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UNIQUENESS OF NORM-PRESERVING EXTENSIONS
OF FUNCTIONALS ON THE SPACE OF

COMPACT OPERATORS

JULIA MARTSINKEVITŠ and MÄRT PÕLDVERE∗

Abstract
Godefroy, Kalton, and Saphar called a closed subspace Y of a Banach space Z an ideal if its
annihilator Y⊥ is the kernel of a norm-one projection P on the dual space Z∗. If Y is an ideal in
Z with respect to a projection on Z∗ whose range is norming for Z, then Y is said to be a strict
ideal. We study uniqueness of norm-preserving extensions of functionals on the space K (X, Y )

of compact operators between Banach spaces X and Y to the larger space K (X, Z) under the
assumption that Y is a strict ideal in Z. Our main results are: (1) if y∗ is an extreme point of BY ∗
having a unique norm-preserving extension to Z, and x∗∗ ∈ BX∗∗ , then the only norm-preserving
extension of the functional x∗∗ ⊗ y∗ ∈ K (X, Y )∗ to K (X, Z) is x∗∗ ⊗ z∗ where z∗ ∈ Z∗ is the
only norm-preserving extension of y∗ to Z; (2) if K (X, Y ) is an ideal in K (X, Z) and Y has
Phelps’ property U in its bidual Y ∗∗ (i.e., every bounded linear functional on Y admits a unique
norm-preserving extension to Y ∗∗), then K (X, Y ) has property U in K (X, Z) whenever X∗∗ has
the Radon-Nikodým property.

1. Introduction

Throughout this paper, all Banach spaces will be over the scalar fieldK, where
K = R or K = C. The closed unit ball and the unit sphere of a Banach
space X will be denoted, respectively, by BX and SX. For a subset A of X, we
denote its convex hull by co(A). The symbol L (X, Z) will stand for the space
of continuous linear operators from X to another Banach space Z (over the
same scalar field as X), and K (X, Z) for its subspace of compact operators.
Whenever L is a subspace of L (X, Z), for x∗∗ ∈ X∗∗ and z∗ ∈ Z∗, the
functional x∗∗ ⊗ z∗ ∈ L ∗ is defined by

(x∗∗ ⊗ z∗)(T ) = x∗∗(T ∗z∗), T ∈ L .

Let Z be a Banach space, and let Y be a closed subspace of Z. According to
the terminology in [5], Y is said to be an ideal in Z if there exists a continuous
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linear projection P on Z∗ with ker P = Y⊥ = {z∗ ∈ Z∗ : z∗|Y = 0} and
‖P ‖ = 1. If ran P is norming for Z in the sense that

‖z‖ = sup
z∗∈Bran P

|z∗(z)| for all z ∈ Z,

then Y is called a strict ideal, and the ideal projection P is said to be strict.
It is straightforward to verify that if P is an ideal projection for Y in Z, then,

for every z∗ ∈ Z∗, the functional Pz∗ ∈ Z∗ is a norm-preserving extension of
the restriction z∗|Y ∈ Y ∗. It follows that the mapping JP : Y ∗ � y∗ �→ Pz∗ ∈
Z∗ where z∗ ∈ Z∗ is any extension of y∗, is a linear isometry. In particular,
ran JP = ran P , and ran P is isometrically isomorphic to Y ∗.

Suppose that Y is an ideal in Z with respect to an ideal projection P . Then
each z ∈ Z induces a functional zP ∈ Y ∗∗ defined by zP (y∗) = JP y∗(z),
y∗ ∈ Y ∗. If P is strict, the mapping z �→ zP is an isometry and one can
identify Z with the closed subspace ZP = {zP ∈ Y ∗∗ : z ∈ Z} of Y ∗∗.

In this paper, we study uniqueness of norm-preserving extensions to
K (X, Z) of functionals on K (X, Y ) under the assumption that Y is a strict
ideal in Z. Ideals of compact operators of this type were studied, among others,
in [10].

Our first main theorem partially complements [10, Lemma 3.1] – uniqueness
of norm-preserving extensions to K (X, Z) of functionals on K (X, Y ) of the
form x∗∗ ⊗ y∗, where x∗∗ ∈ BX∗∗ and y∗ is an extreme point of BY ∗ having a
unique norm-preserving extension to Z, is not covered by that result.

Theorem 1.1. Let X and Z be Banach spaces, and let Y be a strict ideal
in Z with respect to a projection P on Z∗. Let y∗ be an extreme point of BY ∗

having a unique norm-preserving extension to Z, and let x∗∗ ∈ BX∗∗ . Then
the only norm-preserving extension of the functional x∗∗ ⊗ y∗ ∈ K (X, Y )∗ to
K (X, Z) is x∗∗ ⊗ z∗ where z∗ ∈ Z∗ is the only norm-preserving extension of
y∗ to Z.

Examples of extreme points of the dual unit ball BY ∗ admitting a unique
norm-preserving extension to Y ∗∗ (and thus also to Z if Y is a strict ideal in
Z) are, e.g., weak∗ denting points of BY ∗ and, in particular, weak∗ strongly
exposed points of BY ∗ . Different versions of Theorem 1.1 have been proven
in [10, Lemma 3.1] (see also [15, Theorem 1.1] for a simpler proof), [9,
Lemma 4.3], [8, Lemma 3.4], [11, Theorem 3.7], [7, Lemma 11], and [7,
Lemma 12].

Following R. R. Phelps [16], we say that a closed subspace Y of a Banach
space Z has property U in Z if every functional y∗ ∈ Y ∗ has a unique norm-
preserving extension to the whole space Z. For an investigation of property U ,
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see [14]; propertyU for the subspace of compact operators in the corresponding
space of all bounded linear operators has been studied in [17].

Our second main theorem extends [10, Theorem 3.6] (cf. also [10, The-
orem 3.5] and [15, Theorem 4.5]) to the case of property U .

Theorem 1.2. Let X and Z be Banach spaces, and let Y be a strict ideal
in Z such that K (X, Y ) is an ideal in K (X, Z). Suppose that X∗∗ has the
Radon-Nikodým property, and let Y have property U in its bidual Y ∗∗. Then
K (X, Y ) is a strict ideal having property U in K (X, Z).

In [10, Theorem 3.6], Theorem 1.2 was proved under stronger assumptions
and with property U replaced by strict u-ideals (for u-ideals we refer to [5]
and, for a more recent study, to [12]).

In Section 2, we describe, for a strict ideal Y in a Banach space Z with
respect to a projection P on Z∗, the extreme points of BY ∗ having unique
norm-preserving extensions to Z as the points of continuity of the formal
identity operator

id: (BY ∗ , relative weak∗) → (
BY ∗ , relative σ(Y ∗, ZP )

)
(briefly, as weak∗-to-σ(Y ∗, ZP )-PC’s of BY ∗ ), and prove Theorem 1.1. In Sec-
tion 3, we provide a description of a generalisation of denting points (a partial
case of this description is used in the proof of Theorem 1.1). In Section 4, we
prove Theorem 1.2.

Let us recall the notion of a slice. Let C be a non-empty bounded subset of
a Banach space Z. Given z∗ ∈ Z∗, z∗ 
= 0, and α > 0, the set

S(z∗, α, C) := {
z ∈ C : Re z∗(z) > sup Re z∗(C) − α

}
is called an (open) slice of C. If � is a linear subspace of Z∗, then slices of C

whose defining functional comes from � are called �-slices. In particular, if
Z happens to be a dual space, say Z = E∗, then slices of C whose defining
functional comes from (the canonical image of) the predual E of Z are called
weak∗ slices.

2. Uniqueness of norm-preserving extensions from K (X, Y ) to
K (X, Z) of functionals of the form x∗∗ ⊗ y∗

A result by Godefroy (see [4] or [6, p. 125, Lemma 2.14]) describes functionals
in the dual unit sphere of a Banach space admitting a unique norm-preserving
extension to the bidual as weak∗-to-weak points of continuity of the dual unit
ball. The following proposition generalises this result to the case of strict ideals.
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Proposition 2.1. Let Y be a strict ideal in a Banach space Z with respect
to a projection P on Z∗, and let y∗ ∈ SY ∗ . The following assertions are
equivalent:

(i) y∗ has a unique norm-preserving extension to Z;

(ii) y∗ is a weak∗-to-σ(Y ∗, ZP )-PC of BY ∗ , i.e., for any net (y∗
α) in BY ∗ ,

y∗
α

w∗−→
α

y∗ �⇒ y∗
α

σ(Y ∗,ZP )−−−−−→
α

y∗, (2.1)

i.e., whenever

y∗
α(y) −→

α
y∗(y) for all y ∈ Y,

one has

JP y∗
α(z) = zP (y∗

α) −→
α

zP (y∗) = JP y∗(z) for all z ∈ Z.

Remark 2.2. The aforecited result of Godefroy is the partial case of Pro-
position 2.1, where Z = Y ∗∗ and P is the canonical projection on Y ∗∗∗ (i.e.
P = jY ∗(jY )∗ where jY : Y → Y ∗∗ and jY ∗ : Y ∗ → Y ∗∗∗ are canonical embed-
dings).

Proof of Proposition 2.1. (i) ⇒ (ii). Assume that y∗ has a unique norm-
preserving extension to Z. Then this norm-preserving extension is JP y∗. Let
(y∗

α) be a net in BY ∗ converging weak∗ to y∗, and let (y∗
β) be any subnet of

(y∗
α). In order for (ii) to hold, it suffices to show that there is a further subnet

(y∗
γ ) such that JP y∗

γ (z) → JP y∗(z) for all z ∈ Z. By the weak∗ compactness
of BZ∗ there are a subnet (y∗

γ ) and a z∗ ∈ BZ∗ such that JP y∗
γ → z∗ weak∗

in Z∗. But now z∗ is a norm-preserving extension of y∗, thus z∗ = JP y∗, and
JP y∗

γ → JP y∗ weak∗ in Z∗, as desired.
(ii) ⇒ (i). Assume that y∗ is a weak∗-to-σ(Y ∗, ZP )-PC of BY ∗ , and let

z∗ ∈ SZ∗ be any norm-preserving extension of y∗. It suffices to show that
z∗ = JP y∗. Since BZ∗ is the weak∗ closure of Bran P (this follows from the
strictness of P by the separation theorem), there is a net (z∗

α) in ran P with
‖z∗

α‖ ≤ 1 = ‖z∗‖ for all α such that

z∗
α(z) −→

α
z∗(z) for all z ∈ Z.

Put y∗
α = z∗

α|Y ; then JP y∗
α = Pz∗

α = z∗
α and

y∗
α(y) = z∗

α(y) −→
α

z∗(y) = y∗(y) for all y ∈ Y ;
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hence, by (2.1),

z∗
α(z) = JP y∗

α(z) −→
α

JP y∗(z) for all z ∈ Z.

It follows that z∗(z) = JP y∗(z) for all z ∈ Z, i.e. z∗ = JP y∗, as desired.

The proof of Theorem 1.1 relies on the following two propositions. The first
of these describes extreme points of the dual unit ball of a strict ideal having
a unique norm-preserving extension to the whole space.

Proposition 2.3. Let Y be a strict ideal in a Banach space Z with respect
to a projection P on Z∗, and let y∗ ∈ BY ∗ . The following assertions are
equivalent:

(i) y∗ is an extreme point of BY ∗ having a unique norm-preserving extension
to Z;

(ii) y∗ is both an extreme point and a weak∗-to-σ(Y ∗, ZP )-PC of BY ∗ ;

(iii) weak∗ slices of BY ∗ containing y∗ form a neighbourhood basis for y∗ in
the relative σ(Y ∗, ZP )-topology of BY ∗ ;

(iv) whenever F is a finite subset of Z and ε > 0,

y∗ /∈ cow∗(
BY ∗ \ {

v∗ ∈ BY ∗ : max
z∈F

|zP (v∗ − y∗)| < ε
});

(v) whenever (y∗
α)α∈A := (∑nα

k=1 λαky
∗
αk

)
α∈A

is a net of convex combina-

tions in BY ∗ such that y∗
α

w∗−→
α

y∗, i.e.,

nα∑
k=1

λαk(y
∗
αk − y∗)(y) −→

α
0 for all y ∈ Y,

one has y∗
α

σ(Y ∗,ZP )−−−−−→
α

y∗; moreover,

nα∑
k=1

λαk|zP (y∗
αk − y∗)| −→

α
0 for all z ∈ Z,

and thus, for every finite subset F of Z,

nα∑
k=1

λαk max
z∈F

|zP (y∗
αk − y∗)| −→

α
0.

We postpone the proof of Proposition 2.3 until the next section where a
more general result will be proven (see Proposition 3.1).
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The following proposition contains a slight improvement to [15, Lem-
ma 2.1]. Given Banach spaces X and Z, and closed subspaces V ⊂ X∗ and
Y ⊂ Z, we denote by V ⊗ Y the linear span of the operators in L (X, Z) of
the form v ⊗ y (v ∈ V , y ∈ Y ) defined by (v ⊗ y)(x) = v(x) y, x ∈ X.

Proposition 2.4. Let X and Z be Banach spaces, and let V ⊂ X∗ and
Y ⊂ Z be closed subspaces. Let L be a subspace of L (X, Z∗∗) containing
V ⊗ Y . If v∗ ∈ SV ∗ and y∗ ∈ SY ∗ , then, for any norm-preserving extension
φ ∈ L ∗ of v∗ ⊗ y∗ ∈ (V ⊗ Y )∗, there exists a net

(φα) =
( nα∑

k=1

λαkxαk ⊗ z∗
αk

)
α

of convex combinations in SX ⊗ SZ∗ = {x ⊗ z∗ ∈ L ∗ : x ∈ SX, z∗ ∈ SZ∗ } ⊂
L ∗ such that

(1) φα −→
α

φ weak∗ in L ∗;

(2) xα := ∑nα

k=1 λαkxαk −→
α

v∗ weak∗ in V ∗;

(3) z∗
α := ∑nα

k=1 λαkz
∗
αk −→

α
z∗ weak∗ in Z∗ for some norm-preserving ex-

tension z∗ ∈ SZ∗ of y∗.

Moreover, if Y is a strict ideal in Z with respect to a projection P on Z∗, and
L ⊂ L (X, Z), then the z∗

αk can be chosen so that z∗
αk = JP y∗

αk for some
y∗

αk ∈ SY ∗ .

Proof. The proposition without the “moreover” part was proven in [15,
Lemma 2.1]. For the “moreover” part, observe that if the ideal projection P

is strict and L ⊂ L (X, Z), then ‖T ‖ = sup
{|(x ⊗ z∗)(T )| : x ⊗ z∗ ∈

SX ⊗ JP (SY ∗)
}

for all T ∈ L , thus the polar of SX ⊗ JP (SY ∗) ⊂ L ∗ in L

coincides with BL . Hence, by the bipolar theorem,

BL ∗ = B◦
L = cow∗(

SX ⊗ JP (SY ∗)
)

in L ∗.

It follows that there is a net (φβ)β∈� = (∑nβ

k=1 λβkxβk ⊗ z∗
βk

)
β∈�

of convex
combinations in SX ⊗ JP (SY ∗) such that φβ → φ weak∗ in L ∗.

The rest of the proof is verbatim to that of [15, Lemma 2.1].

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let φ ∈ K (X, Z)∗ be a norm-preserving ex-
tension of x∗∗ ⊗ y∗, and let T ∈ K (X, Z). We must show that φ(T ) =
(x∗∗ ⊗ z∗)(T ). Since z∗ is the only norm-preserving extension of its restric-
tion z∗|Y = y∗, one has z∗ = Pz∗ = JP y∗ and thus

(x∗∗ ⊗ z∗)(T ) = x∗∗(T ∗z∗) = x∗∗(T ∗JP y∗).
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Therefore, letting ε > 0 be arbitrary, it suffices to show that
∣∣φ(T ) −

x∗∗(T ∗JP y∗)
∣∣ < 2ε.

We follow the main idea of [15, proof of Theorem 4.1]. Since ‖(x∗∗ ⊗
y∗)|X∗⊗Y ‖ = ‖x∗∗ ⊗ y∗‖, there are nets (φα), (xα), and (z∗

α) as in Proposi-
tion 2.4 where V = X∗, L = K (X, Z), and v∗ = x∗∗. By the “moreover”
part of Proposition 2.4, we may assume that z∗

αk = JP y∗
αk where y∗

αk ∈ SY ∗ .
Since the operator T is compact, T (BX) is a relatively compact subset of
BZ , thus there is a finite ε-net B in BZ for T (BX). For every index α and
every k ∈ {1, . . . , nα}, let zαk ∈ B be such that ‖T xαk − zαk‖ < ε. Now, by
Proposition 2.3, (i) ⇒ (v),

∣∣φ(T ) − x∗∗(T ∗JP y∗)
∣∣ = lim

α

∣∣∣∣
nα∑

k=1

λαkJP y∗
αk(T xαk) − x∗∗(T ∗JP y∗)

∣∣∣∣
≤ lim sup

α

∣∣∣∣
nα∑

k=1

λαk

(
JP y∗

αk − JP y∗)(T xαk)

∣∣∣∣
+ lim

α

∣∣∣∣
( nα∑

k=1

λαkxαk − x∗∗
)

(T ∗JP y∗)
∣∣∣∣

≤ lim sup
α

nα∑
k=1

λαk

∣∣(JP y∗
αk − JP y∗)(T xαk)

∣∣
≤ lim sup

α

nα∑
k=1

λαk

∣∣(JP y∗
αk − JP y∗)(zαk)

∣∣
+ lim sup

α

nα∑
k=1

λαk‖JP y∗
αk − JP y∗‖‖T xαk − zαk‖

< lim sup
α

nα∑
k=1

λαk

∣∣(JP y∗
αk − JP y∗)(zαk)

∣∣ + 2ε

≤ lim sup
α

nα∑
k=1

λαk max
z∈B

∣∣(JP y∗
αk − JP y∗)(z)∣∣ + 2ε

= lim sup
α

nα∑
k=1

λαk max
z∈B

|(y∗
αk − y∗)(zP )| + 2ε

= 2ε.
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3. A description of a generalisation of denting points

Let X be a Banach space, and let τ be a locally convex topology on X. By
(X, τ)′ we mean the topological dual of X with respect to τ , i.e., the linear space
of all τ -continuous linear functionals on X. Let S be a family of seminorms
on X. Given x ∈ X, a finite subset F of S , and an ε > 0, we define

UF (x, ε) := {
u ∈ X : max

p∈F
p(u − x) < ε

}
.

The family S is said to induce the topology τ if, for every x ∈ X, the family

�S (x) := {UF (x, ε) : F is a finite subset of S and ε > 0}
is a basis of neighbourhoods for x in τ , or, equivalently, the family �S (0) is
a basis of neighbourhoods for 0 in τ .

Proposition 3.1. Let X be a Banach space, let � be a linear subspace of
X∗, let τ be a locally convex topology on X weaker than the norm topology
such that � ⊂ (X, τ)′, and let S be a family of seminorms on X inducing
τ . Let C be a non-empty bounded convex subset of X, and let x ∈ C. The
following assertions are equivalent:

(i) whenever F is a finite subset of S and ε > 0, there is a �-slice S :=
S(x∗, α, C) of C such that

x ∈ S ⊂ UF (x, ε); (3.1)

(ii) �-slices of C containing x form a neighbourhood basis for x in the
relative τ -topology of C;

(iii) whenever F is a finite subset of S and ε > 0,

x /∈ coσ(X,�)
(
C \ UF (x, ε)

); (3.2)

(iv) whenever (xα)α∈A := (∑nα

k=1 λαkxαk

)
α∈A

is a net of convex combina-

tions in C such that xα

σ(X,�)−−−→ x, i.e.,

nα∑
k=1

λαkx
∗(xαk − x) −→

α
0 for all x∗ ∈ �, (3.3)

one has xα
τ−→ x; moreover,

nα∑
k=1

λαkp(xαk − x) −→
α

0 for all p ∈ S , (3.4)
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and thus, for every finite subset F of S ,

nα∑
k=1

λαk max
p∈F

p(xαk − x) −→
α

0. (3.5)

If � separates the points of X, and C is σ(X, �)-compact, then each of the
assertions (i)–(iv) is equivalent to the assertion

(v) x is an extreme point of C and a σ(X, �)-to-τ -PC of C.

Remark 3.2. Suppose that, in Proposition 3.1, τ is the norm topology on
X. In this case, if � = X∗, then each of the assertions (i)–(v) is equivalent to x

being a denting point of C. If X happens to be a dual space, say X = E∗, and
� is (the canonical image of) the predual E of X, then each of the assertions
(i)–(v) is equivalent to x being a weak∗ denting point of C. Proposition 3.1 is
probably (at least partially) known, but we could not find any reference for it.

Remark 3.3. Proposition 2.3 follows from Proposition 3.1 by taking Y ∗
in the role of X, the σ(Y ∗, ZP )-topology in the role of τ , and (the canonical
image of) Y in the role of �.

The proof of the equivalence (ii) ⇔ (v) (under the additional assumptions
that � separates the points of X, and C is σ(X, �)-compact), relies on the
following partial case of [2, p. 107, Proposition 25.13].

Proposition 3.4. Let X be a Banach space, let � be a linear subspace of
X∗ separating the points of X, let C be a σ(X, �)-compact bounded convex
set in X, and let x ∈ C. The following assertions are equivalent:

(i) x is an extreme point of C;

(ii) �-slices of C containing x form a neighbourhood basis for x in the
relative σ(X, �)-topology of C.

Proof of Proposition 3.1. (i) ⇔ (ii) is obvious.
(i) ⇒ (iii). Assume that (i) holds. Let F be a finite subset of S and let

ε > 0. By (i), there is a �-slice S := S(x∗, α, C) of C satisfying (3.1). Now

C \ UF (x, ε) ⊂ C \ S = {u ∈ C : Re x∗(u) ≤ sup Re x∗(C) − α}.
Since the latter set is convex and closed in the relative σ(X, �)-topology of C,
one has coσ(X,�)(C \ UF (x, ε)) ⊂ C \ S, and (3.2) follows.

(iii) ⇒ (iv). First observe that, for every finite subset F of S , condition (3.4)
implies (3.5), because

nα∑
k=1

λαk max
p∈F

p(xαk − x) ≤
∑
p∈F

nα∑
k=1

λαkp(xαk − x).
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Assume that (iii) holds. Let (xα)α∈A := (∑nα

k=1 λαkxαk

)
α∈A

be a net of
convex combinations in C satisfying (3.3). We must prove (3.4). To this end,
it suffices to prove the following claim.

Claim 1. Let p ∈ S and let ε > 0. Put, for every α ∈ A ,

J α
p,ε := {

k ∈ {1, . . . , nα} : p(xαk − x) ≥ ε
}
.

Then limα

∑
k∈J α

p,ε
λαk = 0.

Indeed, assume that Claim 1 has been proven. Let p ∈ S and ε > 0 be
arbitrary. Since C is bounded and τ is weaker than the norm topology, the
seminorm p is bounded on C, i.e., M := supu∈C p(u) < ∞. By Claim 1,
we can choose α1 ∈ A so that

∑
k∈J α

p,ε
λαk < ε

2M
for all α > α1. Whenever

α > α1, we have

nα∑
k=1

λαkp(xαk − x) =
∑

k∈J α
p,ε

λαkp(xαk − x) +
∑

k /∈J α
p,ε

λαkp(xαk − x)

<
∑

k∈J α
p,ε

λαk2M + ε < ε + ε = 2ε,

and (3.4) follows.
Claim 1 follows from the following claim.

Claim 2. Suppose that uα, vα ∈ C, λα ∈ [0, 1], and λ > 0 are such that
xα = λαuα + (1 − λα)vα and λα ≥ λ for all α ∈ A . Then uα

τ−→ x.

Indeed, assume that Claim 2 has been proven. Suppose for contradiction
that

∑
k∈J α

p,ε
λαk � 0 for some p ∈ S and some ε > 0. By passing to a subnet,

we may assume that there is a λ > 0 such that λα := ∑
k∈J α

p,ε
λαk ≥ λ for all

α ∈ A . Defining, for all α ∈ A ,

uα :=
∑

k∈J α
p,ε

λαk

λα

xαk and vα :=

⎧⎪⎨
⎪⎩

∑
k /∈J α

p,ε

λαk

1 − λα

xαk, if λα < 1,

xα1, if λα = 1,

we have uα, vα ∈ C and xα = λαuα + (1 − λα)vα for all α ∈ A ; therefore
uα

τ−→ x by Claim 2. We have a contradiction, because uα ∈ co(C\U{p}(x, ε))

for all α ∈ A , but x /∈ coτ (C \ U{p}(x, ε)) by (iii).
It remains to prove Claim 2. To this end, suppose for contradiction that there

are uα, vα ∈ C, λα ∈ [0, 1], and λ > 0 such that xα = λαuα + (1 − λα)vα and
λα ≥ λ for all α ∈ A , but uα � x in the τ -topology. Then p(uα − x) � 0 for
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some p ∈ S . By passing to a subnet, we may assume that there is an ε1 > 0
such that p(uα − x) ≥ ε1 for all α ∈ A . Notice that p(vα − x) � 0 because
otherwise we would have

lim inf
α

p(xα − x) ≥ lim inf
α

(
λαp(uα − x) − (1 − λα)p(vα − x)

)
= lim inf

α
λαp(uα − x) ≥ λε1 > 0.

Hence, by passing to a subnet again, we may assume that there is an ε2 > 0
such that p(vα − x) ≥ ε2 for all α ∈ A . Putting ε0 := min{ε1, ε2}, we
have xα ∈ co(C \ U{p}(x, ε0)) for all α ∈ A . Since xα

τ−→ x we have x ∈
coτ (C \ U{p}(x, ε0)), a contradiction.

(iv) ⇒ (iii). Assume that (iv) holds. Suppose for contradiction that there
exist a finite subset F of S and an ε > 0 such that x ∈ coσ(X,�)(C\UF (x, ε)).
Then there exists a net (xα)α∈A := (∑nα

k=1 λαkxαk

)
α∈A

of convex combinations

in C such that xα

σ(X,�)−−−→ x and maxp∈F p(xαk − x) ≥ ε for all α ∈ A and all

k ∈ {1, . . . , nα}. But now we have
∑nα

k=1 λαk maxp∈F p(xαk − x) ≥ ε for all
α ∈ A . This contradicts (3.5).

(iii) ⇒ (i). Assume that (iii) holds. Let F be a finite subset of S and let
ε > 0. We need to show that there exists a �-slice S := S(x∗, α, C) of C

satisfying (3.1).
By the assumption (iii), we have (3.2), thus, by the Hahn-Banach separation

theorem, there are x∗ ∈ � and β > 0 such that

Re x∗(x) − β > sup Re x∗(coσ(X,�)(C \ UF (x, ε))
)
.

Put α := sup Re x∗(C) − Re x∗(x) + β; then

Re x∗(x) = sup Re x∗(C) + β − α > sup Re x∗(C) − α,

thus x ∈ S(x∗, α, C).
It remains to show that S(x∗, α, C) ⊂ UF (x, ε). Let u ∈ S(x∗, α, C).

Suppose for contradiction that u /∈ UF (x, ε), i.e., u ∈ C \ UF (x, ε). Then

Re x∗(u) ≤ sup Re x∗(C \ UF (x, ε)
) ≤ sup Re x∗(coσ(X,�)(C \ UF (x, ε))

)
< Re x∗(x) − β = sup Re x∗(C) − α < Re x∗(u),

a contradiction.
For the rest of the proof, assume that � separates the points of X, and that

C is σ(X, �)-compact.
(ii) ⇒ (v). Assume that (ii) holds. Then x is clearly a σ(X, �)-to-τ -PC of

C. It remains to show that x is an extreme point of C. This follows from
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Proposition 3.4, because, since � ⊂ (X, τ)′, the σ(X, �)-topology is weaker
than τ and, thus, by (ii), also the assertion (ii) of Proposition 3.4 holds.

(v) ⇒ (ii) is obvious by Proposition 3.4.

4. Property U for K (X, Y ) in K (X, Z)

Let us fix some more notation, point out some observations, and agree in some
conventions.

Let X and Z be Banach spaces. Recall that, for x∗∗ ∈ X∗∗ and z∗ ∈ Z∗, the
functional x∗∗ ⊗ z∗ ∈ K (X, Z)∗ is defined by (x∗∗ ⊗ z∗)(T ) = x∗∗(T ∗z∗),
T ∈ K (X, Z). Define

BX∗∗ ⊗ BZ∗ = {x∗∗ ⊗ z∗ : x∗∗ ∈ BX∗∗ , z∗ ∈ BZ∗ } ⊂ K (X, Z)∗.

Observe that BX∗∗ ⊗ BZ∗ is a weak∗ closed subset of K (X, Z)∗.
Let us make the convention that, unless explicitly stated otherwise, when-

ever considering topological properties (such as, e.g., compactness and Borel-
ness) of subsets of the set BX∗∗ ⊗ BZ∗ ⊂ BK (X,Z)∗ , the topology we have in
mind is the relative weak∗ topology of this set.

Since, for every T ∈ K (X, Z), there is some φ ∈ C := BX∗∗ ⊗ BZ∗ ⊂
BK (X,Z)∗ such that Re φ(T ) = ‖T ‖, by the Hahn-Banach separation theorem,
it quickly follows that cow∗

(C) = BK (X,Z)∗ . Thus, for every f ∈ SK (X,Z)∗ , as
a consequence of the Riesz representation theorem, there is a regular Borel

probability measure μ on C
w∗ = C such that f (T ) = ∫

C
φ(T ) dμ(φ) for

every T ∈ K (X, Z).
The proof of Theorem 1.2 relies on the following Theorem 4.1 (cf. [13, The-

orem 1.2]) which shows that, under the assumptions of Theorem 1.2, whenever
a functional f ∈ SK (X,Z)∗ is represented as an integral with respect to a reg-
ular Borel probability measure on BX∗∗ ⊗ BZ∗ as above, the ideal projection
for K (X, Y ) in K (X, Z) when applied to f “passes under the integral sign”.
The proof of Theorem 4.1, in turn, relies on Theorem 4.2 below. We remark
that the proof of the prototype [10, Theorem 3.6] of Theorem 1.2 relies on the
Feder-Saphar description [3, Theorem 1] of the dual of K (X, Z), which can
also be derived from Theorem 4.2 (see [13, Corollary 2.2]).

Theorem 4.1. Let X and Z be Banach spaces, and let Y be a strict ideal
in Z with respect to a projection π on Z∗ such that

• X∗∗ and Y ∗ have the Radon-Nikodým property;

• K (X, Y ) is an ideal in K (X, Z) with respect to a projection P on
K (X, Z)∗ such that

P(x∗∗ ⊗ z∗) = x∗∗ ⊗ πz∗ for all x∗∗ ∈ X∗∗ and all z∗ ∈ Z∗. (4.1)
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Let μ be a regular Borel (with respect to the relative weak∗ topology) prob-
ability measure on C := BX∗∗ ⊗ BZ∗ ⊂ BK (X,Z)∗ . Then there is a Borel set
C ′ ⊂ C such that

(a)
∫
C\C ′ |φ(S)| dμ(φ) = 0 for all S ∈ K (X, Y );

(b) for every T ∈ K (X, Z), the function C � φ �→ (Pφ)(T ) χC ′(φ) ∈ K is
measurable;

(c) defining f ∈ K (X, Z)∗ by f (T ) = ∫
C

φ(T ) dμ(φ), T ∈ K (X, Z), one
has

(Pf )(T ) =
∫

C ′
(Pφ)(T ) dμ(φ), T ∈ K (X, Z).

The proof of Theorem 4.1 relies on the following result. We omit its proof,
because it is almost verbatim to that of [13, Theorem 2.1] with some obvious
changes. We remark that the proof reduces to an application of a theorem of
Edgar [1, Theorem 4.3.11].

Theorem 4.2. LetX andZ be Banach spaces, and letY be a closed subspace
of Z. Suppose that Y ∗ (respectively, X∗∗) has the Radon-Nikodým property. Let
μ be a regular Borel (with respect to the relative weak∗ topology) probability
measure on C := BX∗∗ ⊗ BZ∗ ⊂ BK (X,Z)∗ . Denote by C (respectively, D ) the
collection of compact subsets A of C with the following property:

• there is a norm compact set Y ∗
A ⊂ SY ∗ (respectively, X∗∗

A ⊂ SX∗∗ ) such
that, for every φ ∈ A, there are y∗ ∈ Y ∗

A and x∗∗ ∈ BX∗∗ (respectively,
y∗ ∈ BY ∗ and x∗∗ ∈ X∗∗

A ) with φ|K (X,Y ) = x∗∗ ⊗ y∗.

Then there are pairwise disjoint Borel sets Cj ⊂ C, j ∈ {0} ∪N (respectively,
Di ⊂ C, i ∈ {0} ∪ N) such that C = ⋃∞

j=0 Cj (respectively, C = ⋃∞
i=0 Di),

where
∫
C0

|φ(S)| dμ(φ) = 0 (respectively,
∫
D0

|φ(S)| dμ(φ) = 0) for all
S ∈ K (X, Y ), and Cj ∈ C , j ∈ N (respectively, Di ∈ D , i ∈ N).

Proof of Theorem 4.1. For all j, i ∈ {0} ∪N, put Eji := Cj ∩ Di where
the sets Cj and Di are as in Theorem 4.2. Put C ′ = ⋃∞

j,i=1 Eji and, for every
n ∈ N,

Ĉn :=
n⋃

j,i=1

Eji and C̃n := C ′ \ Ĉn.

Choose an increasing sequence of indices (kn)
∞
n=1 so that μ

(
C̃kn

)
< 1/n for

every n ∈ N. For each n ∈ N, let An ⊂ SY ∗ and Bn ⊂ SX∗∗ be a finite 1/n-net,
respectively, for

⋃kn

j=1 Y ∗
Cj

and
⋃kn

i=1 X∗∗
Di

where the sets Y ∗
Cj

and X∗∗
Di

are as in
Theorem 4.2.

Let T ∈ SK (X,Z). By Goldstine’s theorem (or by the bipolar theorem),

there is a net (Sα)α∈A in BK (X,Y ) such that Sα

σ(K (X,Z),ran P)−−−−−−−−−→
α

T . Choose an
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increasing sequence of indices (αn)
∞
n=1 so that, whenever n ∈ N, for each

α � αn, one has
∣∣(u∗∗ ⊗ Jπv∗)(Sα − T )

∣∣ < 1/n for all v∗ ∈ An and all
u∗∗ ∈ Bn.

Now let n ∈ N be fixed, and suppose that φ ∈ Ĉkn
, i.e., φ ∈ Eji = Cj ∩ Di

for some j, i ∈ {1, . . . , kn}. Then there are y∗
0 ∈ Y ∗

Cj
, x∗∗ ∈ BX∗∗ , y∗ ∈ BY ∗ ,

and x∗∗
0 ∈ X∗∗

Di
such that φ|K (X,Y ) = x∗∗ ⊗ y∗

0 = x∗∗
0 ⊗ y∗, and thus

Pφ = x∗∗ ⊗ Jπy∗
0 = x∗∗

0 ⊗ Jπy∗.

One has x∗∗ = γ x∗∗
0 and y∗ = γy∗

0 for some γ ∈ K with |γ | ≤ 1. Choosing
v∗ ∈ An and u∗∗ ∈ Bn so that ‖y∗

0 − v∗‖ < 1/n and ‖x∗∗
0 − u∗∗‖ < 1/n, one

has, whenever α � αn,

|(Pφ)(T ) − φ(Sα)| = |(Pφ)(T − Sα)| = |(γ x∗∗
0 ⊗ Jπy∗

0 )(T − Sα)|
≤ ∣∣((x∗∗

0 − u∗∗) ⊗ Jπy∗
0

)
(T − Sα)

∣∣
+ ∣∣(u∗∗ ⊗ Jπ(y∗

0 − v∗)
)
(T − Sα)

∣∣
+ ∣∣(u∗∗ ⊗ Jπv∗)(Sα − T )

∣∣
<

2

n
+ 2

n
+ 1

n
= 5

n
.

It follows that φ(Sαn
) −−−→

n→∞ (Pφ)(T ) for each φ ∈ C ′; thus the function

C � φ �→ (Pφ)(T ) χC ′(φ) ∈ K is measurable.
Letting, again, n ∈ N be fixed and α � αn, one has∣∣∣∣
∫

C ′
(Pφ)(T ) dμ(φ) − f (Sα)

∣∣∣∣ ≤
∫

C ′
|(Pφ)(T ) − φ(Sα)| dμ(φ)

=
∫

Ĉkn

|(Pφ)(T ) − φ(Sα)| dμ(φ) +
∫

C̃kn

|(Pφ)(T ) − φ(Sα)| dμ(φ)

<
5

n
+ 2

n
= 7

n
,

and it follows that

(Pf )(T ) = lim
α

(Pf )(Sα) = lim
α

f (Sα) =
∫

C ′
(Pφ)(T ) dμ(φ).

Proof of Theorem 1.2. Let π be the ideal projection for Y in Z, and let
P be an ideal projection for K (X, Y ) in K (X, Z).

For the strictness of P , it suffices to prove (4.1). Since Y has property U

in Y ∗∗, by [18, Theorem 15] (or see [6, p. 126]), Y ∗ has the Radon-Nikodým
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property. An argument from [8, proof of Proposition 4.1, (b) ⇒ (c)] shows that
BY ∗ = co‖·‖(w∗- str.exp BY ∗) (i.e., BY ∗ is the norm closed convex hull of its
weak∗ strongly exposed points). A standard argument (see, e.g., [10, proof of
Theorem 3.4]) now yields (4.1). Indeed, let x∗∗ ∈ BX∗∗ and z∗ ∈ BZ∗ . Putting
y∗ = z∗|Y , it suffices to show that

JP (x∗∗ ⊗ y∗) = x∗∗ ⊗ Jπy∗, (4.2)

because in this case one would have

P(x∗∗ ⊗ z∗) = JP

(
(x∗∗ ⊗ z∗)|K (X,Y )

) = JP (x∗∗ ⊗ y∗) = x∗∗ ⊗ Jπy∗

= x∗∗ ⊗ πz∗.

Whenever v∗ ∈ w∗- str.exp BY ∗ , the functional x∗∗ ⊗ v∗ ∈ K (X, Y )∗ has a
unique norm-preserving extension to K (X, Z) (this follows from Theorem 1.1
and the sentence following it), thus this norm-preserving extension must be
x∗∗ ⊗ Jπv∗, i.e. JP (x∗∗ ⊗ v∗) = x∗∗ ⊗ Jπv∗. By linearity, the latter remains
true for v∗ ∈ co(w∗- str.exp BY ∗), and, since y∗ ∈ co‖·‖(w∗- str.exp BY ∗), by
continuity, also (4.2) holds.

Let f ∈ SK (X,Z)∗ be such that ‖Pf ‖ = ‖f ‖ = 1. For proving that K (X, Y )

has property U in K (X, Z), it suffices to show that Pf = f . As explained in
the beginning of the section, there is a regular Borel (with respect to the relative
weak∗ topology) probability measure on C := BX∗∗ ⊗ BZ∗ ⊂ K (X, Z)∗
representing f , i.e., f (T ) = ∫

C
φ(T ) dμ(φ) for all T ∈ K (X, Z). Now we

can apply Theorem 4.1. Letting the set C ′ be as in Theorem 4.1, one has
μ(C \ C ′) = 0, because

1 = ‖Pf ‖ = ‖f |K (X,Y )‖ = sup
S∈BK (X,Y )

|f (S)| = sup
S∈BK (X,Y )

∣∣∣∣
∫

C

φ(S) dμ(φ)

∣∣∣∣
≤ sup

S∈BK (X,Y )

∫
C

|φ(S)| dμ(φ) = sup
S∈BK (X,Y )

∫
C ′

|φ(S)| dμ(φ) ≤ μ(C ′).

Put C1 := {φ ∈ C ′ : ‖Pφ‖ = 1}. Then μ(C ′ \ C1) = 0 (the function
C � φ �→ ‖Pφ‖ is measurable since it is lower semicontinuous), because
otherwise one would have

∫
C ′\C1

‖Pφ‖ dμ(φ) < μ(C ′ \ C1) and thus

‖Pf ‖ ≤ sup
S∈BK (X,Y )

∫
C ′

∣∣φ(S)
∣∣ dμ(φ)

≤
∫

C1

‖Pφ‖ dμ(φ) +
∫

C ′\C1

‖Pφ‖ dμ(φ)

< μ(C1) + μ(C ′ \ C1) = 1.
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For every φ ∈ C1, one has Pφ = φ. Indeed, let φ = x∗∗ ⊗ z∗ ∈ C1, where
x∗∗ ∈ BX∗∗ , z∗ ∈ BZ∗ . One has

1 = ‖Pφ‖ ≤ ‖φ‖ = ‖x∗∗‖ ‖z∗‖ ≤ 1

and, by (4.1),

1 = ‖Pφ‖ = ‖x∗∗ ⊗ πz∗‖ = ‖x∗∗‖ ‖πz∗‖,
thus ‖πz∗‖ = ‖z∗‖ = 1. Since Y has property U in Y ∗∗ and Y is a strict ideal
in Z, also Y has property U in Z, and therefore πz∗ = z∗. It follows that
Pφ = φ.

Now, by Theorem 4.1, for any T ∈ K (X, Z),

(Pf )(T ) =
∫

C ′
(Pφ)(T ) dμ(φ) =

∫
C1

(Pφ)(T ) dμ(φ)

=
∫

C1

φ(T ) dμ(φ) =
∫

C

φ(T ) dμ(φ) = f (T ).
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