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A NOTE ON THE VAN DER WAERDEN COMPLEX

BECKY HOOPER and ADAM VAN TUYL

Abstract
Ehrenborg, Govindaiah, Park, and Readdy recently introduced the van der Waerden complex, a
pure simplicial complex whose facets correspond to arithmetic progressions. Using techniques
from combinatorial commutative algebra, we classify when these pure simplicial complexes are
vertex decomposable or not Cohen-Macaulay. As a corollary, we classify the van der Waerden
complexes that are shellable.

1. Introduction

Let V = {x1, . . . , xn} and suppose that 0 < k < n. The van der Waerden
complex of dimension k on n vertices, denotedvdW(n, k), is the pure simplicial
complex on V whose facet set is given by

vdW(n, k) = 〈{xi, xi+d , xi+2d , . . . , xi+kd} | d ∈ Z with 1 ≤ i < i + kd ≤ n〉.
In other words, the facets ofvdW(n, k) correspond to all arithmetic progressions
of length k +1 whose largest element is less than or equal to n. The complexes
vdW(n, k) were introduced by Ehrenborg, Govindaiah, Park, and Readdy [2]
as part of a recent program to study the topology of complexes that arise within
number theory. In particular, the work of [2] focused on the homotopy type
of vdW(n, k).

The van der Waerden complex is a pure simplicial complex. It is known
that pure simplicial complexes may have additional combinatorial and topolo-
gical properties, e.g., vertex decomposable, shellable, and Cohen-Macaulay.
Specifically, we have the following chain of implications (definitions are post-
poned until the next section):

vertex decomposable �⇒ shellable �⇒ Cohen-Macaulay �⇒ pure.

In general, these implications are all strict. It is natural to ask when vdW(n, k)

has these additional properties in terms of n and k. We answer this question in
this note; precisely:
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Theorem 1.1. Let 0 < k < n be integers. Then

(i) vdW(n, k) is vertex decomposable if and only if
• n ≤ 6, or
• n > 6 and k = 1, or
• n > 6 and n

2 ≤ k < n.

(ii) vdW(n, k) is pure but not Cohen-Macaulay if and only if n > 6 and
2 ≤ k < n

2 .

As a corollary, we can recover a result of [5] first proved using different
techniques.

Corollary 1.2. Let 0 < k < n be integers. Then vdW(n, k) is shellable if
and only if

• n ≤ 6, or
• n > 6 and k = 1, or
• n > 6 and n

2 ≤ k < n.

Proof. If k and n satisfy the above conditions, then vdW(n, k) is ver-
tex decomposable by Theorem 1.1, and consequently, shellable. Otherwise
vdW(n, k) is not Cohen-Macaulay by Theorem 1.1, so it cannot be shellable.

Our paper is structured as follows. We first recall the relevant background
in Section 2. In Section 3 we prove Theorem 1.1 using some tools from com-
binatorial commutative algebra. In particular, to show that vdW(n, k) is not
Cohen-Macaulay, we will show that the Stanley-Reisner ideal of the Alexan-
der dual of vdW(n, k) has nonlinear first syzygies.

Acknowledgements. Parts of this paper appeared in the first author’s
M.Sc. project [5]. The second author acknowledges the financial support of
NSERC.

2. Background

In this section we recall the relevant combinatorial and algebraic background.
Let V = {x1, . . . , xn} be a vertex set. A simplicial complex on V is a

subset � ⊆ 2V such that (a) if F ∈ � and G ⊆ F , then G ∈ �, and
(b) {xi} ∈ � for all i ∈ {1, . . . , n}. Elements of � are called faces, and
maximal faces under inclusion are called facets. If F1, . . . , Fs is a complete
list of facets of �, we usually write � = 〈F1, . . . , Fs〉. The dimension of a
face F , denoted dim(F ), is dim(F ) = |F | − 1. The dimension of �, denoted
dim �, is dim � = max{dim(F ) | F a facet of �}. A simplicial complex is
pure if all its facets have the same dimension.
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The Alexander dual of �, denoted �∨, is the simplicial complex whose
facets are complements of the minimal non-faces of �. That is, �∨ = {V \F |
F /∈ �}.

To any simplicial complex �, the Stanley-Reisner ideal of � is a monomial
ideal I� in the polynomial ring R = k[x1, . . . , xn] where

I� = 〈xi1xi2 · · · xit | {xi1 , . . . , xit } 
∈ �〉.
The following result allows us to directly write out the minimal generators of
the Stanley-Reisner ideal of the Alexander dual of � from the facets of �.

Lemma 2.1 ([4, Corollary 1.5.5]). Let � = 〈F1, F2, . . . , Fs〉. Then

I�∨ = 〈mFc
1
, . . . , mFc

s
〉, where mFc

i
=

∏
x /∈Fi

x.

We recall three families of pure simplicial complexes. The first family was
introduced by Provan and Billera [6]; a pure simplicial complex � on V is
vertex decomposable if

(i) � = ∅, or � = 〈{x1, . . . , xn}〉, i.e., a simplex; or

(ii) there exists a vertex x ∈ V such that the link of x, i.e.,

lk�(x) = {H ∈ � | H ∩ {x} = ∅ and H ∪ {x} ∈ �},
and the deletion of x, i.e., del�(x) = {H ∈ � | H ∩ {x} = ∅}, are both
vertex decomposable simplicial complexes.

The second family is the family of shellable simplicial complexes. A pure
complex � is shellable if the facets of � can be ordered, say F1, . . . , Fs ,
such that for all 1 ≤ i < j ≤ s, there exists some x ∈ Fj \ Fi and some
� ∈ {1, . . . , j − 1} with Fj \ F� = {x}.

Finally, a pure simplicial complex � is Cohen-Macaulay1over k if the
minimal free resolution of I�∨ over R = k[x1, . . . , xn] is linear. Recall that an
ideal I ⊆ R = k[x1, . . . , xn] has a linear minimal free resolution if I has a
minimal free resolution of the form

0 → Rbt (−d − t) → · · · → Rb2(−d − 2)

→ Rb1(−d − 1) → Rb0(−d) → I → 0

1 One normally defines a simplicial complex � to be Cohen-Macaulay either in terms of the
depth and dimension of R/I�, or in terms of the reduced simplicial homology of �. Our definition
uses the characterization of Cohen-Macaulay simplicial complexes due to Eagon and Reiner [1].
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for some integer d, where R(−d − i) denotes the polynomial ring shifted by
degree d + i and Rbi (−d − i) = R(−d − i) ⊕ · · · ⊕ R(−d − i) (bi times).

We now state some of the basic results that we require, with references to
their proofs.

Theorem 2.2. Let � be a pure simplicial complex.

(i) If � is vertex decomposable, then � is shellable.

(ii) If � is shellable, then � is Cohen-Macaulay.

(iii) If dim � = 1 and � is connected, then � is vertex decomposable.

Proof. (i) is [6, Corollary 2.9]; (ii) is [7, Theorem 5.3.18]; and (iii) is [6,
Theorem 3.1.2].

Example 2.3. We show that both vdW(5, 2) and vdW(6, 2) are vertex de-
composable. Not only do these examples illuminate our definitions, we require
these special arguments for these complexes to prove Theorem 1.1. We begin
with

� = vdW(5, 2) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1, x3, x5}〉.
We form the deletion and link of x5:

del�(x5) = 〈{x1, x2, x3}, {x2, x3, x4}〉 and lk�(x5) = 〈{x3, x4}, {x1, x3}〉.
Now lk�(x5) is vertex decomposable by Theorem 2.2(iii). Let � = del�(x5)

and form the link and deletion with respect to x4:

del�(x4) = 〈{x1, x2, x3}〉 and lk�(x5) = 〈{x2, x3}〉.
Both of these complexes are simplicies, so del�(x5) is vertex decomposable,
and consequently, so is vdW(5, 2)

The proof for the complex

� = vdW(6, 2) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5},
{x4, x5, x6}, {x1, x3, x5}, {x2, x4, x6}〉

is similar. We form the deletion and link of x6. In particular,

del�(x6) = 〈{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x1, x3, x5}〉 = vdW(5, 2),

and
lk�(x6) = 〈{x4, x5}, {x2, x4}〉.

We just showed that vdW(5, 2) = del�(x6) is vertex decomposable, and
lk�(x6) is vertex decomposable by Theorem 2.2(iii). So, vdW(6, 2) is vertex
decomposable.
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We complete this section with some results about the first syzygy module
of a monomial ideal. Let I be a monomial ideal of R = k[x1, . . . , xn] whose
unique set of minimal generators are G(I) = {m1, . . . , ms}. Let di = deg(mi)

for i = 1, . . . , s, and let emi
denote the basis element of the shifted R-module

R(−di). We can then construct the following degree zero R-module homo-
morphism

ϕ: M = R(−d1) ⊕ R(−d2) ⊕ · · · ⊕ R(−ds) −→ I

where emi
�→ mi for i = 1, . . . , s. The first syzygy module of I is then

Syz1
R(I ) = {(F1, . . . , Fs) ∈ M | ϕ(F1, . . . , Fs) = F1m1 + · · · + Fsms = 0},

i.e., Syz1
R(I ) = ker(ϕ). The module Syz1

R(I ) is a finitely generated R-module;
in fact:

Theorem 2.4 ([3, Corollary 4.13]). Let I ⊆ R = k[x1, . . . , xn] be a
monomial ideal with minimal generators G(I) = {m1, . . . , ms}. Then

Syz1
R(I ) = 〈σj,iemi

− σi,j emj
| 1 ≤ i < j ≤ s〉, where σi,j = mi

gcd(mi, mj )
.

The set of generators in the above result may not be a minimal set of gener-
ators. However, some subset of these generators is a minimal set of generators.
The first syzygy module is generated by linear first syzygies if there is some
subset T ⊆ {σj,iemi

− σi,j emj
| 1 ≤ i < j ≤ s} that generates Syz1

R(I ), and
for all σj,iemi

− σi,j emj
∈ T , deg σi,j = deg σj,i = 1.

The construction of Syz1
R(I ) is the first step in the construction of the

minimal free resolution of I . In particular, we have the following fact.

Theorem 2.5. If I is a monomial ideal with a linear resolution, then Syz1
R(I )

is generated by linear first syzygies.

3. Proof of the main theorem

We prove Theorem 1.1 in this section. To do so, we require the following two
lemmas about the facets of vdW(n, k). Given a facet F = {xi, xi+d , xi+2d , . . . ,

xi+kd} ∈ vdW(n, k), we call d the increment of F . Note that every facet has an
associated increment.

Lemma 3.1. Suppose n ≥ 7. Let F ∈ vdW(n, 2) be any facet such that its
increment is the largest possible odd integer d. If G ∈ vdW(n, 2) is any other
facet with increment d ′ 
= d, then |F ∩ G| ≤ 1.
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Proof. Because n ≥ 7, the complex vdW(n, 2) contains the facet {1, 4, 7}.
Thus the largest odd increment d satisfies d ≥ 3. Let F = {xa, xa+d , xa+2d}
be any facet whose increment is d and let G = {xb, xb+d ′ , xb+2d ′ } be any other
facet whose increment is d ′ 
= d.

It is immediate that F 
= G, so |F ∩ G| ≤ 2. So suppose |F ∩ G| = 2.
Since a < a + d < a + 2d and b < b + d ′ < b + 2d ′, we have the following
possible cases:

(a) a = b and a + d = b + d ′

(b) a = b and a + d = b + 2d ′

(c) a = b and a + 2d = b + d ′

(d) a = b and a + 2d = b + 2d ′

(e) a = b + d ′ and a + d = b + 2d ′

(f) a = b + d ′ and a + 2d = b + 2d ′

(g) a + d = b and a + 2d = b + d ′

(h) a + d = b and a + 2d = b + 2d ′

(i) a + d = b + d ′ and a + 2d = b + 2d ′.

Cases (a), (d), (e), (g) and (i) all imply d = d ′, so we can eliminate those
cases. For cases (b) and (h), we would have d = 2d ′, which implies that the
odd integer d is even, so this case cannot happen. Finally, for cases (c) and (f),
we would have 2d = d ′. But d ≥ 3 is the largest odd increment, so the largest
increment of vdW(n, 2) is either d or d + 1. But d ′ = 2d > d + 1, so this is
not a valid increment, and consequently, this case cannot happen.

Therefore, it must be the case that |F ∩ G| ≤ 1.

We now prove a similar lemma, but now we do not require the increment
to be odd.

Lemma 3.2. Suppose n ≥ 7 and 2 < k < n
2 . Let F ∈ vdW(n, k) be any

facet whose increment d is the largest possible. If G ∈ vdW(n, k) is any other
facet with increment d ′ 
= d, then |F ∩ G| ≤ k − 1.

Proof. Since k < n
2 , we have {x1, x3, . . . , x1+2k} ∈ vdW(n, k). If F ∈

vdW(n, k) has the largest possible increment d, we must therefore have d ≥ 2.
Let F = {xa, xa+d , . . . , xa+kd} be a facet with increment d, and suppose

G = {xb, xb+d ′ , . . . , xb+kd ′ } is a facet with increment d ′ 
= d. Since the facets
are distinct, we must have |F ∩ G| ≤ k.

Suppose that |F ∩ G| = k. Since |G| = k + 1 > 3, there must be xb+id ′ ,

xb+(i+1)d ′ ∈ G, i.e., two consecutive terms of the arithmetic progression in G

such that

a + �d = b + id ′ and a + jd = b + (i + 1)d ′ for some � < j .
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But these two equations imply that (j − �)d = d ′, i.e., d ′ ≥ d, contradicting
the fact that d is the largest increment. So |F ∩ G| ≤ k − 1.

We now prove Theorem 1.1.

Proof of Theorem 1.1. We break the proof into cases depending on
0 < k < n.

Case 1: k = 1 and 1 < n. In this case vdW(n, 1) is vertex decomposable
by Theorem 2.2 (iii) because

vdW(n, 1) = 〈{xi, xj } | 1 ≤ i < j ≤ n〉,
is a connected one-dimensional simplicial complex.

Case 2: n
2 ≤ k < n. If 1 = k < 2, then vdW(2, 1) is vertex decomposable

by the previous case. We now proceed by induction on n. If k = n − 1,
then vdW(n, n − 1) = 〈{x1, x2, x3, . . . , xn}〉 is a simplex, and hence, vertex
decomposable.

So suppose that n
2 ≤ k < n − 1. Every facet of vdW(n, k) must have

increment d = 1 since n
2 ≤ k. So

� = vdW(n, k)

= 〈{x1, x2, . . . , xk+1}, {x2, x3, . . . , xk+2}, . . . , {xn−k, . . . , xn}〉.
We form the link and deletion of xn:

del�(xn) = vdW(n − 1, k) and lk�(xn) = 〈{xn−k, . . . , xn−1}〉.
Since n−1

2 < k < n − 1, by induction vdW(n − 1, k) is vertex decomposable.
Because lk�(xn) is a simplex, we can now conclude that vdW(n, k) is vertex
decomposable if n

2 ≤ k < n.
Case 3: 0 < k < n ≤ 6. The only n and k in this case not covered by

Case 1 or 2 is (n, k) = (5, 2) or (6, 2). We now use Example 2.3 to complete
this case.

Case 4: n > 6 and 2 ≤ k < n
2 . Let I = IvdW(n,k)∨ be the Stanley-Reisner

ideal of the Alexander dual of vdW(n, k). We will show that Syz1
R(I ) cannot

be generated by linear first syzygies. It will then follow by Theorem 2.5 that
I does not have a linear minimal free resolution, and consequently, vdW(n, k)

is a simplicial complex that is pure but not Cohen-Macaulay.
If vdW(n, k) = 〈F1, . . . , Fs〉, then by Lemma 2.1,

I =
〈
mFc

i
=

∏
x 
∈Fi

x

∣∣∣∣ i = 1, . . . , s

〉
.
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Since the complex is pure, this ideal is generated by s monomials all of degree
n − k − 1.

We first consider the case that 3 ≤ k < n
2 . Let F be any facet with the

largest increment d. Since n > 6, we know that d ≥ 3. Now take another facet
G with increment d ′ 
= d. We know that

mGc

gcd(mFc , mGc)
emFc − mFc

gcd(mFc , mGc)
emGc

is a (possibly non-minimal) generator of Syz1
R(I ) by Theorem 2.4. Moreover,

this generator is not a linear first syzygy because Lemma 3.2 tells us that
|F ∩ G| ≤ k − 1, which implies that

deg

(
mGc

gcd(mFc , mGc)

)
≥ 2 and deg

(
mFc

gcd(mFc , mGc)

)
≥ 2.

To see why, mFc and mGc are squarefree monomials, so

deg(gcd(mFc , mGc)) = |Fc ∩ Gc| = |(F ∪ G)c| = n − |F ∪ G|
= n − |F | − |G| + |F ∩ G|
≤ n − (k + 1) − (k + 1) + (k − 1) = n − k − 3.

Since deg(mFc) = deg(mGc) = n − k − 1, the result follows.
Now suppose that Syz1

R(I ) is generated by linear first syzygies. So, in
particular there are facets H1, . . . , Ht ∈ {F1, . . . , Fs}, not necessarily distinct,
so that we can write

mGc

gcd(mFc , mGc)
emFc − mFc

gcd(mFc , mGc)
emGc

=
t∑

i=1

Ai

(
mHc

i

gcd(mHc
i
, mHc

i+1
)
emHc

i+1
− mHc

i+1

gcd(mHc
i
, mHc

i+1
)
emHc

i

)
, (3.1)

where each
mHc

i

gcd(mHc
i
,mHc

i+1
)
emHc

i+1
− mHc

i+1

gcd(mHc
i
,mHc

i+1
)
emHc

i
is a linear first syzygy.

Note that if the facet H has increment d, the largest possible increment, and
mHc

gcd(mHc , mKc)
emKc − mKc

gcd(mHc , mKc)
emHc

is any linear first syzygy involving H , then K must also have increment d.
Indeed, if the increment of K is d ′ 
= d, then we could again use Lemma 3.2
to show that

deg

(
mHc

gcd(mHc , mKc)

)
≥ 2 and deg

(
mKc

gcd(mHc , mKc)

)
≥ 2,

contradicting the fact we have a linear first syzygy.
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Because emFc appears on both sides of (3.1), at least one of the His must be
F . In the light of discussion in the previous paragraph, we are forced to have

mGc

gcd(mFc , mGc)
emFc

=
∑

AH,K

(
mHc

gcd(mHc , mKc)
emKc − mKc

gcd(mHc , mKc)
emHc

)
,

where all the H and K have increment d. That is, all the linear first syzygies
involving a facet with increment d must appear together. But this means that

0 = ϕ

(
mGc

gcd(mFc , mGc)
emFc

)
= mGc

gcd(mFc , mGc)
mFc 
= 0,

which is false. Here, ϕ is the R-module homomorphism used to define Syz1
R(I ).

The proof for k = 2 is similar. The only difference is that F is picked to
be any facet with the largest odd increment, and we use Lemma 3.1 instead of
Lemma 3.2.
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