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THE COMPLEX MOMENT PROBLEM: DETERMINACY
AND EXTENDIBILITY

DARIUSZ CICHOŃ, JAN STOCHEL and FRANCISZEK HUGON SZAFRANIEC

Abstract
Complex moment sequences are exactly those which admit positive definite extensions on the
integer lattice points of the upper diagonal half-plane. Here we prove that the aforesaid extension
is unique provided the complex moment sequence is determinate and its only representing measure
has no atom at 0. The question of converting the relation is posed as an open problem. A partial
solution to this problem is established when at least one of representing measures is supported in
a plane algebraic curve whose intersection with every straight line passing through 0 is at most
one point set. Further study concerns representing measures whose supports are Zariski dense in
C as well as complex moment sequences which are constant on a family of parallel “Diophantine
lines”. All this is supported by a bunch of illustrative examples.

There are two ways of approaching the complex moment problem (see [3];
for a recent survey of the complex moment problem see also [21]). One fol-
lowing an idea due to Marcel Riesz (for continuation see [13], [14], [15]) and
the other via positive definite extendibility (see [28], [9]). As is well-known,
positive definiteness is not sufficient for solving the complex moment problem
(see [20], [3]). The present paper carries on with the study of [28] which char-
acterizes solving the complex moment problem by extending a given sequence
defined on the integer lattice points of the first quarter to a positive definite
sequence on the lattice points of the upper diagonal half-plane. One may ex-
pect a relationship between the uniqueness of extending sequence on one hand
and the determinacy of the resulting moment sequence. This question leads to
quite a number of interesting thoughts which are exposed in this paper. Our
results, which are diverse in nature, are supported by elucidative examples and
lead eventually to an open problem discussed on the final pages of the paper.

1. Introduction

In this paper �(Z) stands for the σ -algebra of all Borel subsets of a topological
Hausdorff space Z. All measures considered in this paper are positive. We
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always tacitly assume that integrands are absolutely integrable wherever they
appear. With the notation

�
def= {(m, n):m, n are integers such that m � 0, n � 0},

�+
def= {(m, n):m, n are integers such that m+ n � 0},

we say that a sequence γ = {γm,n}(m,n)∈� ⊂ C is a complex moment sequence
if there exists a Borel measure μ on C such that

γm,n =
∫
C
zmz̄n dμ(z), (m, n) ∈ �; (1)

recall that R and C stand for the fields of all real and complex numbers,
respectively. We call the measureμ a representing measure for the sequence γ .
Ifμ in (1) is unique, then the sequence γ is said to be determinate (this is one of
the three determinacy notions considered in [12]). As is easily seen, a necessary
condition for γ to be a complex moment sequence is that γ is positive definite
on �, that is ∑

(m,n),(p,q)∈�

λm,nλ̄p,qγm+q,n+p � 0

for every sequence {λm,n}(m,n)∈� ⊂ C vanishing off a finite set. The above
positive definiteness condition is in general not sufficient. However, it turns out
that complex moment sequences are exactly those which admit positive definite
extensions on �+ (see [28, Theorem 1]). More precisely, γ = {γm,n}(m,n)∈� ⊂
C is a complex moment sequence if and only if there exists a sequence Γ =
{Γm,n}(m,n)∈�+ ⊂ C which is positive definite on �+, that is

∑
(m,n),(p,q)∈�+

λm,nλ̄p,qΓm+q,n+p � 0

for every sequence {λm,n}(m,n)∈�+ ⊂ C vanishing off a finite set, and which
extends γ , that is

Γm,n = γm,n, (m, n) ∈ �.

Using the notation

PDE(γ )
def= {Γ : Γ is a positive definite extension of γ on �+},

we can simply rewrite [28, Theorem 1] as follows.

Theorem 1. A sequence γ = {γm,n}(m,n)∈� ⊂ C is a complex moment
sequence if and only if PDE(γ ) �= ∅.
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The main question of this paper concerns a connection between the follow-
ing two statements:

(i) γ is a determinate complex moment sequence on �,

(ii) PDE(γ ) is a singleton.

According to Proposition 5, if γ has a representing measure μ such that
μ({0}) > 0, then PDE(γ ) is infinite. We will show that (i) implies (ii) provided
the representing measure of γ vanishes at {0} (see Theorem 6). The implica-
tion (ii) ⇒ (i) holds when γ has a representing measure supported in a real
algebraic set belonging to a distinguished class of plane algebraic curves (see
Theorem 22 and Corollary 23). It is an open problem whether (ii) implies (i)
in full generality (see Section 6).

We recall that in view of [28, Prop. 6] a sequence Γ = {Γm,n}(m,n)∈�+ ⊂ C is

positive definite if and only if there exist two Borel measuresμ onC∗ def= C\{0}
and ν on T (the unit circle centered at the origin) such that

Γm,n =
∫
C∗
zmz̄n dμ(z)+ δm+n,0

∫
T
zmz̄n dν(z), (m, n) ∈ �+, (2)

where δk,� = 1 if k = � and δk,� = 0 otherwise. If (2) holds, we say that
(μ, ν) is a representing pair for Γ . If such a pair is unique, then Γ is called
determinate. Depending on circumstances, we will identify a Borel measure
μ on C∗ with a Borel one on C vanishing on {0}.

In this paper the notation γ = {γm,n}(m,n)∈� will be used interchangeably
with γ : � → C; the same applies to Γ and �+.

2. Determinacy from extendibility

In this section we investigate the interplay between the determinacy of a com-
plex moment sequence γ and special properties of the set PDE(γ ) including
those related to its cardinality.

As shown in Lemma 2 a representing measure for a complex moment se-
quence can be retrieved from a representing pair for its positive definite ex-
tension. Below, δa stands for the Dirac measure at a understood as the Borel
measure on C of total mass 1 at the point a ∈ C.

Lemma 2. Suppose γ is a complex moment sequence. Then the following
assertions hold:

(i) if (μ, ν) is a representing pair for some Γ ∈ PDE(γ ), then μ+ ν(T)δ0

is a representing measure for γ ,

(ii) if μ is a representing measure for γ and μ({0}) = 0, then (μ, 0) is a
representing pair for some Γ ∈ PDE(γ ).
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Proof. (i) Since for every (m, n) ∈ �, the second term in (2) coincides
with the integral of zmz̄n over Cwith respect to the measure ν(T)δ0, we get (i).

(ii) Since, by our assumption, the function C∗ � z → zmz̄n ∈ C is
absolutely integrable for every (m, n) ∈ �+, we can define the sequence
Γ = {Γm,n}(m,n)∈�+ by (2) with ν = 0. Then Γ ∈ PDE(γ ) and (μ, 0) is a
representing pair for Γ .

From now on ϕ will denote the continuous function

ϕ:T → T, ϕ(z) = z2, z ∈ T. (3)

If γ is a complex moment sequence, then an extension Γ ∈ PDE(γ ) is called
quasi-determinate if for any two representing pairs (μ1, ν1) and (μ2, ν2) for
Γ we have

μ1 = μ2 and ν1 ◦ ϕ−1 = ν2 ◦ ϕ−1,

where νj ◦ ϕ−1 is the transport of the measure νj via ϕ given by

(νj ◦ ϕ−1)(σ )
def= νj (ϕ

−1(σ )), σ ∈ �(T), j = 1, 2. (4)

This notion appears to be very natural as the following result shows.
Now we are ready to clarify the role played by determinacy in the question of

uniqueness of positive definite extensions. This is in a sense the basic statement.

Theorem 3. Let γ : � → C be a complex moment sequence. Then the
following conditions are equivalent:

(i) γ is determinate;

(ii) if (μ1, ν1) and (μ2, ν2) are representing pairs for Γ1,Γ2 ∈ PDE(γ ),
respectively, then μ1 = μ2;

(iii) if (μ1, ν1) and (μ2, ν2) are representing pairs for Γ1,Γ2 ∈ PDE(γ ),
respectively, then μ1 = μ2 and ν1(T) = ν2(T).

Moreover, if (i) holds, then every Γ ∈ PDE(γ ) is quasi-determinate.

Proof. (i) ⇒ (iii). The determinacy of γ and Lemma 2 yield

μ1 + ν1(T)δ0 = μ2 + ν2(T)δ0.

By the definition of a representing pair for an element of PDE(γ ), both measures
μ1 and μ2 have no atom at 0. Hence, it follows that μ1 = μ2 and ν1(T) =
ν2(T).

(iii) ⇒ (ii). Obvious.
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(ii) ⇒ (i). Suppose that λ1 and λ2 are representing measures for γ . Note
that the measures λ1 and λ2 have the following unique decompositions

λ1 = μ1 + t1δ0 and λ2 = μ2 + t2δ0, (5)

where μ1 and μ2 are Borel measures on C∗ and t1, t2 are nonnegative real
numbers. Then one can verify that (μ1, t1δ1) and (μ2, t2δ1) are representing
pairs for some Γ1,Γ2 ∈ PDE(γ ), respectively. It follows from (ii) thatμ1 = μ2,
and thus

tj
(5)= λj (C)− μj(C

∗) = γ0,0 − μ1(C
∗), j = 1, 2,

which, by (5) again, implies that λ1 = λ2.
To prove the “moreover” part, assume that (i) holds. Let (μ1, ν1) and

(μ2, ν2) be representing pairs for the same positive definite extension of γ

on �+. Then, by (ii), μ1 = μ2, and consequently, by (2) with m+ n = 0, we
have ∫

T
z2m dν1(z) =

∫
T
z2m dν2(z), m = 0,±1,±2, . . . .

Applying the measure transport theorem yields∫
T
zm dν1 ◦ ϕ−1(z) =

∫
T
zm dν2 ◦ ϕ−1(z), m = 0,±1,±2, . . . .

Hence, by the determinacy of Herglotz moment problem (see Section 3), ν1 ◦
ϕ−1 = ν2 ◦ ϕ−1, which completes the proof.

Corollary 4. Let γ : � → C be a determinate complex moment sequence.
Then for every nonzero finite Borel measure ν onT, there exists a unique triplet
(μ, s,Γ ) such thatμ is a Borel measure onC∗, s is a nonnegative real number,
Γ ∈ PDE(γ ) and (μ, sν) is a representing pair for Γ .

Proof. Let 
 be a representing measure for γ . Set s = 
({0})/ν(T) and
μ = 
− 
({0})δ0. It is easily seen that (μ, sν) is a representing pair for some
Γ ∈ PDE(γ ), cf. (2). The uniqueness is a direct consequence of Theorem 3.

One may illustrate Corollary 4 by considering particular choices, extreme
in a sense, of the measure ν: ν being the Lebesgue measure on T or with ν
being the Dirac measure δ1 on T at 1.

Proposition 5. Let γ : � → C be a complex moment sequence which has
a representing measure μ such that

μ({0}) > 0. (6)

Then the cardinality of PDE(γ ) is equal to ���.
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Proof. Set α = μ({0}). It is a simple matter to verify that the sequences Γ1

and Γ2 on �+ defined via (2) by the pairs (μ− αδ0, αδ1) and (μ− αδ0, αδi),
respectively, are both in PDE(γ ); here i = √−1. Then any convex combination
of Γ1 and Γ2 is in PDE(γ ). Using (2) with m + n = 0, where m is odd, we
deduce that Γ1 �= Γ2. As a consequence, the cardinality of PDE(γ ) is at least
���. On the other hand, because PDE(γ ) ⊂ C�+ and the cardinality of C�+ is ���,
we conclude that the cardinality of PDE(γ ) is equal to ���.

It is clear that in the case of a determinate complex moment sequence the
zero may or may not be an atom of its representing measure and both instances
can occur (e.g., the sequences (1, 0, 0, . . .) and (1, 1, 1, . . .) are complex mo-
ment sequences with the representing measures δ0 and δ1, respectively). One
can ask whether the same is true for indeterminate complex moment sequences.
This question is answered in the affirmative in Section 3 (see Proposition 9
and the subsequent parts).

If γ : � → C is determinate complex moment sequence and μ is its repres-
enting measure such that μ({0}) = 0, then PDE(γ ) is a single point set, as the
following Theorem shows.

Theorem 6. Let γ be a complex sequence defined on �. Then the following
statements are equivalent:

(i) γ is a determinate complex moment sequence with a representing meas-
ure μ such that μ({0}) = 0;

(ii) PDE(γ ) = {Γ } and Γ has the property that μ1 = μ2 whenever (μ1, 0)
and (μ2, 0) are representing pairs for Γ ;

(iii) PDE(γ ) = {Γ } and Γ is determinate.

Moreover, if Γ is as in (iii), then (μ, 0) is its representing pair, where μ is as
in (i).

Proof. (i) ⇒ (iii) Note that PDE(γ ) �= ∅ because, by Lemma 2, (μ, 0) is
a representing pair for some Γ ∈ PDE(γ ). Let (μ1, ν1) and (μ2, ν2) be rep-
resenting pairs for some extensions Γ1,Γ2 ∈ PDE(γ ), respectively. It follows
from Theorem 3 that μ1 = μ2. In turn, Lemma 2 yields

μ = μ1 + ν1(T)δ0 = μ2 + ν2(T)δ0,

which by our assumptionμ({0}) = 0 gives ν1(T) = ν2(T) = 0. Thus the pairs
(μ1, ν1) and (μ2, ν2) are equal to (μ, 0). As a consequence, PDE(γ ) = {Γ },
the extension Γ is determinate and (μ, 0) is a representing pair for Γ .

(iii) ⇒ (ii) Obvious.
(ii) ⇒ (i) It follows from Theorem 1 that γ is a complex moment sequence.

According to Proposition 5, ifμ is a representing measure for γ , thenμ({0}) =
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0, and consequently, by Lemma 2, (μ, 0) is a representing pair for Γ . Hence,
by the property of Γ assumed in (ii), the complex moment sequence γ is
determinate. This completes the proof.

3. Special classes of complex moment sequences

In the previous section the question of the cardinality of PDE(γ ) was suc-
cessfully answered except for the case of an indeterminate complex moment
sequence γ which has no representing measure with atom at 0. The question
arises as to whether such a γ may exist. It is well-known that every indeterm-
inate Hamburger moment sequence has a representing measure with an atom
at 0 (see [22, Theorem 2.13]). It turns out that in the case of complex moment
sequences this does not have to be the case (see Example 12).

We begin by stating a well-known fact on supports of representing meas-
ures of a complex moment sequence having at least one representing measure
supported in a real algebraic set. In what follows, suppμ stands for the closed
support of a finite Borel measure on a metric space (see [17, Theorem II.2.1]).
In this paper, by “support” we always mean “closed support”. Recall that a set
A ⊂ C is called a real algebraic set if A = Zp for some p ∈ C[z, z̄], where

Zp
def= {z ∈ C:p(z, z̄) = 0}

andC[z, z̄] stands as usual for the ring of all polynomials in two indeterminates
with complex coefficients.

Proposition 7. If a complex moment sequence γ has a representing meas-
ure supported in a real algebraic subsetA of C, then all the other representing
measures for γ are also supported in A.

Proof. IfA = Zp, wherep ∈ C[z, z̄],μ1 andμ2 are representing measures
for γ and μ1 is supported in A, then

∫
C

|p(z, z̄)|2 dμ2(z) =
∫
C

|p(z, z̄)|2 dμ1(z) =
∫
A

|p(z, z̄)|2 dμ1(z) = 0,

which implies that μ2(C \ A) = 0. This completes the proof.

Necessary and sufficient conditions for a complex moment sequence to have
a representing measure supported in a given plane algebraic curve were given
in [25], [27]. Below we discuss the interplay between a linear Diophantine
relation imposed on indices of a complex moment sequence and supports of
its representing measures. Given integers k and � such that k � 0, a sequence
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γ = {γm,n}(m,n)∈� ⊂ C is called (k, �)-flat if the following condition holds

γm,n = γm′,n′ whenever (m, n), (m′, n′) ∈ �

and km+ �n = km′ + �n′. (7)

Intuitively speaking, the (k, �)-flatness of γ means that the sequence γ is
constant on each “Diophantine line” {(m, n) ∈ Z2: km + �n = c} with c ∈ Z
(as usual Z stands for the set of all integers).

Theorem 8. If γ = {γm,n}(m,n)∈� is a (k, �)-flat complex moment sequence
for some (k, �) and μ is its representing measure, then one of the following
conditions holds:

(i) suppμ ⊂ {0}∪Gr for some integer r � 1, whereGr = {z ∈ C: zr = 1};
(ii) suppμ ⊂ T;

(iii) suppμ ⊂ R.

Moreover, if k �= |�| (resp., k = −�, k = �), then the condition (i) (resp., (ii),
(iii)) holds. If additionally k �= |�| and � � 0, then 0 /∈ suppμ.

Conversely, if γ is a complex moment sequence with a representing measure
μ satisfying one of the conditions (i)–(iii), then γ is (k, �)-flat, where

(k, �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1), if (i) holds and r = 1,

(1, r − 1), if (i) holds and r > 1,

(1,−1), if (ii) holds,

(1, 1), if (iii) holds.

(8)

Proof. Assume that γ is a (k, �)-flat complex moment sequence for some
(k, �) and μ is its representing measure. In the case of k = � = 0 the measure
γ0,0δ1 is a (necessarily unique) representing measure for γ . Hence, its support
satisfies the conditions (i)–(iii).

Suppose � > 0. Note that the pairs (m, n) = (�, �) and (m′, n′) = (0, k+�)
satisfy (7). The same is true for the pairs (k + �, 0) and (k, k). Hence, by the
(k, �)-flatness of γ , we have

∫
C

|z� − z̄k|2 dμ(z) = γ�,� − γk+�,0 − γ0,k+� + γk,k = 0,

and so
suppμ ⊂ Zp with p(z, z̄) = z� − z̄k. (9)

If k �= �, then the equality z� = z̄k implies that |z| = 1 for z �= 0 and,
consequently, zk+� = 1. This shows that Zp \ {0} ⊂ Gk+�. Therefore, μ
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satisfies (i). In turn, if k = �, then γ is (1, 1)-flat. Applying (9) to k = � = 1,
we see that suppμ ⊂ Zp = R, which means that μ obeys (iii).

Now consider the case � < 0. Note that the pairs (m, n) = (k − �, k − �)

and (m′, n′) = (k,−�) satisfy (7). The same is true for the pairs (−�, k) and
(0, 0). Then the (k, �)-flatness of γ implies that∫

C
|z−�z̄k − 1|2 dμ(z) = γk−�,k−� − γ−�,k − γk,−� + γ0,0 = 0,

which means that suppμ ⊂ Zp with p(z, z̄) = z−�z̄k − 1. As a consequence,
Zp ⊂ T, which shows thatμ satisfies (ii) (observe that if z ∈ Zp and k+� �= 0,
then z ∈ G|k+�|).

In the remaining case of � = 0, which is analogous to that of k = 0, μ
satisfies the condition (ii) (in fact, suppμ ⊂ Gk).

To prove the reverse implication, assume that γ is a complex moment se-
quence with a representing measure μ satisfying one the conditions (i)–(iii).
First, we consider the case (i), that is suppμ ⊂ {0} ∪ Gr for some integer
r � 1. Then

γm,n = c δm+n,0 +
r−1∑
j=0

aje
2πj (m−n)i/r , (m, n) ∈ �,

where c = μ({0}) and aj = μ({e2πj i/r}) for j = 0, . . . , r − 1. If r = 1, then
γm,n = c δm+n,0 + a0 for (m, n) ∈ �, which means that γ is (1, 1)-flat. This
covers the first choice in (8). It is a matter of routine to verify that if r > 1,
then γ is (1, r − 1)-flat. This covers the second choice in (8). It is easily seen
that if (ii) holds, then

γm,n =
{
γm−n,0, if m � n,

γ0,n−m, otherwise,
(m, n) ∈ �,

which implies that γm,n depends on m − n. This covers the third case in (8).
Finally, if (iii) holds, then γm,n = γm+n,0 for all (m, n) ∈ �, which covers the
fourth case in (8). This completes the proof.

We now proceed to complex moment sequences induced by Hamburger
moment sequences. We say that a sequence s = {sn}∞n=0 ⊂ R is a Hamburger
moment sequence if there exists a Borel measure τ on R such that

sn =
∫
R
xn dτ(x), n � 0; (10)

such a measure is called a representing measure for s. If τ in (10) is unique,
then s is called a determinate Hamburger moment sequence.
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Proposition 9. Let s = {sn}∞n=0 be a sequence of real numbers. Define
γ = {γm,n}(m,n)∈� by

γm,n = sm+n, (m, n) ∈ �. (11)

Then for γ given by (11) the following assertions hold:

(i) s is a Hamburger moment sequence if and only if γ is a complex moment
sequence, or equivalently, if and only if γ is a complex moment sequence
whose every representing measure is supported in R;

(ii) s is a determinate Hamburger moment sequence if and only if γ is a
determinate complex moment sequence;

(iii) if s is an indeterminate Hamburger moment sequence and x0 ∈ R, then
γ is an indeterminate complex moment sequence which has infinitely
many representing measures μ such that μ({x0}) > 0; moreover, the
cardinality of PDE(γ ) is equal to ���.

Proof. (i) Suppose that s is a Hamburger moment sequence with a rep-
resenting measure τ . It is easily seen that the Borel measure μ on C defined
by

μ(σ) = τ(σ ∩ R), σ ∈ �(C), (12)

is a representing measure for γ supported in R. Suppose now that γ is a
complex moment sequence with a representing measure 
. Since γ is (1, 1)-
flat, Theorem 8 implies that 
 is supported in R. As a consequence, s is a
Hamburger moment sequence with the representing measure τ defined by

τ(σ ) = 
(σ), σ ∈ �(R). (13)

The above argument concerning the support of 
 also establishes the second
equivalence in (i).

(ii) This is a direct consequence of (12) and (13) and the fact that each
representing measure for γ is supported in R as shown in (i).

(iii) Suppose s is an indeterminate Hamburger moment sequence. Then,
by [22, Theorem 2.13] (see also [23, Theorem 5]), there exist two representing
measures τ0 and τ1 of s such that τ0({x0}) = 0 and τ1({x0}) > 0. Taking

convex combinations τα
def= ατ1 +(1−α)τ0 for α ∈ (0, 1), we get representing

measures for s such that τα({x0}) > 0 for all α ∈ (0, 1]. It is easily seen that the
corresponding representing measures μα of γ given by (12) have the property
that μα({x0}) > 0 for α ∈ (0, 1] and μα �= μβ for all α, β ∈ (0, 1] such that
α �= β. The “moreover” part follows from Proposition 5.

Regarding Proposition 9, one should provide an example of an indetermin-
ate Hamburger moment sequence. One of the possible choices is the famous
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example {e(n+1)2/4}∞n=0 due to Stieltjes (see [24]). Below, we present a class of
indeterminate Hamburger moment sequences introduced recently in [8].

Example 10. Fix a nonzero complex function ω on R of class C ∞ whose
support is compact and define the sequence {aωn }∞n=0 by

aωn = (−i)n
∫
R

dnω

dxn
(x) ω(x) dx, n = 0, 1, 2, . . .

This is an indeterminate Hamburger moment sequence with striking properties.
Namely, one can find continuum explicitly described representing measures
for {aωn }∞n=0 such that

• the support of each of them is in arithmetic progression,

• the supports of all these measures together partition R,

• all of them are of infinite order,

where the latter means that for any such measure τ , the codimension of polyno-
mials inL2(τ ) is infinite. All these three conditions hold under the assumption
that the Fourier transform of ω does not vanish on R (such ω always exists!).
Hence, for any x0 ∈ R, there exists a representing measure τ of {aωn }∞n=0 in the
above mentioned family such that τ({x0}) > 0.

Instead of Hamburger moment sequences we may consider Herglotz mo-
ment sequences and the complex moment sequences induced by them. We say
that a sequence s = {sn}∞n=−∞ of complex numbers is a Herglotz (trigonomet-
ric) moment sequence if there exists a Borel measure 
 on T such that

sn =
∫
T
zn d
(z), n = 0,±1,±2, . . . ; (14)

such a measure is called a representing measure for s. Every Herglotz moment
sequence is determinate, that is the measure
 in (14) is unique (see [1, Theorem
5.1.2]; see also [4, Theorem 1.7.2]). It is worth mentioning that a Herglotz
moment sequence s has the following Hermitian symmetry property:

sn = s−n, n = 0,±1,±2, . . . .

This means that such s is uniquely determined by its entries sn with n =
0, 1, 2, . . ..

Proposition 11. Let s = {sn}∞n=−∞ be a sequence of complex numbers.
Define γ = {γm,n}(m,n)∈� by

γm,n = sm−n, (m, n) ∈ �.
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Then s is a Herglotz moment sequence if and only if γ is a complex moment se-
quence. Moreover, if s is a Herglotz moment sequence, then γ is a determinate
complex moment sequence whose unique representing measure is supported
in T, PDE(γ ) = {Γ } and Γ is determinate.

Proof. If s is a Herglotz moment sequence with a representing measure 
,
then γ is a complex moment sequence with the representing measure μ given
by

μ(σ) = 
(σ ∩ T), σ ∈ �(C).

Suppose that γ is a complex moment sequence with a representing measure ν.
Since γ is (1,−1)-flat, Theorem 8 ensures us that the support of ν is contained
in T. Thus the Borel measure 
 on T given by


(σ) = ν(σ ), σ ∈ �(T),

is a representing measure for s. The “moreover” part follows from the determ-
inacy of Herglotz moment sequences, the fact that ν({0}) = 0 and Theorem 6.

Regarding Proposition 5, we show that it may happen that a complex mo-
ment sequence is indeterminate and that none of its representing measures
satisfies (6).

Example 12. Consider an indeterminate Hamburger moment sequence s =
{sn}∞n=0 (see e.g., Example 10). Let τ be a representing measure for s. Define
the Borel measure μ on C by

μ(σ) = τ((σ − i) ∩ R), σ ∈ �(C). (15)

Define the complex moment sequence γ = {γm,n}(m,n)∈� by

γm,n =
∫
C
zmz̄n dμ(z), m, n � 0.

It follows from (15) and the indeterminacy of s that γ is indeterminate. By (15)
again, the measure μ is supported in R+ i. Since R+ i = Zp with p(z, z̄) =
z − z̄ − 2i, we infer from Proposition 7 that each representing measure for γ

is supported in R+ i, and consequently none of them satisfies (6).

4. Representing measures whose support is Zariski dense

Our goal in this section is to establish a wide class of complex moment se-
quences, each of which has the following properties:

1◦ it is indeterminate;

2◦ none of its representing measures has an atom at 0;



THE COMPLEX MOMENT PROBLEM: DETERMINACY AND EXTENDIBILITY 275

3◦ all its representing measures have supports dense in C with respect to
the Zariski topology.

Let us recall that the Zariski topology on C consists of all the sets of the form
C\Zp, wherep ∈ C[z, z̄], and it satisfies the T1 separation axiom. We refer the
reader to [2], [5] for more information on the Zariski topology. The property 3◦
means that the support of any representing measure for the complex moment
sequence under consideration is not contained in a proper real algebraic set
Zp, as opposed to Example 12.

For a technical reason, it is much simpler to state and prove our result
in terms of two-dimensional Hamburger moment problem; afterwards we will
turn back to complex moment sequences. We say that a = {am,n}∞m,n=0 ⊂ R is a
two-dimensional Hamburger moment sequence if there exists a Borel measure

 on R2, called a representing measure for a, such that

am,n =
∫
R2
xmyn d
(x, y), m, n � 0.

If such 
 is unique, a is called determinate.
We begin with recalling a known fact which is indispensable in this section.

For the reader’s convenience, we include its simple proof (see [18] for more
on this topic).

Lemma 13. If a = {am,n}∞m,n=0 is a two-dimensional Hamburger moment
sequence and 
 its representing measure, then {am,0}∞m=0 (resp., {a0,n}∞n=0) is
a Hamburger moment sequence with the representing measure 
 ◦π−1

1 (resp.,

 ◦ π−1

2 ), and

supp 
 ◦ π−1
1 = π1(supp 
) (resp., supp 
 ◦ π−1

2 = π2(supp 
) ), (16)

where πj :R2 → R, j = 1, 2, are mappings given by

π1(x, y) = x and π2(x, y) = y for (x, y) ∈ R2. (17)

Proof. The equalities in (16) follow from [26, Lemma 3.2]. Using the
measure transport theorem, we get

am,0 =
∫
R2
xm d
(x, y) =

∫
R
xm d
 ◦ π−1

1 (x), m � 0.

A similar argument applies to {a0,n}∞n=0.

The following shows that in some cases supports of representing measures
can be localized in non-algebraic subsets of C (cf. Proposition 7; see also
Proposition 25).
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Proposition 14. Let a = {am,n}∞m,n=0 be a two-dimensional Hamburger
moment sequence and 
 its representing measure. Then the following asser-
tions hold:

(i) if the set π1(supp 
) (resp., π2(supp 
)) is bounded, then {am,0}∞m=0
(resp., {a0,n}∞n=0) is a determinate Hamburger moment sequence;

(ii) if {am,0}∞m=0 (resp., {a0,n}∞n=0) is a determinate Hamburger moment se-
quence, then for any representing measure 
̃ for a,

supp 
̃ ⊂ π1(supp 
)× R (resp., supp 
̃ ⊂ R× π2(supp 
) ), (18)

π1(supp 
̃) = π1(supp 
) (resp., π2(supp 
̃) = π2(supp 
) ). (19)

Proof. By symmetry, it suffices to consider the case of {am,0}∞m=0.
(i) If π1(supp 
) is bounded, then by Lemma 13 and (16) the Hamburger

moment sequence {am,0}∞m=0 has a compactly supported representing measure
and as such is determinate (see [12, p. 50]).

(ii) Suppose {am,0}∞m=0 is a determinate Hamburger moment sequence and

̃ is a representing measure for a. By Lemma 13, 
̃ ◦ π−1

1 = 
 ◦ π−1
1 . This

together with (16) implies the first equality in (19). Set S = supp 
 ◦ π−1
1 .

Then the equality 
̃ ◦ π−1
1 = 
 ◦ π−1

1 yields

0 = 
̃ ◦ π−1
1 (R \ S) = 
̃(R2 \ (S × R)).

Since R2 \ (S × R) is an open subset of R2, we see that supp 
̃ ⊂ S × R.
Combined with (16), this gives the first inclusion in (18).

We now turn to the main result of this section.

Theorem 15. Let s = {sm}∞m=0 be a determinate Hamburger moment se-
quence such that its unique representing measure μ has infinite support and
μ({0}) = 0, and let t = {tn}∞n=0 be an indeterminate Hamburger moment
sequence. Then the sequence s ⊗ t = {(s ⊗ t)m,n}∞m,n=0 defined by

(s ⊗ t)m,n = smtn, m, n � 0,

is a two-dimensional Hamburger moment sequence satisfying the conditions
1◦, 2◦ and 3◦ of page 274 with R2 in place of C.

Proof. With no loss of generality, we can assume that t0 = 1. The inde-
terminacy of t implies that

the support of any representing measure for t is infinite. (20)
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It follows from the Fubini theorem that the mapping ν �→ μ⊗ ν acts between
the set of all representing measures for t and the set of all representing measures
for s⊗t , whereμ⊗ν stands for the product measure ofμ and ν. Sinceμ(R) �=
0, the mapping is easily seen to be injective. Hence, by the indeterminacy of
t , the sequence s ⊗ t is indeterminate. This shows 1◦.

For 2◦, take any representing measure 
 for a
def= s ⊗ t . Since am,0 = sm

for all integers m � 0 and s is determinate, we infer from Lemma 13 that
μ = 
 ◦ π−1

1 , which implies that

0 = μ({0}) = 
({0} × R).

This yields 2◦.
It remains to prove 3◦. Take any representing measure ν for t . It is a well-

known and easy to prove fact that

suppμ⊗ ν = suppμ× supp ν. (21)

Suppose that a polynomial p ∈ C[x, y] vanishes on suppμ ⊗ ν. We will
show that p = 0. Indeed, if x ∈ suppμ, then by (20) and (21), the polynomial
y �→ p(x, y) vanishes on an infinite subset ofR, and consequentlyp(x, y) = 0
for all x ∈ suppμ and y ∈ R. Hence, for every y ∈ R, the polynomial
x �→ p(x, y) vanishes on an infinite subset of R, and thus p(x, y) = 0 for
all x ∈ R. As a consequence, p = 0. Suppose, contrary to 3◦, that there
exists a representing measure 
 for s ⊗ t such the Zariski closure of supp 

is a proper subset of R2. This means that there exists a nonzero polynomial
q ∈ C[x, y] such that the measure 
 is supported in the real algebraic set
S = {(x, y) ∈ R2: q(x, y) = 0}. Since Proposition 7 remains valid for the
two-dimensional Hamburger moment problem, we infer that any representing
measure for s ⊗ t must be supported in S. In particular, this should hold for
μ⊗ ν, which is a contradiction. This yields 3◦ and completes the proof.

Now, we turn back to the complex case. Recall that there is a one-to-one
correspondence between the set of all two-dimensional Hamburger moment
sequences a = {am,n}∞m,n=0 and the set of all complex moment sequences
γ = {γm,n}∞m,n=0 given by

γm,n =
∫
R2
(x+iy)m(x−iy)n d
(x, y) =

∑
k,��0

α
m,n
k,� ak,�, (m, n) ∈ �, (22)

where 
 is a representing measure for a and {αm,nk,� }∞k,�=0, (m, n) ∈ �, are sys-
tems of complex numbers (each with finitely many nonzero entries) uniquely
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determined by the equations

(x + iy)m(x − iy)n =
∑
k,��0

α
m,n
k,� x

ky�, x, y ∈ R.

Moreover, the sets of all representing measures for a and the corresponding
γ coincide. We refer the reader to [10, Appendix A] for more details. As a
consequence, if a = s ⊗ t , where s and t are as in Theorem 15, then the
corresponding γ satisfies the conditions 1◦, 2◦ and 3◦ on page 274.

5. Representing measures on real algebraic sets

In contrast to the previous section, we will now focus on the complex moment
sequences having representing measures on real algebraic sets that are different
from C. The most satisfactory result establishes a one-to-one correspondence
between representing measures for a complex moment sequence and its posit-
ive definite extensions on �+ in the case when the mapping C∗ � z �→ z

z̄
∈ T

restricted to the algebraic set in question is injective (see Theorem 22(v)). In
Example 24 we gather some classes of real algebraic sets meeting this re-
quirement. After examining the Witch of Agnesi (one of these examples) we
conclude that there is no complex moment counterpart of the partitioning prop-
erty of the family of N-extremal measures as in one-dimensional Hamburger
moment problem (see Proposition 26 and the discussion preceding it).

It is a well-known fact that a mapping f :X → Y between nonempty sets
X and Y is injective if and only if the mapping 2Y � σ �−→ f −1(σ ) ∈ 2X is
surjective. Following this, we say that a Borel mapping f :X → Y between
topological Hausdorff spaces X and Y (i.e., a mapping such that f −1(σ ) ∈
�(X) for all σ ∈ �(Y )) is Borel injective if the related inverse image mapping
�(Y ) � σ �−→ f −1(σ ) ∈ �(X) is surjective. Below, we show that the notions
of injectivity and Borel injectivity coincide for continuous mappings f defined
on σ -compact topological Hausdorff spaces.

Proposition 16. Let f :X → Y be a mapping between topological Haus-
dorff spaces X and Y . Then the following assertions hold:

(i) if f is Borel injective, then f is injective;

(ii) if f is continuous and X is σ -compact, then f is Borel injective if and
only if it is injective.

Proof. (i) Suppose that, contrary to our claim, f (x1) = f (x2) for some
distinct points x1 and x2 of X. Then the singleton {x1} is closed and so there
exists σ ′ ∈ �(Y ) such that {x1} = f −1(σ ′). However, x2 ∈ f −1(σ ′), which is
a contradiction.
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(ii) Suppose f is continuous and X is σ -compact. Clearly, f is a Borel
mapping. In view of (i), it suffices to prove the “if” part. Assume that f is
injective. First, we show that

if F is a closed subset of X, then f (F ) ∈ �(Y ). (23)

Indeed, by σ -compactness of X, there exists a sequence {Kn}∞n=1 of compact
subsets of X such that X = ⋃∞

n=1Kn. Since each Kn ∩ F is compact and
consequently, by the continuity of f , each f (Kn ∩F) is compact, we see that

f (F ) = f

( ∞⋃
n=1

Kn ∩ F
)

=
∞⋃
n=1

f (Kn ∩ F) ∈ �(Y ),

which completes the proof of (23). Set

Af = {σ ∈ �(X): f (σ) ∈ �(Y )}.
It follows from (23) that X ∈ Af . Since f is injective and f (X) ∈ �(Y ), we
deduce thatX \ σ ∈ Af whenever σ ∈ Af . Clearly,

⋃∞
n=1 σn ∈ Af whenever

{σn}∞n=1 ⊂ Af . This means that Af is a σ -subalgebra of �(X), which, by (23),
contains all the open subsets of X. Hence, Af = �(X), that is f (σ) ∈ �(Y )
for every σ ∈ �(X). To prove the Borel injectivity of f , take σ ∈ �(X).

Since Af = �(X), we see that σ ′ def= f (σ) ∈ �(Y ). By the injectivity of f ,
we deduce that σ = f −1(σ ′), which completes the proof of Borel injectivity
of f .

Remark 17. Note that in general injective (or even bijective) continuous
mappings between topological Hausdorff spaces may not be Borel injective.
Indeed, the mapping f :X → Y , where X is the real line equipped with the
discrete topology and Y is the real line equipped with the Euclidean topology,
defined by f (x) = x for x ∈ X, is bijective and continuous, but not Borel
injective because �(Y ) � 2X (see [19, Remarks 2.21]).

In this section we will focus on restrictions of the continuous mapping

ψ :C∗ → T, ψ(z) = z

z̄
=

(
z

|z|
)2

, z ∈ C∗. (24)

For a given Borel measure μ on C and a nonempty Borel subset Z of C∗, we
denote byμ◦(ψ |Z)−1 the transport of the Borel measureμ|�(Z) viaψ |Z:Z →
T given by

(μ ◦ (ψ |Z)−1)(σ )
def= μ((ψ |Z)−1(σ )), σ ∈ �(T), (25)
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In the context of restrictions of ψ , Proposition 16 can be specified as follows.

Corollary 18. If Z is a σ -compact subset of C such that 0 /∈ Z, then the
mapping ψ |Z is Borel injective if and only if it is injective.

Proposition 16 enables us to formulate a geometric criterion for Borel in-
jectivity of restrictions of ψ .

Proposition 19. Let Z be a nonempty subset of C∗. Then the mapping ψ |Z
is injective if and only if the intersection of Z and any straight line passing
through the origin contains at most one point.

Proof. Suppose the intersection ofZ and any straight line passing through
the origin contains at most one point. Take z1, z2 ∈ Z such thatψ(z1) = ψ(z2).
Note that there exist t1, t2 ∈ R, such that |t1 − t2| � π , z1 = |z1|eit1 and
z2 = |z2|eit2 . Since Z ⊂ C∗, we see that e2it1 = e2it2 , which gives t1 = t2
or |t1 − t2| = π . In both cases z1 and z2 are points of a straight line passing
through the origin, so, by our assumption, z1 = z2. This proves the injectivity
ofψ |Z . The converse implication follows easily from the fact thatψ is constant
on any straight line {reit : r ∈ R} intersected with C∗, where t ∈ [0, π). This
completes the proof.

Corollary 20. LetZ ⊂ C∗ be a nonempty set. SupposeΔ is a subset of R
such that |t1 − t2| < π for all t1, t2 ∈ Δ, and r:Δ → (0,∞) is a function for
which the mapping φ:Δ � t �−→ r(t)eit ∈ Z is surjective. Then φ and ψ |Z
are injective.

Before formulating the main result of this section, we state a crucial lemma
which is in the spirit of quasi-determinacy (cf. Theorem 3).

Lemma 21. If γ : � → C is a complex moment sequence and (μ1, ν1) and
(μ2, ν2) are representing pairs for some Γ ∈ PDE(γ ), then

μ1 ◦ ψ−1 + ν1 ◦ ϕ−1 = μ2 ◦ ψ−1 + ν2 ◦ ϕ−1, (26)

where ϕ and ψ are given by (3) and (24), respectively, whereas νj ◦ ϕ−1 and
μj ◦ ψ−1 are Borel measures on T given by (4) and (25), respectively.

Proof. It follows from the measure transport theorem that

∫
C∗
zmz̄−m dμj(z)

(24)=
∫
C∗
ψ(z)m dμj(z)

=
∫
T
zm d(μj ◦ ψ−1)(z), m = 0,±1,±2, . . . , j = 1, 2,
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and similarly
∫
T
zmz̄−m dνj (z) =

∫
T
zm d(νj ◦ ϕ−1)(z), m = 0,±1,±2, . . . , j = 1, 2,

which implies that

Γm,−m
(2)=

∫
T
zm d(μj ◦ψ−1 + νj ◦ ϕ−1)(z), m = 0,±1,±2, . . . , j = 1, 2.

Hence, by the determinacy of the Herglotz moment problem (see Section 3),
the condition (26) holds. This completes the proof.

In what follows:

• ψp def= ψ |Zp
whenever p ∈ C[z, z̄] is such that Zp �= ∅ and 0 /∈ Zp;

• M(γ ) stands for the set of all representing measures for a complex
moment sequence γ on �.

We are now in a position to prove the main result of this section.

Theorem 22. Let p ∈ C[z, z̄] be a polynomial such that Zp �= ∅ and
0 /∈ Zp. Assume that γ : � → C is a complex moment sequence which has a
representing measure supported in Zp. Then the following assertions hold:

(i) if μ ∈ M(γ ), then suppμ ⊂ Zp, Γ (μ) = {Γm,n(μ)}(m,n)∈�+ ∈ PDE(γ )
and (μ, 0) is a representing pair for Γ (μ), where

Γm,n(μ) =
∫
C∗
zmz̄n dμ(z), (m, n) ∈ �+;

(ii) if (μ, ν) is a representing pair for some Γ ∈ PDE(γ ), then μ ∈ M(γ )

and ν = 0;

(iii) if (μ1, 0) and (μ2, 0) are representing pairs for some Γ ∈ PDE(γ ), then

μ1 ◦ ψ−1
p = μ2 ◦ ψ−1

p ; (27)

(iv) if Z is a nonempty closed subset of Zp such that ψ |Z is injective, then
the mapping MZ(γ ) � μ �−→ Γ (μ) ∈ PDE(γ ) is injective, where
MZ(γ ) = {μ ∈ M(γ ): suppμ ⊂ Z};

(v) if ψp is injective, then
• the mapping M(γ ) � μ �−→ Γ (μ) ∈ PDE(γ ) is bijective,
• every Γ ∈ PDE(γ ) is determinate,
• PDE(γ ) is of cardinality continuum whenever γ is indeterminate.
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Proof. (i) Suppose μ ∈ M(γ ). By Proposition 7, μ is supported in Zp.
Since, by our assumption 0 /∈ Zp, we deduce that Γ (μ) ∈ PDE(γ ) and (μ, 0)
is a representing pair for Γ (μ) (see Lemma 2).

(ii) Assume that (μ, ν) is a representing pair for some Γ ∈ PDE(γ ). It
follows from Lemma 2 that μ+ ν(T)δ0 ∈ M(γ ), and consequently by (i) and
the assumption that 0 /∈ Zp, we have

ν(T) = (μ+ ν(T)δ0)({0}) = 0.

This implies that ν = 0 and thus, by (2), μ ∈ M(γ ).
(iii) Assume that (μ1, 0) and (μ2, 0) are representing pairs for some Γ ∈

PDE(γ ). Then, by Lemma 21, μ1 ◦ ψ−1 = μ2 ◦ ψ−1. By (i) and (ii), the
measures μ1 and μ2 are supported in Zp. Therefore, μj ◦ψ−1 = μj ◦ψ−1

p for
j = 1, 2, which yields (27).

(iv) Assume that Z is a nonempty closed subset of Zp such that ψ |Z is
injective. Since Z is σ -compact and 0 /∈ Z, we infer from Corollary 18 that
the mapping ψ |Z is Borel injective. First note that by (i), Γ (μ) ∈ PDE(γ ) for
every μ ∈ M(γ ). If μ1, μ2 ∈ MZ(γ ) are such that Γ (μ1) = Γ (μ2), then
by (i) and (iii), μ1 ◦ ψ−1

p = μ2 ◦ ψ−1
p . Since the measures μ1 and μ2 are

supported in Z, we deduce that μj ◦ψ−1
p = μj ◦ (ψ |Z)−1 for j = 1, 2. Hence,

μ1 ◦ (ψ |Z)−1 = μ2 ◦ (ψ |Z)−1, which by the Borel injectivity of ψ |Z leads to
μ1 = μ2. As a consequence, the mapping MZ(γ ) � μ �−→ Γ (μ) ∈ PDE(γ )
is injective.

(v) Assume thatψp is injective. It follows from (i) and (iv) that the mapping
M(γ ) � μ �−→ Γ (μ) ∈ PDE(γ ) is injective. On the other hand, by (ii),
the second term in (2) must be zero whenever Γ ∈ PDE(γ ) and (μ, ν) is a
representing pair for Γ . This yields the surjectivity of the mapping M(γ ) �
μ �−→ Γ (μ) ∈ PDE(γ ). Therefore, it is a bijection. This together with (ii)
implies that every Γ ∈ PDE(γ ) is determinate. To prove the last assertion in
(v) assume that γ is indeterminate. Since the set M(γ ) is a convex subset of
the set of all Borel measures on C and M(γ ) is not a one point set, we see that
the cardinality of M(γ ) is at least continuum. Combined with the injectivity
of M(γ ) � μ �−→ Γ (μ) ∈ PDE(γ ), this implies that the set PDE(γ ) is of
cardinality at least ���. Since PDE(γ ) ⊂ C�+ and the cardinality of C�+ is ���, the
proof is complete.

Corollary 23. Let p ∈ C[z, z̄] be a polynomial such that Zp �= ∅,
0 /∈ Zp andψp is injective. Suppose γ : � → C is a complex moment sequence
having a representing measure supported in Zp. If PDE(γ ) = {Γ }, then γ is
determinate.

Regarding assertion (v) of Theorem 22, it is advisable to know for which
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polynomials p, the mapping ψp is injective. It is easily seen that the injectiv-
ity property of ψp fails to hold for most plane algebraic curves, including
circles, ellipses, hyperbolas, parabolas, lemniscates, etc. However, we may
indicate several polynomials p for which ψp is injective. For convenience, in
Example 24 below we use the two real variable description of real algebraic
sets.

Example 24. The mapping ψp is injective in any of the following cases:

(1) p(x, y) = ax + by − c, where a, b, c ∈ R, a2 + b2 > 0 and c �= 0 (a
straight line which does not contain the origin);

(2) p(x, y) = (y − y0)
� − ax2k , where k is a nonnegative integer, � > 2k is

an odd integer, a > 0 and y0 > 0 (for k = 1 and � = 3 this is a shifted
Neil’s semicubical parabola, cf. [6, p. 93], [16, p. 5]);

(3) p(x, y) = y(x2 +a)−b, where a, b > 0 (a generalized Witch of Agnesi,
cf. [6, p. 94]);

(4) p(x, y) = ((x − x0)
2 + y2)(x − x0) − 2ay2, where a > 0 and x0 > 0

(a shifted cissoid of Diocles, cf. [6, p. 95], [16, p. 5]);

(5) p(x, y) = y�x2k − a, where k is a nonnegative integer, � is an odd
positive integer and a ∈ R \ {0}.

The injectivity of ψp will be deduced from Proposition 19 by verifying that
the intersection of Zp and any straight line passing through the origin contains
at most one point.

The case (1) is obvious. Let p be as in (2). Then Zp is located in the
upper half-plane. The case of the line x = 0 is plain. Since the set Zp ∩ {z ∈
C: Re(z) � 0} is the graph of a strictly increasing concave function on the
interval [0,∞) whose value at 0 is positive, it intersects the line y = cx in
exactly one point whenever c > 0. The case c < 0 follows by the symmetry
of Zp with respect to the reflection across the line x = 0.

Suppose p is as in (3). Then Zp is contained in the upper half-plane. The
case of the line x = 0 is trivial. Since the set Zp ∩ {z ∈ C: Re(z) � 0} is
the graph of a strictly decreasing positive function on the interval [0,∞), it
intersects the line y = cx in exactly one point whenever c > 0. As above, the
case c < 0 follows by the symmetry of Zp with respect to the reflection across
the line x = 0.

Let p be as in (4). This time Zp is a subset of the right half-plane. Again,
the case of the line y = 0 is obvious. Since the set Zp ∩ {z ∈ C: Im(z) � 0} is
the graph of a strictly increasing convex function on the interval [x0, x0 + 2a)
that vanishes at x0, it intersects the line y = cx in exactly one point whenever
c > 0. The case c < 0 follows by the symmetry of Zp with respect to the
reflection across the line y = 0.
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Finally, the case when p is as in (5) is straightforward.

Regarding Theorem 22(iv), we note that though in general the mapping ψ
given by (24) is not injective on plane algebraic curves, it becomes such on
appropriately chosen parts of them, e.g., one branch of a hyperbola, an arc of
a parabola, etc. In turn, Proposition 7 which helps to localize the supports of
representing measures of a complex moment sequence on a real algebraic set
can be enforced with the help of Proposition 14 as follows (cf. Remark 28).

Proposition 25. If γ = {γm,n}(m,n)∈� is a complex moment sequence which
has a representing measure μ supported in a real algebraic set Z such that
the set π1(suppμ) (resp., π2(suppμ)) is bounded, then

supp μ̃ ⊂ Z ∩ (
π1(suppμ)× R

) (
resp., supp μ̃ ⊂ Z ∩ (

R× π2(suppμ)
))

for any representing measure μ̃ for γ , where π1 and π2 are as in (17).

Proposition 25 can be applied e.g. to the Witch of Agnesi (see Exam-
ple 24(3)). We will show that for such a plane algebraic curve there is no
analogue of an N-extremal measure in the following sense. Recall that a rep-
resenting measure μ of an indeterminate Hamburger moment sequence is said
to be N-extremal if complex polynomials are dense in L2(μ). The supports of
N-extremal measures of an indeterminate Hamburger moment sequence have
remarkable properties, namely they are infinite, have no accumulation points
in R and form a partition of R (see [22, Theorem 2.13]; see also [23]). As
shown in Proposition 26 below, this is no longer true for supports of repres-
enting measures of a complex moment sequence provided at least one of them
is contained in the Witch of Agnesi and has no accumulation point therein. An
analogue of Proposition 26 can also be formulated and proved for a shifted
cissoid of Diocles (see Example 24(4)). We leave the details to the reader.

Below, for brevity, we write xn ↗ ∞ (resp., xn ↘ 0) if {xn}∞n=1 is a strictly
increasing (resp., strictly decreasing) sequence in R which converges to ∞
(resp., 0).

Proposition 26. Let γ = {γm,n}(m,n)∈� be a complex moment sequence with
a representing measure μ supported in Zp, where p is as in Example 24(3).
Assume that suppμ is infinite and has no accumulation points in Zp. Then
there exists a sequence {zn}∞n=1 ⊂ Zp such that

(i) 0 � Re(zn) ↗ ∞,

(ii) for any representing measure μ̃ of γ ,

μ̃({zn,−z̄n}) = μ({zn,−z̄n}) > 0, n � 1, (28)

supp μ̃ ⊂ {zn: n � 1} ∪ {−z̄n: n � 1}. (29)
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Proof. Since suppμ is infinite and has no accumulation points in Zp, one
can show that there exists a sequence {zn}∞n=1 ⊂ Zp such that

0 � Re(zn) ↗ ∞, (30)

μ({zn,−z̄n}) > 0, n � 1, (31)

suppμ ⊂ {zn: n � 1} ∪ {−z̄n: n � 1}. (32)

In fact, the set {zn: n � 1} ∪ {−z̄n: n � 1} is the smallest subset of Zp that
contains suppμ and is symmetric with respect to the reflection across the line
x = 0. It follows from (31) and (32) that

π2(suppμ) = {Im(zn): n � 1} ⊂
[
0,
b

a

]
.

Since, by (30), Im(zn) ↘ 0, we see that π2(suppμ) = {0} ∪ {Im(zn): n � 1}.
This implies that

Zp ∩ (
R× π2(suppμ)

) = {zn: n � 1} ∪ {−z̄n: n � 1}. (33)

Let μ̃ be any representing measure for γ . In view of (33) and Proposition 25,
the measure μ̃ satisfies (29). It follows from Lemma 13 and Proposition 14
that μ̃ ◦ π−1

2 = μ ◦ π−1
2 . Since μ and μ̃ are supported in Zp and

Zp ∩ π−1
2 ({Im(zn)}) = {zn,−z̄n}, n � 1,

we conclude that (28) holds. This completes the proof.

Remark 27. We conclude this section by examining Borel injectivity ofψp
after transformation by polynomial automorphism. For simplicity of presenta-
tion we treatC asR2. Let us consider a polynomial automorphismΦ:R2 → R2

given by
Φ(x, y) = (x, y + f (x)), x, y ∈ R,

where f ∈ R[x] (see [11] for fundamentals of the theory of polynomial auto-
morphisms). Clearly, the inverse of Φ is given by

Φ−1(x, y) = (x, y − f (x)), x, y ∈ R.
Though polynomial automorphisms preserve many properties of moment se-
quences (see e.g., [28, Sec. 21] or [7, Proposition 46]), they fail to preserve in-
jectivity ofψp. Indeed, ifp(x, y) = y−1 for x, y ∈ R, thenψp is injective (see
Example 24(1)). Note thatΦ(Zp) = Zp◦Φ−1 andp◦Φ−1(x, y) = y−f (x)−1
for x, y ∈ R. Letf (x) = x2 for x ∈ R. ThenΦ(Zp) is the parabola y = x2+1,
which means that ψp◦Φ−1 is not injective.
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6. An open problem

The following question, partially answered in Theorem 6 and Corollary 23,
needs to be solved in full generality.

Question. Assume that γ : � → C is a complex moment sequence such
that PDE(γ ) = {Γ }. Does it follow that γ is determinate?

In view of this question it is legitimate to make sure that none of the examples
given in this paper solves it in the negative.

Remark 28. The sequence γ from Example 12 is indeterminate and, by
Theorem 22(v) and Example 24(1), the set PDE(γ ) is infinite.

We will show that the same conclusion holds for the indeterminate com-
plex moment sequence γ = {γm,n}(m,n)∈� coming from the two-dimensional
Hamburger moment sequence s ⊗ t appearing in Theorem 15 if

d
def= sup suppμ ∈ (0,∞) and suppμ ⊂ [0, d], (34)

where μ is as in Theorem 15. The following argument can be applied to the
case when suppμ is any compact set, but the assumption (34) allows us to
avoid some technical details. In our settings, the complex moment sequence
γ is defined by (cf. (22))

γm,n =
∫
R2
(x + iy)m(x − iy)n d
(x, y), m, n � 0,

where
 is any representing measure for s⊗t . The definition of γ is independent
of the choice of 
, and, after identifying C with R2, representing measures of
s ⊗ t and γ coincide (see [10, Appendix A]). We will indicate two representing
measures 
1 and 
2 for γ (equivalently for s ⊗ t) such that


1 ◦ ψ−1 �= 
2 ◦ ψ−1. (35)

For this, we first observe that if Δ ⊂ (0, π) is an open interval and

EΔ
def= {±reit : r > 0, t ∈ Δ},

then
EΔ = ψ−1({e2it : t ∈ Δ}). (36)

Next, we notice that it is possible to find two representing measures ν1 and ν2

for t for which there exist b1, b2 ∈ R such that

b2 > b1 > 0, b1 ∈ supp ν1 and ν2((0, b2)) = 0. (37)
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Indeed, this is always true for any two distinct N-extremal measures of t

having atoms in (0,∞) (up to rearrangement), because supports of N-extremal
measures of t form the partition of R and each of them has no accumulation
points in R (see [22, Theorem 2.13]). Set 
1 = μ⊗ ν1 and 
2 = μ⊗ ν2. Then

1and 
2 are representing measures for γ (see the proof of Proposition 15).
Moreover, by (34), (37) and μ({0}) = 0, we have


2(Ω) = 0, (38)

where

Ω = (
(−∞, 0] × R

) ∪ (
[0, d] × (0, b2)

) ∪ (
(d,∞)× R

)
,

and
(d, b1) ∈ suppμ× supp ν1 = supp 
1. (39)

Plainly, we can choose a set EΔ, where Δ ⊂ (0, π) is an open interval, so
that EΔ ⊂ Ω and (d, b1) ∈ EΔ. This combined with (38), (39) and the fact
that EΔ is an open neighbourhood of (d, b1) implies that 
2(EΔ) = 0 and

1(EΔ) > 0. Hence, by (36), we get (35). Since, by Theorem 15, none of
representing measures of γ has an atom at 0, we infer from Lemma 2(ii) that
(
1, 0) and (
2, 0) are representing pairs for some extensions in PDE(γ ). It
follows from Lemma 21 and (35) that they cannot be representing pairs for the
same Γ ∈ PDE(γ ). This implies that the set PDE(γ ) is infinite (see the proof
of Proposition 5).
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