‖T̃ (P +

n , Q+
n )‖}, {‖T̃ (P +

n , Q−
n )‖}, {‖T̃ (P −

n , Qn)‖},
{‖T̃ (P −

n , Q+
n )‖}, {‖R+

n T̃ (P −
n , Q−

n )‖} and {‖R−
n T̃ (P −

n , Q−
n )‖}

converges to zero in Bil(�p

f1
(�mE) × �

q

f2
(�mF), �r

f2
(�mG)), when n → ∞.

Thus, to prove that

T̃ :
(
�1

0(�mE), �1
1(�mE)

)
γ,p

× (
�1

0(�mF), �1
1(�mF)

)
ρ,q

−→ (
�∞

0 (�mG), �∞
1 (�mG)

)
ρ,r

is also compact, it only remains to control R+
n T (Pn, Q

−
n ): �p

f1
(�mE) ×

�
q

f2
(�mF) → �r

f2
(�mG).
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We have∥∥R+
n T̃ (Pn, Q

−
n )

∥∥
Bil(�p

f1
(�mE)×�

q

f2
(�mF),�r

f2
(�mG))

≤ C‖R+
n T̃ (Pn, Q

−
n )‖0ρ

( ‖R+
n T̃ (Pn, Q

−
n )‖1

‖R+
n T̃ (Pm, Q−

n )‖0

)

≤ Cρ(‖R+
n T̃ (Pn, Q

−
n )‖1)

ρ
(
1/‖R+

n T̃ (Pn, Q
−
n )‖0

)
1/‖R+

n T̃ (Pn, Q
−
n )‖0

≤ C
ρ
(
1/‖T̃ ‖0

)
1/‖T̃ ‖0

ρ
(‖R+

n T̃ (Pn, Q
−
n )‖1

)
,

where ‖·‖i = ‖·‖Bil(�1
i (�mE)×�1

i (�mF),�∞
i (�mG)), i = 0, 1.

By the fact that the sequences {R+
n }, {Pn} and {Q−

n } are uniformly bounded,
it is enough to prove that ‖R+

n T̃ (Pn, Q
−
n )‖1 → 0. Considering the diagram

�1
1(�mE) × �1

1(�mF)
(Pn,Q

−
n )−−−−→ �1

0(�mE) × �1
0(�mF)

T̃−→ �∞
0 (�mG)

R+
n−→ �∞

1 (�mG),

we have by (AP3) that

‖R+
n T̃ (Pn, Q

−
n )‖1 ≤ ‖R+

n ‖L(�∞
0 (�mG),�∞

1 (�mG))‖T̃ ‖0

· ‖Pn‖L(�1
1(�mE),�1

0(�mE))‖Q−
n ‖L(�1

1(�mF),�1
0(�mF))

≤ 2n2−(n+1)‖T̃ ‖02−(n+1),

then we obtain the convergence to zero.
The proof is complete.

As a corollary, the bilinear version of Cwikel’s theorem for the classical θ

method is obtained.

Corollary 4.4. Let E = (E0, E1), F = (F0, F1) and G = (G0, G1) be
Banach couples. Let T ∈ Bil(E × F, G) be given, such that the restriction
T |E0×F0 is compact from E0 × F0 into G0. Then, given 0 < θ < 1, T is
compact from Eθ,p × Fθ,q into Gθ,r , where 1/r = 1/p + 1/q − 1.
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