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QUASI-SYMMETRY WITHOUT RATIOS

JAROSLAW KWAPISZ

Abstract
We characterize quasi-symmetric maps between compact metric spaces as homeomorphisms uni-
formly at all scales.

The notion of a quasi-symmetric map is of interest in analysis (as a fruit-
ful relaxation of that of a conformal map) and has important applications in
dynamical systems and geometry. The standard definition refers to relative dis-
tances expressed by distance ratios, which suggests that quasi-symmetry is a
form of uniform continuity at all scales. Our goal is to precisely articulate this
intuition in a way that may appeal to those newly encountering the concept.
For simplicity, all spaces considered are non-empty compact metric spaces
(and dX or d, in absence of ambiguity, denotes the underlying metric on X).
The key benefit of compactness is that all subtleties take place at arbitrarily
small scales, and we do not have to parallel our constructions and arguments
to account for arbitrarily large scales.

We set R
+

:= [0, ∞] and refer to an increasing homeomorphism η:R
+ →

R
+

as a gauge. Our ostentatious goal is to remove the quotients from the
following standard definition ([8], [2], [4]).

Definition 1. A bijection f : X → Y is quasi-symmetric (q.s.) if and only
if there is a gauge η:R

+ → R
+

such that, for all triples of distinct points
x, x ′, x ′′ ∈ X, we have

d(f x, f x ′)
d(f x, f x ′′)

≤ η

(
d(x, x ′)
d(x, x ′′)

)
.

In the traditional ε-δ-style, one writes:

Definition 2. A bijection f : X → Y is quasi-symmetric (q.s.) if and only
if

∀ε>0 ∃δ>0
d(x, x ′)
d(x, x ′′)

< δ 	⇒ d(f x, f x ′)
d(f x, f x ′′)

< ε
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and
∀ε>0 ∃δ>0

d(f x, f x ′)
d(f x, f x ′′)

< δ 	⇒ d(x, x ′)
d(x, x ′′)

< ε

(where x, x ′, x ′′ are arbitrary triples of distinct points in X).

The two definitions are equivalent and symmetric under replacement of f

by f −1, whereby the gauge for f −1 is given by 1/η−1(1/s). (We will build-in
the f ↔ f −1 symmetry into all our notions.) Also, one could allow triples
of possibly non-distinct x, x ′, x ′′ with x �= x ′′ (upon increasing η so that
1 ≤ η(1)).

To explain quasi-symmetry on the basis of a more familiar concept of a
homeomorphism, let us define the latter by using gauges (aka moduli of con-
tinuity).

Definition 3. A bijection f : X → Y is a homeomorphism if and only if
there is a gauge α:R

+ → R
+

so that, for x, x ′ ∈ X,

α−1(d(x, x ′)) ≤ d(f x, f x ′) ≤ α(d(x, x ′)).

To give a rigorous meaning to a homeomorphism uniformly at all scales,
we have to first consider pieces of the map f with rescaled metrics.

Definition 4. Given a homeomorphism f : X → Y and x0 ∈ X, a zooming
of f at x0 is a map f ′: (X′, dX′) → (Y ′, dY ′) between metric spaces where
X′ ⊂ X is closed with x0 contained in its interior, Y ′ := f (X′), and f ′ is the
restriction of f (so f ′(x) := f (x) for all x ∈ X′). Moreover, the new metrics
are dX′ := λdX and dY ′ := μdY for some λ, μ ≥ 1.

In our context, the scalars λ and μ are typically strictly bigger than 1 and
large; so the original metrics dX and dY are expanded, justifying the zooming
nomenclature.

Definition 5. Let I be any set. A family of homeomorphisms (fi : Xi →
Yi)i∈I is uniform if and only if there is a gauge α serving (as in Definition 3)
all the maps fi and the sets of numbers {diam(Xi)}i∈I and {diam(Yi)}i∈I are
precompact in (0, ∞) (i.e., they are contained in the segment [1/D, D] for
some D > 0).

It is easy to see that a common gauge α exists as soon as the family of gauges
(αi)i∈I of individual fi and the family of inverses (α−1

i )i∈I are both uniformly
equicontinuous. Also, in presence of a common gauge α, {diam(Xi)}i∈I is
precompact if and only if {diam(Yi)}i∈I is precompact.

In what follows, we label all zoomings by an index i that is a pair consisting
of the base point and a natural number (zoom level).
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Definition 6. A family (fx0,k: Xx0,k → Yx0,k)x0∈X,k∈N, where fx0,k is a
zooming of f at x0, is of bounded type if and only if there exists C > 1 such
that, for any distinct x0, x

′
0 ∈ X with dX(x0, x

′
0) < 1/C, there is k ∈ N so that

x ′
0 ∈ Xx0,k and

diamX(Xx0,k) ≤ CdX(x0, x
′
0) and diamY (Yx0,k) ≤ CdY (f x0, f x ′

0).

The idea is that, for pairs of nearby points, there is a zooming (centered at the
first point) of diameter comparable to the distance between the points. Incid-
entally, the simplest way to satisfy the inequality diamX(Xx0,k) ≤ CdX(x0, x

′
0)

is by taking Xx0,k := BC−k (x0), the closed ball of radius C−k about x0, and
picking the largest k for which x ′

0 belongs to BC−k (x0). Note that, in absence of
sufficiently many points of X around x0, the diameters diamX(BC−k (x0)) could
be much smaller than C−k for many k ∈ N. (Although, for the k chosen to
suit x ′

0, as above, diamX(BC−k (x0)) is comparable to C−k; it exceeds C−k−1.)
This pathology is absent under the assumption that X is uniformly perfect,
i.e., diamX(Br(x0)) ≥ C−1

1 r for all r > 0 and some fixed C1 > 1. For such
X, the bounded type stipulation simply amounts to boundedness of the ratios
diamX(Xx0,k)/ diamX(Xx0,k+1) as k → ∞, with the analogous condition for
diamY (Yx0,k). Also, note that if f is q.s. then one inequality (in Definition 6)
already implies the other upon adjusting the constant C, if necessary.

Theorem 7 (Dynamical characterization of quasi-symmetry). Let X, Y be
compact metric spaces. A homeomorphism f : X → Y is quasi-symmetric if
and only if one can select at each x0 ∈ X zoomings fx0,k of f so that the family
(fx0,k: Xx0,k → Yx0,k)x0∈X,k∈N is uniform and of bounded type.

Before delving into proofs, consider the canonical example. (See [4], and
also the elegant cataloging of all quasi-circles in [5], [3].)

Koch Example. LetX := [0, 1] and letY := K be the classical Koch curve
obtained from a finite segment in R2 by recursive replacement of the middle
third subsegment with two segments of the same length (meeting at 60◦). Y is
homeomorphic to X via a standard map f : X → Y . This map is verified to be
quasi-symmetric by taking Xx0,k := B1/4k+1(x0) with zoom factors λx0,k := 4k

and μx0,k := 3k . To see this, use the quintessential self-similarity: f restricted
to any 4-adic segment, I ′ := [j/4k, (j + 1)/4k] (with k ∈ N, 0 ≤ j < 4k),
maps onto a portion K ′ of K that coincides with all of K upon translating and
scaling by 3k . Moreover, the restriction f |I ′ becomes equal to f once pre- and
post- composed with the obvious maps I ′ → I and K → K ′ (obtained by
translating and scaling). This implies that, up to pre- and post- composition
with an isometry, the zooming fx0,k coincides with f restricted to a subset.
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Therefore, uniformity of the family of zoomings is immediate from the uniform
continuity of f and f −1 (as afforded by compactness of X).

By way of historical perspective, a mechanism similar to that in Koch ex-
ample is responsible for quasi-symmetry of many self-similar homeomorph-
isms f , where the zoomings are constructed by using dynamical systems, one
on X and one on Y , that are topologically conjugated by f . The uniformity of
zoomings is automatic if the iterated dynamics expand small distances linearly
until they become big. Generally, this dynamical passage to the big scale is
non-linear and one has to obtain some uniform control of the non-linearity
(as needed to secure uniform quasi-symmetry of the passage, cf. Remark 9;
see [7], [1], [6]). The initial thrust behind our theorem was the sentiment that
all quasi-symmetry is of dynamical origin, with the act of zooming supplanting
the dynamics. (In a pinch, zooming is dynamical: it comes from the scaling
R-action on the space of metric spaces.)

We turn to proving Theorem 7. The points in all triples considered are
assumed to be distinct. A triple γ = (x, x ′, x ′′) is called δ-big if and only if
diam(γ ) := max{d(x, x ′), d(x ′, x ′′), d(x ′′, x)} ≥ δ. Our departure point is
a natural observation that all homeomorphisms are quasi-symmetric on big
triples.

Lemma 8 (Big triple lemma). If f : X → Y is a homeomorphism (with
gauge α) and δ > 0, then there is a gauge η:R

+ → R
+

so that, for all δ-big
triples γ = (x, x ′, x ′′) in X,

d(f x, f x ′)
d(f x, f x ′′)

≤ η

(
d(x, x ′)
d(x, x ′′)

)
. (1)

Moreover, as long as diam(X), diam(Y ) ≤ D (for some D > 0), then the
gauge η can be chosen to depend only on δ, D, and the gauge α.

Proof of Lemma 8. Consider a δ-big triple γ = (x, x ′, x ′′) in X. Clearly
diam(X) ≥ δ. Setting

ε := α−1(δ),

we see that σ := (f x, f x ′, f x ′′) is an ε-big triple in Y . Also, take

δ′ := α−1(ε/2) > 0

and define a gauge η:R
+ → R

+
by

η(s) := max

{
α(s diam(X))

ε/2
,

diam(Y )

α−1(δ′/s)

}
(s > 0). (2)
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First, suppose that d(f x, f x ′′) ≥ ε/2. Then

d(f x, f x ′)
d(f x, f x ′′)

≤ d(f x, f x ′)
ε/2

≤ α(d(x, x ′))
ε/2

≤ (ε/2)−1α

(
d(x, x ′)
d(x, x ′′)

diam(X)

)
.

Second, suppose that d(f x, f x ′′) < ε/2. Then d(f x, f x ′) > ε/2 (as other-
wise σ would not be ε-big). By the choice of δ′, d(x, x ′) ≥ δ′, yielding

d(f x, f x ′)
d(f x, f x ′′)

≤ diam(Y )

d(f x, f x ′′)
≤ diam(Y )

α−1(d(x, x ′′))

≤ diam(Y )

(
α−1

(
d(x, x ′′)
d(x, x ′)

δ′
))−1

.

The two displayed estimates above combine to establish inequality (1) in the
lemma. Moreover, from monotonicity of α, it is clear that the diameters in (2)
can be replaced by their upper bound D.

The assertion of quasi-symmetry in the theorem can now be shown based
on the simple idea that any triple is big in an appropriate zooming.

Proof of ⇐ implication of Theorem 7. First let D > 0 be such that
1/D ≤ diam(Xx0,k), diam(Yx0,k) ≤ D for all k and x0. Proceeding by con-
tradiction, we assume that Definition 2 fails. All things being symmetric with
respect to f ↔ f −1, we may suppose that there is a sequence of triples
γn := (xn, x

′
n, x

′′
n) for which d(xn,x

′
n)

d(xn,x ′′
n )

→ 0 but d(f xn,f x ′
n)

d(f xn,f x ′′
n )

≥ κ for some fixed
κ > 0. By Lemma 8, it must be that diamX(γn) → 0.

For each n ∈ N, pick rn > 0 minimal such that γn ⊂ Brn
(xn). Thus one of x ′

n

or x ′′
n is rn distance away from xn, and the bounded type property yields, for all

large enoughn, a zoomingfxn,kn
: Xxn,kn

→ Yxn,kn
so that diamX(Xxn,kn

) ≤ Crn.
Therefore,

diamXxn,kn
(γn)

diam(Xxn,kn
)

= λxn,kn
diamX(γn)

λxn,kn
diamX(Xxn,kn

)
≥ rn

Crn

≥ 1/C. (3)

Since also diam(Xxn,kn
) ≥ 1/D (by uniformity), the triple γn is 1

DC
-big when

viewed in Xxn,kn
and we can apply Lemma 8 to maps fxn,kn

. By uniformity, the
lemma yields a common gauge η so that, for all n ∈ N,

dYxn,kn
(f xn, f x ′

n)

dYxn,kn
(f xn, f x ′′

n)
≤ η

(
dXxn,kn

(xn, x
′
n)

dXxn,kn
(xn, x ′′

n)

)
.
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For a contradiction, note that

dXxn,kn
(xn, x

′
n)

dXxn,kn
(xn, x ′′

n)
= d(xn, x

′
n)

d(xn, x ′′
n)

→ 0 (4)

and
dYxn,kn

(f xn, f x ′
n)

dYxn,kn
(f xn, f x ′′

n)
= d(f xn, f x ′

n)

d(f xn, f x ′′
n)

≥ κ > 0. (5)

Remark 9. Looking back at the proof, in the steps where the original and
the zoomed metrics had to be related (i.e., in (3), (4), and (5)), the comparison
was that of ratios of distances. The argument then readily generalizes to the
situation when dXxn,kn

and dYxn,kn
are merely uniformly quasi-symmetrically

equivalent to the restrictions of dX and dY , respectively. That is, it suffices that
the identity maps (Xx0,k, dXx0 ,k

) → (Xx0,k, dX) are q.s. with a common gauge
for all x0 ∈ X and k ∈ N, and that the analogous condition holds for Yx0,k .

The other implication of the theorem follows the natural idea – already
broached after Definition 6 – of zooming to geometrically decreasing balls;
although, some extra care has to be exercised due to the possibility of isolated
points in X.

Lemma 10. Suppose that f : X → Y is quasi-symmetric with gauge η:R
+→

R
+

and A := diam(X) and B := diam(Y ). If X′ ⊂ X and Y ′ := f (X′) are
not single points so that A′ := diamX(X′) > 0 and B ′ := diamY (Y ′) > 0,
then taking λ := A/A′ ≥ 1 and μ := B/B ′ ≥ 1 and defining a gauge via

β(s) := max

{
Bη

(
4s

A

)
,

4Bs

A
,

4As

B
, A

1

η−1(B/(4s))

}

secures

β−1(dX′(x, x ′)) ≤ dY ′(f x, f x ′) ≤ β(dX′(x, x ′)) (x, x ′ ∈ X′).

Note that, the gauge β and the diameters of X′ and Y ′ with respect to
the rescaled metrics dX′ := λdX and dY ′ := μdY used above do not depend
on X′. (Indeed, diam(X′) = diam(X) and diam(Y ′) = diam(Y ) by design.)
Therefore, the lemma immediately gives:

Corollary 11. If f is q.s. then the family of all restrictions (f |X′ : X′ →
Y ′)X′ , where X′ ranges over subsets of X that are not a single point, is a uniform
family (when taken with dX′ and dY ′ and zoom factors λ, μ as in Lemma 10).
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Proof of Lemma 10. Consider any x, x ′ ∈ X′. First, assume that
d(x, x ′) ≥ A′/4. Then

μd(f x, f x ′) = B
d(f x, f x ′)

B ′ ≤ B ≤ B
d(x, x ′)
A′/4

= 4B

A
λd(x, x ′).

Second, assume that d(x, x ′) < A′/4. Then there is x ′′ ∈ X′ such that
d(x, x ′′) > A′/4 (as otherwise diamX(X′) ≤ 2A′/4 < A′), and we can write

μd(f x, f x ′) = B
d(f x, f x ′)

B ′ ≤ B
d(f x, f x ′)
d(f x, f x ′′)

≤ Bη

(
d(x, x ′)
d(x, x ′′)

)
< Bη

(
d(x, x ′)
A′/4

)
= Bη

(
4

A
λd(x, x ′)

)
.

The last two displayed inequalities combine to give μd(f x, f x ′) ≤ β(λd(x,

x ′)) for any x, x ′ ∈ X′. By switching the roles of f and f −1 (and the associated
swapping A ↔ B and η(s) ↔ 1/η−1(1/s)) we get the other inequality.

Proof of ⇒ implication of Theorem 7. Assume that f is q.s. and set
rk := εk with a fixed ε ∈ (0, 1) selected at will. Consider x0 ∈ X and k ∈ N.
If Brk−1(x0) \ Brk

(x0) is empty we default to Xx0,k := X and Yx0,k := Y (with
λx0,k = μx0,k = 1). Suppose then that there is x ′

0 ∈ Brk−1(x0)\Brk
(x0). In such

case we let Xx0,k := Brk−1(x0) and Yx0,k := f (Xx0,k), and we take λx0,k, μx0,k

and βx0,k = β as in Lemma 10 with X′ := Xx0,k . By Corollary 11, the family
of thus obtained zoomings (fx0,k: Xx0,k → Yx0,k)x0∈X,k∈N is uniform (as the
gauges βx0,k and the rescaled diameters diam(Xx0,k) and diam(Yx0,k) do not
depend on x0 and k).

It remains to verify the bounded type property. Consider distinct x0, x
′
0 ∈ X.

We may well require that r := d(x0, x
′
0) < 1, in which case we can pick k ∈ N

so that rk < r ≤ rk−1. Then x ′
0 ∈ Brk−1(x0) \ Brk

(x0), so Xx0,k = Brk−1(x0)

and diamX(Xx0,k) ≤ 2rk−1 = 2ε−1rk < 2ε−1r . In particular, we verified
diamX(Xx0,k) ≤ 2ε−1d(x0, x

′
0).

On the other side of f , one has diamY (Yx0,k) ≤ 2η(2ε−1)d(f x0, f x ′
0)

because, for any x ′′
0 ∈ Xx0,k , quasi-symmetry of f gives

d(f x0, f x ′′
0 ) ≤ η

(
d(x0, x

′′
0 )

d(x0, x
′
0)

)
d(f x0, f x ′

0) ≤ η(2ε−1)d(f x0, f x ′
0).

Therefore, the bounded type property is satisfied with C := max{1, 2ε−1,

2η(2ε−1)}.
We finish with an example illustrating the theorem in the context of simple

self-similar maps of the interval.
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Example. Let m ≥ 2 and ai > 0 satisfy
∑m

i=1 ai = 1. Going from left
to right, cut X := [0, 1] into m subsegments of lengths ai . These are what
we call 1st generation segments. Further cutting each such segment (in the
same proportions ai) yields 2nd generation segments, etc. There is an obvious
way to index the mn segments of generation n by sequences σ ∈ {1, . . . , m}n
so that, if Iσ is the segment corresponding to σ , then its length is |Iσ | :=∏n

i=1 aσ(i). Now, repeat the same process for ai := 1/m and Y := [0, 1] to
get subsegments I ′

σ ⊂ Y . (Specifically, for σ ∈ {1, . . . , m}n, I ′
σ consists of

y ∈ [0, 1] whose m-ary expansion starts with 0.σ1σ2 . . . σn.) Let fn: X → Y

be the unique increasing piecewise-linear homeomorphism sending Iσ linearly
onto I ′

σ (for all σ ∈ {1, . . . , m}n). It is easy to see that f := limn→∞ fn is a
homeomorphism. We leave it as an exercise for the reader to use the theorem
to show that f : X → Y is quasi-symmetric if and only if a1 = am.
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