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A FAMILY OF REFLEXIVE VECTOR BUNDLES OF
REDUCTION NUMBER ONE

CLETO B. MIRANDA-NETO

Abstract
A difficult issue in modern commutative algebra asks for examples of modules (more interestingly,
reflexive vector bundles) having prescribed reduction number r ≥ 1. The problem is even subtler
if in addition we are interested in good properties for the Rees algebra. In this note we consider
the case r = 1. Precisely, we show that the module of logarithmic vector fields of the Fermat
divisor of any degree in projective 3-space is a reflexive vector bundle of reduction number 1 and
Gorenstein Rees ring.

1. Motivation

Let R be a commutative unital Noetherian ring which is either a local ring with
infinite residue field or a standard N-graded algebra over an infinite field. Let
E be a finitely generated R-module with (absolute) reduction number r(E),
which is an important numerical invariant of E defined by means of suitable
relations on Rees powers – basic concepts will be recalled in Section 2. In
particular, it is known that r(E) = 0 in the situation where E is of linear type,
meaning as usual that the symmetric and Rees algebras of E coincide, since
any such module admits no proper minimal reduction. In the standard case
where E = I is an R-ideal, the number r(I ) has been widely investigated –
while much still has to be done. We refer to the books [12], [20] and their
references. The next situation, which is not so far from (but certainly more
complicated than) the classical situation of ideals, is when E features the rigid
structure of being a direct sum of ideals. Notice that E cannot be reflexive if
any of the ideals in the direct sum has grade at least 2.

It is thus quite natural to consider the following motivating, difficult task:
given a prescribed integer r ≥ 1, furnish explicit examples of finitely generated
reflexive R-modules E, of rank at least 2, satisfying

r(E) = r.
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Reflexiveness, of course, can be achieved if for instance R is a normal domain
(e.g., a polynomial ring over a field) and E is a module of second-order syzygies
over R. In addition to the above conditions, we may also ask (as we will) that
the module be a vector bundle in the sense of being locally free on the punctured
spectrum of R.

The case r = 1, on which we focus in this paper, has attracted the in-
terest of several authors, resulting in influential papers starting with Katz-
Kodiyalam [14], where it is proved that any (non-free) torsionfree integrally
closed module over a 2-dimensional regular local ring has reduction num-
ber 1 and moreover its Rees algebra is Cohen-Macaulay. This can be seen as a
highly non-trivial analogue, for modules, of Huneke-Sally [11]. Further, Simis-
Ulrich-Vasconcelos [19, Theorem 5.14] produced (non-reflexive) modules of
reduction number r ≤ 1 given by means of a suitable linkage via a complete
intersection module assumed moreover to be a non-free vector bundle; if such
a vector bundle is a reduction of the link, then r = 1. Results of a similar
taste, but considering instead socle modules of parameter modules over 2-
dimensional Cohen-Macaulay rings, are given in Hayasaka [10]. We point out
that the application of linkage – socles, more precisely – to the problem in the
case of ideals, together with the philosophy that such a technique tends to give
rise to reduction number 1, originated in Corso-Polini-Vasconcelos [4] (see
also Corso-Polini [3]).

What we do in this paper is to contribute to the problem by furnishing
concretely a family of reflexive vector bundles, over a 4-dimensional polyno-
mial ring, satisfying r = 1. More precisely, our Proposition 3.1 says that if k

stands for an algebraically closed field of characteristic zero, then the module
TA/k(Fd) of the ambient vector fields tangent along the projective surface

Fd = V (Fd) ⊂ P3
k

defined by the Fermat polynomial

Fd = xd
1 + xd

2 + xd
3 + xd

4 ∈ Ad ⊂ A = k[x1, x2, x3, x4], d ≥ 2,

is a reflexive vector bundle of reduction number 1. This module is oftentimes
denoted by Derk(− log Fd) and called the module of logarithmic derivations,
or the tangential idealizer, of the ideal (Fd) ⊂ A. We verify, in addition, that
its Rees algebra is Gorenstein.

For the proof of Proposition 3.1 the key preparatory result is Lemma 2.1,
which asserts that if the fiber cone F(E) – the special fiber of the Rees al-
gebra R(E) of E – is Cohen-Macaulay of multiplicity 2, then r(E) = 1. This
lemma, which is inspired by a result from Corso-Polini-Vasconcelos [5] on
the multiplicity of fiber cones of ideals, allows us to reduce the problem to the
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obtainment of a presentation of the standard graded k-algebra

F(TA/k(Fd)) = R(TA/k(Fd)) ⊗A k,

which we will show to be, quite surprisingly, a polynomial ring in 1 indeterm-
inate over the homogeneous coordinate ring of a Pfaffian hypersurface which,
by changing signs, turns out to be the celebrated Klein quadric in P5.

We finish the paper with further remarks as well as questions and examples.
In particular, we discuss about the main difficulty for generalizing Proposi-
tion 3.1 to Fermat hypersurfaces in 5 or more indeterminates. For instance,
for the Fermat cubic in 5 variables, the ring F(TA/k(F3)) is Gorenstein but
has multiplicity 5, so that our auxiliary lemma does not apply. Also, based
on several experiments, we were led to raise the question as to whether our
Proposition 3.1 is valid for any smooth hypersurface in P3.

2. Fiber cones of modules and key auxiliary result

By ring we always mean commutative ring with 1. Let R be either a Noetherian
local ring with maximal ideal m and residue field k, or a standard graded
algebra R = ⊕∞

i=0 Ri over a field R0 = k and with homogeneous maximal
ideal m = ⊕∞

i=1 Ri . We permanently assume that k is infinite (from the next
section on, we shall in fact require that char(k) = 0). Let E � Re, e ≥ 1, be
a strict embedding of a finitely generated R-module E with rank(E) = e –
meaning, as usual, that K ⊗R E � Ke, where K is the total ring of fractions
of R – into the free R-module Re. In particular, E is torsionfree over R.

We intend to briefly recall the basic definitions concerning blowup rings of
modules in order to reach the concept of fiber cone. References for this general
part are [8], [19], [21].

We write

S := S(Re) =
∞⊕

n=0

Sn

for the homogeneous symmetric algebra of Re, which may be regarded as a
standard graded polynomial ring S = R[y1, . . . , ye] in indeterminates y1, . . . ,

ye over S0 = R. In degree 1, we get the R-module S1 = ∑e
i=1 Ryi together

with the natural map λ: Re → S1 which sends a given v = (α1, . . . , αe) ∈ Re

to the linear form λ(v) = ∑e
i=1 αiyi . The Rees algebra of E is the graded

subalgebra

R(E) =
∞⊕

n=0

En ⊂ S, En = [R(E)]n

generated over E0 = R by λ(v1), . . . , λ(vm) for some (any) generating set
{v1, . . . , vm} of E as an R-module (in particular, R(E) is an integral domain
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if so is R). Thus, R(E) is generated over R by E1 ⊂ S1. If T ⊂ SR(E) is the
ideal of R-torsion of the symmetric algebra of E ⊂ Re, then

R(E) = S(E)/T .

The module E is said to be of linear type if T = (0), that is, if its Rees algebra
is equal to its symmetric algebra. Clearly, free modules are of linear type. If
R is a domain, then the torsionfree R-module E is of linear type if and only if
its symmetric algebra is a domain as well.

An R-submodule U ⊆ E is said to be a reduction of E if U 1Er = Er+1

for r � 0. The reduction number of E with respect to U is defined as

rU(E) = min{s ≥ 0 | U 1Es = Es+1}.
A minimal reduction of E is a reduction that is minimal with respect to inclu-
sion. Since the residue field k of R is assumed to be infinite, minimal reductions
are known to exist; moreover, they also have rank e. The (absolute) reduction
number of E is the integer r(E) = min{rU(E)}, where U ⊆ E ranges over all
minimal reductions of E. The situation of reduction number zero corresponds
to the linear type case.

Still in analogy with the case of ideals, the fiber cone of the R-module
E ⊂ Re is the special fiber of its Rees algebra, that is,

F(E) = R(E) ⊗R k =
∞⊕

n=0

En

mEn

which is standard graded over the field [F(E)]0 = k. In the present setting
where k is infinite, the Krull dimension �(E) of F(E) – the so-called analytic
spread of E – is equal to ν(U) for any minimal reduction U ⊆ E, where ν(−)

stands for minimal number of generators.
We are now ready to prove a key preparatory lemma, which may not be

surprising for experts but does not seem to be available in the literature in the
present context of modules. Our inspiration is Corso-Polini-Vasconcelos [5,
Proposition 2.4], where a multiplicity-based criterion is given for the Cohen-
Macaulayness of the fiber cone F(I ) = ⊕∞

n=0 I n/mI n of an ideal I ⊂ R (cf.
also [2], [6], [7], [11], [13], [18]). In order to keep the very definition of Rees
algebra as adopted above, we require the module E to possess a rank over
R and to be embedded in a free module Re, but specifically in the statement
below, and for the sake of generality, we do not require e to be equal to the
rank of E.

Lemma 2.1. If the standard graded k-algebra F(E) is Cohen-Macaulay of
multiplicity 2 (e.g., a quadratic hypersurface ring), then r(E) = 1.
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Proof. Set r := r(E) and notice first that r ≥ 1. In fact, it is well-known
that the case r = 0 corresponds to the situation where E is of linear type,
so that the special fiber ring F(E) would be given by the symmetric algebra
of the k-vector space E ⊗R k, which is simply a polynomial ring (in ν(E)

indeterminates) over k. But this cannot happen, as the multiplicity of F(E) is
not 1.

Now let U be any minimal reduction of E such that rU(E) = r . In particular,
the dimension � = �(E) of the Cohen-Macaulay graded ring F(E) turns out
to be equal to ν(U). Therefore, since the ideal

U 1F(E) ⊂ F(E)

is generated by a homogeneous system of parameters, it must be a com-
plete intersection in this case. It follows that the Hilbert series of F(E) and
F(E)/U 1F(E) are related by the equality

H(F(E), t) = 1

(1 − t)�
H

(
F(E)

U 1F(E)
, t

)

where t is a variable and H(F(E)/U 1F(E), 1) �= 0, which is the multiplicity
of F(E). Notice that

F(E)

U 1F(E)
= k ⊕

( ∞⊕
i=1

Ei

mEi + U 1Ei−1

)
= k ⊕

( r⊕
i=1

Ei

mEi + U 1Ei−1

)

which yields that the h-polynomial of F(E) is explicitly given by

H

(
F(E)

U 1F(E)
, t

)
= 1 +

r∑
i=1

length

(
Ei

mEi + U 1Ei−1

)
t i = 1 +

r∑
i=1

ν(Ki)t i ,

where here we set Ki := Ei/U 1Ei−1, i = 1, . . . , r . Evaluating at t = 1 we
obtain that the multiplicity f (E) of F(E) can be expressed as

f (E) = 1 +
r∑

i=1

ν(Ki).

On the other hand, f (E) = 2 by hypothesis. Therefore

r∑
i=1

ν(Ki) = 1

which forces r = 1 since necessarily Ki �= 0 for i = 1, . . . , r .
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3. Main result

We let k be an algebraically closed field of characteristic zero and A =
k[x1, . . . , xn], n ≥ 2, be a standard graded polynomial ring over k, where
as usual the indeterminates xi’s may be regarded as homogeneous coordin-
ates of a projective space Pn−1 = Pn−1

k . The irrelevant ideal is thus m =
(x1, . . . , xn) ⊂ A.

Recall that the module TA/k(X ) of logarithmic vector fields of an algebraic
variety X ⊂ Pn−1 – that is, vector fields defined on Pn−1 and tangent along the
smooth part of X – can be concretely regarded as the (graded) A-submodule
of DA/k = ⊕n

i=1 A ∂
∂xi

� An, the module of k-derivations of A, formed by the
logarithmic k-derivations of the defining ideal IX ⊂ A of X . Explicitly,

TA/k(X ) = {δ ∈ DA/k | δ(IX ) ⊂ IX }.
Thus, writing simply δ = (h1, . . . , hn) ∈ DA/k , we have that δ is logarithmic
for X if and only if

n∑
i=1

hi

∂f

∂xi

∈ IX

for every f ∈ IX (it clearly suffices to test this condition on any given gener-
ating set of IX ). In particular, the Euler derivation ε = (x1, . . . , xn) is logar-
ithmic in virtue of Euler’s identity for homogeneous polynomials. Moreover,
the inclusion IX DA/k ⊂ TA/k(X ) yields that rank(TA/k(X )) = n ≥ 2.

If X is a hypersurface, the reflexiveness of the A-module TA/k(X ) is a well-
known fact, first noticed by Saito [17, Corollary 1.7] originally in the complex
analytic category, and it is also known to hold in the algebraic case as well.
Recently, we proved the converse of Saito’s observation and thus derived the
following characterization ([16, Theorem 3.1]): if X is an (affine or projective)
embedded, proper, non-empty algebraic variety, then TA/k(X ) is reflexive if
and only if X is a hypersurface.

In the case where n = 4 and X is the Fermat surface

Fd := V (xd
1 + xd

2 + xd
3 + xd

4 ) ⊂ P3

of any given degree d ≥ 2, we obtain Proposition 3.1 below as the main goal of
this note, regarding the reduction number and blowup algebras of TA/k(Fd).

Recall that, by a typical abuse of terminology, a finitely generated A-module
is said to be a vector bundle if it is locally free on the Zariski-open set Spec(A)\
V (m), the punctured spectrum of A. Further, recall that the so-called Klein
quadric (also dubbed Plücker quadric) is the hypersurface K ⊂ P5 given, in
homogeneous coordinates (λ1 : . . . : λ6) and up to changing signs, by

λ2λ4 − λ1λ5 − λ3λ6 = 0
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which is in fact seen to be the Pfaffian of a 4 × 4 generic alternating matrix.
This is a classical geometric object (the realization in P5 of the Grassmannian
of lines in P3) and we denote its coordinate ring by 	K .

Proposition 3.1 (n = 4). For any d ≥ 2 the A-module TA/k(Fd) is a
reflexive vector bundle, satisfying:

(i) F(TA/k(Fd)) = 	K [u], where u is an indeterminate over 	K ;

(ii) r(TA/k(Fd)) = 1;

(iii) R(TA/k(Fd)) is a Gorenstein domain.

Proof. By the general structure result for the module of logarithmic deriva-
tions in the homogeneous case (cf., e.g., [15, Lemma 2.2]), we can decompose
TA/k(Fd) as

TA/k(Fd) = T 0
A/k(Fd) ⊕ Aε,

where T 0
A/k(Fd) ⊂ TA/k(Fd) stands for the submodule formed by the deriva-

tions vanishing on the Fermat polynomial Fd = xd
1 + xd

2 + xd
3 + xd

4 . Setting

ξi := xd−1
i , i = 1, . . . , 4,

the gradient ideal of Fd is � = (ξ1, ξ2, ξ3, ξ4) ⊂ A. Clearly, T 0
A/k(Fd) is

isomorphic to the module of first-order syzygies of �. Localizing the short
exact sequence

0 −→ T 0
A/k(Fd) −→ A4 −→ � −→ 0

at any non-maximal prime ideal ℘ ⊂ A, and noticing that �℘ = A℘ as � is
m-primary, we obtain a splitting and therefore

(T 0
A/k(Fd))℘ � A3

℘,

thus showing that the A-module TA/k(Fd) (which is reflexive, by the preceding
discussion) has the vector bundle property. Since furthermore � is a complete
intersection, the module T 0

A/k(Fd) can be realized as the cokernel of the second
Koszul map of �, and hence there is a minimal free presentation

A4 κd
(4)−→ A6 −→ T 0

A/k(Fd) −→ 0.
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Regarding κd
(4) as a 6 × 4 matrix (taken in canonical bases), we can write

κd
(4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −ξ3 0 −ξ2

0 0 −ξ3 ξ1

0 ξ1 ξ2 0

−ξ2 ξ4 0 0

ξ1 0 ξ4 0

ξ3 0 0 ξ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that the symmetric algebra of T 0
A/k(Fd) can be expressed as the quotient

ring A[t]/�, where
t = {t1, . . . , t6}

is a set of 6 indeterminates over A and � is the ideal generated by the entries of
the matrix product (t)·κd

(4). Since the A-module T 0
A/k(Fd) has rank 4−1 = 3,

it is locally free on Spec(A) \ V (�), where

� := I3(κd
(4)) ⊂ A,

which is the 3rd Fitting ideal of T 0
A/k(Fd) and hence must be non-zero. This

puts us in a position to apply a standard device (cf., e.g., [15, Lemma 2.11]) in
order to conclude that the A-torsion of the symmetric algebra S(T 0

A/k(Fd)) is
the saturation (0): �∞ = ⋃

t≥1(0): �t , which by a routine verification is seen
to be the principal ideal of S(T 0

A/k(Fd)) generated by the image, modulo �, of
the quadratic polynomial

Q := t2t4 − t1t5 − t3t6 ∈ k[t] ⊂ A[t].

Therefore, R(T 0
A/k(Fd)) = A[t]/(�: �∞) = A[t]/(�, Q ) and hence

R(TA/k(Fd)) can be written as A[t, u]/(�, Q ) where u is a new indeterm-
inate (see also Remark 3.3). Now, since clearly

� ⊂ (x1, x2, x3, x4)(t),

we have
F(TA/k(Fd)) = (k[t]/(Q ))[u] = 	K [u]

thus giving (i). Together with Lemma 2.1, this yields r(TA/k(Fd)) = 1, which
proves (ii).

In order to check (iii), we notice first that by [21, Proposition 8.1] the
dimension of the Rees algebra R(TA/k(Fd)) (which is obviously a domain) is
equal to dim(A) + rank(TA/k(Fd)) = 8. Thus, setting B := A[t, u], we have

height(�, Q ) = dim(B) − 8 = 3.
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Now, we consider a minimal free resolution of the Rees ideal (�, Q ) ⊂ B,
which is seen to possess the shape

0 −→ B −→ B5 −→ B5 −→ (�, Q ) −→ 0

and hence B/(�, Q ) has projective dimension 3 over B. This yields that (�, Q )

is a perfect ideal. Moreover, its Cohen-Macaulay type (the last Betti number
in the resolution) is 1, as needed.

Remark 3.2 (On char(k)). It is probably true that this proposition remains
valid in the situation where k has positive characteristic provided that it does
not divide d. However, mainly in order to keep our result working safely for
every d ≥ 2, we focused on the characteristic zero setting.

Remark 3.3 (Avoiding saturation). In the case of TA/k(Fd), with n = 4
as in Proposition 3.1, the Rees equations may be computed quite naively by
means of the very definition of Rees algebra instead of the saturation technique
used in our proof. First, we embed R(T 0

A/k(Fd)) in the graded polynomial ring
S := S(A4) = A[y1, y2, y3, y4], so that we can express it as the A-subalgebra

R(T 0
A/k(Fd)) = A[λ1, . . . , λ6] ⊂ S,

where the linear forms λi := λ(δi) ∈ S1, i = 1, . . . , 6, correspond to the
Koszul syzygies δ1, . . . , δ6 of �, in accordance with the general recipe recalled
in Section 2. Explicitly,

λ1 = −ξ4y1 + ξ1y4, λ2 = −ξ4y2 + ξ2y4, λ3 = −ξ4y3 + ξ3y4,

λ4 = −ξ3y1 + ξ1y3, λ5 = −ξ3y2 + ξ2y3, λ6 = −ξ2y1 + ξ1y2,

thus yielding Klein’s equation λ2λ4 = λ1λ5 + λ3λ6, which is the only non-
linear minimal relation on the λi’s. In fact, the kernel of the natural A-algebra
surjection

A[t1, . . . , t6] −→ A[λ1, . . . , λ6]

is seen to be generated by the quadratic form Q = t2t4 − t1t5 − t3t6 and the
linear forms generating �. Therefore, (�, Q ) is the Rees ideal of TA/k(Fd) in
the sense that it defines R(TA/k(Fd)) in the ring A[t1, . . . , t6, u], as needed.
Of course, the saturation method has the advantage of giving to the Rees
ideal a theoretic well-structured shape, which in particular tends to point more
accurately to diverse clues on numerical invariants and associated primes, for
instance.

Remark 3.4. In case we do not have any information about a free resolution
of the Rees ideal (�, Q ) ⊂ A[t, u], we can prove that it is Cohen-Macaulay,



A FAMILY OF REFLEXIVE VECTOR BUNDLES 197

at least, by resorting to the graded analogue of [19, Example 4.17] since the
module TA/k(Fd) is a reflexive vector bundle over a 4-dimensional graded
polynomial ring, satisfying

ν(TA/k(Fd)) = 7 = rank(TA/k(Fd)) + 3.

Moreover we point out that, in general, if R is a Noetherian local ring and
E is a finitely generated reflexive vector bundle over R with rank e ≥ 1 and
ν(E) ≥ e + 2, then �(E) ≥ e + 2. This follows from [19, Proposition 4.1(b)].

The following question arises: in order to get precisely �(E) = e+2, do we
need to require that ν(E) = e + 2? The answer is no. Indeed, for the module
TA/k(Fd) ⊂ A4 we have

ν(TA/k(Fd)) = 7 > rank(TA/k(Fd)) + 2

= 6 = dim(	K [u]) = �(TA/k(Fd)).

Furthermore, we note that

r(TA/k(Fd))︸ ︷︷ ︸
=1

< �(TA/k(Fd)) − rank(TA/k(Fd))︸ ︷︷ ︸
=2

< dim(A) − 1︸ ︷︷ ︸
=3

thus illustrating that the inequalities given in [19, Theorem 4.2] may be sim-
ultaneously strict.

Remark 3.5 (The cases n = 2 and n = 3). It is easy to get rid of the
first low-dimensional situations, which, as we expect, feature a much simpler
behavior: TA/k(Fd) is of linear type in these cases. In order to check this, we
employ below some of the notations and general facts used in the proof of
Proposition 3.1.

(i) Assume that A = k[x1, x2]. Since A/� has projective dimension 2 (over
A) and T 0

A/k(Fd) is the syzygy module of �, we obtain that T 0
A/k(Fd) is free

(of rank 1). In virtue of the equality TA/k(Fd) = T 0
A/k(Fd) ⊕ Aε, we get that

TA/k(Fd) is free as well, hence of linear type, and F(TA/k(Fd)) = k[t1, t2].
(ii) Now assume that A = k[x1, x2, x3]. The module T 0

A/k(Fd) of first-
order syzygies of � is 3-generated in this case, and the second-order syzygy
matrix κ

(3)
d of � is simply the transpose of the row-matrix (−ξ2 ξ1 ξ3) =

(−xd−1
2 xd−1

1 xd−1
3 ). The symmetric algebra

S(T 0
A/k(Fd)) = A[t1, t2, t3]

(−ξ2t1 + ξ1t2 + ξ3t3)

is seen to be an integral domain, and hence so is S(TA/k(Fd)) =
S(T 0

A/k(Fd))[u], where u is a new indeterminate. It follows that TA/k(Fd)

is a non-free module of linear type, and F(TA/k(Fd)) = k[t1, t2, t3, u].
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4. Further remarks, examples and questions

We finish by considering further aspects as well as illustrations and questions
that are of interest in regard of this paper.

Remark 4.1 (On the case n ≥ 5). We just want to comment on the main
difficulty for extending Proposition 3.1 to the higher dimensional case

A = k[x1, . . . , xn], n ≥ 5.

The proof could begin in a totally analogous manner. Indeed, we have
TA/k(Fd) = T 0

A/k(Fd) ⊕ Aε, where T 0
A/k(Fd) is the module of the deriv-

ations vanishing on the Fermat polynomial Fd = xd
1 + . . . + xd

n . Setting again
ξi = xd−1

i , i = 1, . . . , n, the gradient ideal of Fd is the complete intersec-
tion � = (ξ1, . . . , ξn) ⊂ A, which yields that T 0

A/k(Fd) has a minimal free
presentation

3∧
An κd

(n)−→
2∧

An −→ T 0
A/k(Fd) −→ 0.

Regarding κd
(n) as a matrix (taken in canonical bases), each of its

(
n

3

)
column-

vectors can be written with exactly 3 non-zero coordinates; more precisely, its
transpose has the form

(0, . . . ,−ξj , . . . , ξi, . . . , ξt , . . . , 0) ∈ A(n

2), with i < j < t.

Thus S(T 0
A/k(Fd)) = A[t]/�, where t is a set of

(
n

2

)
indeterminates over A,

and
� = I1((t) · κd

(n)).

Since the A-module T 0
A/k(Fd) has rank n − 1, it is locally free on the Zariski-

open set Spec(A) \ V (�), where

� := I(n

2)−(n−1)(κd
(n)) ⊂ A,

so that S(T 0
A/k(Fd)) = A[t]/� has A-torsion given by (�: �∞)/�, and hence

�: �∞ is the Rees ideal of TA/k(Fd) in the ring A[t, u]. But now the crucial
obstacle comes: at least for n = 5 (and d = 3), the k-algebra F(TA/k(F3)) =
A[t, u]/(�: �∞)⊗A (A/m) – which does not define a hypersurface in this case
– has multiplicity greater than 2, so that Lemma 2.1 does not apply. This is
detailed in Example 4.2 below.

Example 4.2. Let A = k[x1, x2, x3, x4, x5] and consider the Fermat cubic
3-fold F3 ⊂ P4. In this case, the ideal � defining S(TA/k(F3)) in the poly-
nomial ring A[t, u] in

(5
2

) + 1 = 11 indeterminates t1, . . . , t10, u over A is
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generated by
(5

3

) = 10 linear forms arising from the Koszul syzygies of �. If

� = I6(κ
(5)
3 ) then the Rees ideal of TA/k(F3) is given by

�: �∞ = (�, Q 1, . . . , Q 5)

where

Q 1 = t2t5 − t1t6 − t4t10, Q 2 = t2t8 − t1t9 − t3t10, Q 3 = t3t5 − t1t7 − t4t8,

Q 4 = t3t6 − t2t7 − t4t9, Q 5 = t6t8 − t5t9 − t7t10,

so that
F(TA/k(F3)) = k[t, u]

(Q 1, . . . , Q 5)

which, by a computation with [9] (or with its first version [1]), is seen to have
multiplicity 5 and hence Lemma 2.1 does not apply. On the other hand, we
note that this fiber cone is Gorenstein, of dimension

�(TA/k(F3)) = 8.

As it is well-known, we can alternatively obtain that F(TA/k(F3)) has mul-
tiplicity 5 by observing that its defining ideal is generated by the Pfaffians of
a suitable skew-symmetric matrix, to wit,⎛

⎜⎜⎜⎜⎜⎝

0 t1 t2 t3 t4

−t1 0 t10 t8 t5

−t2 −t10 0 t9 t6

−t3 −t8 −t9 0 t7

−t4 −t5 −t6 −t7 0

⎞
⎟⎟⎟⎟⎟⎠ .

We believe that all the features discussed in this example are unaffected if
we replace F3 by the Fermat hypersurface Fd ⊂ P4 of arbitrary degree d ≥ 2.

Question 4.3. If n = 5, as in the example above, what is the reduction
number r of TA/k(F3)? Is it possible that r = 1 as in the case n = 4? Since
we have checked that F(TA/k(F3)) is Gorenstein, hence Cohen-Macaulay, the
following observation seems to be relevant: by the proof of Lemma 2.1, the
degree of the h-polynomial of the fiber cone is precisely the reduction number,
which implies that it does not depend on the choice of the minimal reduction
of the module. Thus, since F(TA/k(F3)) has multiplicity 5, it follows (again
by the proof of Lemma 2.1) an equality

r∑
i=1

ν

(
TA/k(F3)

i

U 1TA/k(F3)i−1

)
= 4
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for any given minimal reduction U ⊂ TA/k(F3). In particular, r = 1 if and
only if there exists a minimal reduction U satisfying ν(TA/k(F3)

1/U 1) = 4,
but we have been unable to verify whether this is the case. Naturally, a harder
question is: for any given n ≥ 5 and d ≥ 2, how can we compute the reduction
number of TA/k(Fd)?

Question 4.4. Assume that n ≥ 6. Is the fiber cone F(TA/k(F3)) Goren-
stein or at least Cohen-Macaulay? What is its multiplicity? Is its defining ideal
still generated by Pfaffians? In other words, with a view to understand the
fiber cone for arbitrary n, it is of interest to realize how naturally generic
skew-symmetric matrices occur in the problem.

Remark 4.5 (On the general smooth case). It seems plausible to guess that
Proposition 3.1 is valid for any smooth surface S = V (F) ⊂ P3 (of degree at
least 2). Naturally, each ξi could be replaced by the ith partial derivative of the
polynomial F , so that, by smoothness, the gradient ideal � ⊂ A of F possesses
a Koszul resolution as well. It is thus clear that such steps are completely
analogous. The problem however is on the effective side and concerns precisely
the determination of the Rees ideal �: �∞ of TA/k(S ) in the ring A[t, u], which
is fundamental for the obtainment of the defining ideal of the fiber cone in
k[t, u]. In each of the several examples of smooth divisors S = V (F) ⊂ P3

that we have considered, there is an identification

F(T 0
A/k(S )) � 	K

induced simply by a projective change of coordinates σ ∈ PGLk(6). More
precisely, we verified that F(TA/k(S )) = k[t, u]/(Q ′), where Q ′ is the poly-
nomial obtained from the Pfaffian Q = t2t4 − t1t5 − t3t6 after the action of σ

on the ti’s. We furnish below an illustration of this behavior.

Example 4.6. We consider the smooth quartic surface S ⊂ P3 defined by

F = x4
1 + x3

1x2 + x3
2x3 + x4

3 + x3
3x4 + x4

4 .

Here we have F(TA/k(S )) = (k[t]/(Q ′))[u], where

Q ′ = t2t4 − t1t5 − t3

(
t6 − 4

9
t5

)

which obviously can be obtained from Q = t2t4 − t1t5 − t3t6 by the projective
change of coordinates given by t6 �→ t6−4/9t5 (the variables t1, . . . , t5 are kept
fixed). We computed this example with [1], and by means of a careful analysis
of the computation we realized that the structural difference between Q and
Q ′ is a consequence of the choice of bases in the presentation of T 0

A/k(Fd)
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(see the proof of Proposition 3.1). In addition, the same analysis suggests
that the general case of a smooth hypersurface in P3 of degree at least 2 (as
asked in Remark 4.5 above) could be carried out first by regarding the partial
derivatives of its defining equation as “variables”, as they generate a parameter
ideal anyway, so that the argument (in particular, as to the structure of the Rees
ideal) presumably would follow in parallel to the case of Fermat divisors treated
in this paper.

Acknowledgements. The author is grateful to the referee for important
suggestions and comments that substantially improved the paper.
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